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D. Petrellis

Institute of Nuclear Physics, N.C.S.R. “Demokritos”, GR-15310 Aghia Paraskevi,

Greece

Abstract

Quantum phase transitions in even-even nuclei been extensively studied both in
theory and experiment in the recent years. Odd-even nuclei can be considered as ex-
amples of mixed Bose-Fermi systems with a single fermion coupled to an even-even
core. The eÆect of a fermion with angular momentum j on quantum phase transi-
tions of a bosonic system comprised of s (L=0) and d (L=2) bosons is investigated.

The analysis is based on an Interacting Boson Fermion Model (IBFM) Hamil-
tonian and its classical limit and it demostrates the changes in the energy level
structure as well as the classical and quantum order parameters involved. Some
experimental evidence is also presented and compared with theoretical calculations.

Key words: Quantum shape-phase transitions; Interacting Boson Fermion Model
(IBFM); Odd-A nuclei

1 Introduction

Quantum phase transitions in even-even nuclei are very well known and ex-
cellent review articles about them exist in the literature [1,?]. The eÆect of a
single odd-fermion coupled to an even-even boson core, as in odd-mass nuclei,
has also been studied recently [3–6]. A more extensive treatment of the work
presented here is included in a recent publication [7].

2 A transitional IBFM Hamiltonian

We begin by considering a typical IBFM Hamiltonian [8], with a boson,
fermion and boson-fermion part, but with the boson part represented by a
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transitional IBM Hamiltonian [9], which contains two control parameters ª
and ¬ that determine the nature of the phase transition:

H = HB + HF + VBF

HB = "0

"

(1° ª) n̂d °
ª

4N
Q̂¬ · Q̂¬

#

HF = "j n̂j (1)

VBF = V MON
BF + V QUAD

BF + V EXC
BF ,

with the superscripts MON , QUAD and EXC denoting the monopole, quadru-
pole and exchange terms, respectively.

V MON
BF = An̂d n̂j

V QUAD
BF = ° Q̂¬ · q̂j

V EXC
BF = §

q
2j + 1 : [(d† £ ãj)

(j) £ (d̃£ a†
j)

(j)](0) : , (2)

with coe±cients A ¥ Aj/
q

5(2j + 1), ° ¥ °jj/
p

5 and § ¥ §j
jj/
p

2j + 1 as
in [8], and

n̂d = d† · d̃
Q̂¬ = (d† £ s + s† £ d̃)(2) + ¬(d† £ d̃)(2)

n̂j =°
q

2j + 1(a†
j £ ãj)

(0)

q̂j = (a†
j £ ãj)

(2) . (3)

where, as usual, dots · denote scalar products, £ denote tensor products and
: denotes normal ordering, while s†, d†

µ (s, dµ) (µ = 0,±1,±2) denote creation

(annihilation) operators for s, d bosons and a†
j,m(aj,m) (m = ±1

2 , ...,±j) cre-
ation (annihilation) operators for fermions with angular momentum j. The
adjoint operators are d̃µ = (°)µd°µ, ãj,m = (°)j°maj,°m. It should be noted
that the transitional IBM Hamiltonian above, describes the (first order) U(5)-
SU(3) transition for ¬ = °

p
7/2 and ª : 0 ! 1, and the (second order)

U(5)-SO(6) transition when ¬ = 0 and ª : 0 ! 1. The interaction strengths
° and § also play the role of control parameters, however we put ° / ª as in
[3]. The purely fermionic part and the monopole part of the B-F interaction
are not of interest in our study and are not taken into account.
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3 Semiclassical analysis

The next step is to take the expectation value of the full Hamiltonian in the
boson condensate

|N ; Ø, ∞i =
1p
N !

h
b†c(Ø, ∞)

iN
|0i (4)

with

b†c(Ø, ∞) =
1

(1 + Ø2)1/2
[Ø cos ∞d†

0 +
1p
2
Ø sin ∞(d†

2 + d†
°2) + s†]. (5)

The limit N ! 1 of the expectation value of the boson part of the Hamil-
tonian gives the potential energy surface

ĒB(Ø, ∞) = lim
N!1

EB(N ; Ø, ∞) (6)

= "0N

8
<

:

√
Ø2

1 + Ø2

!

(1° ª)° ª

4

1

(1 + Ø2)2

2

44Ø2 ° 4

s
2

7
¬Ø3 cos 3∞ +

2

7
¬2Ø4

3

5

9
=

;

while for the full Hamiltonian (eq. (2)) the expression is

H(N ; Ø, ∞) = EB(N ; Ø, ∞) (7)

+
X

m1,m2

[ "j ±m1,m2 + gm1,m2(N ; Ø, ∞) ]
≥
a†

j,m1
aj,m2 + a†

j,m2
aj,m1

¥
(1 + ±m1,m2)

°1

with gm1,m2 the elements of a real, symmetric matrix, whose eigenvalues, if we
diagonalize it in the single particle basis:

|j, mi = a†
j,m |0i (m = ±j,±(j ° 1), ...,±1

2
) . (8)

are the single particle energies given as functions of Ø, ∞ and the control
parameters for a certain j (fig. (1)). The case of ∞ = 0± has been worked
analytically in [10]. All the examples in the present study concern an odd-
particle that occupies a h11/2 (l = 5, j = 11/2) shell which means that
we limit our study to the negative parity states. The core consists of ten
bosons (N = 10). It should be noted that in the SU(3) limit the states are
characterized by K, the projection of j on the symmetry axis of the deformed
core.
By minimizing the total (boson + boson-fermion) energy surfaces with respect
to Ø and ∞ one can use the Øe and ∞e as classical order parameters and study
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Fig. 1. Single particle energies of a j = 11/2 particle as functions of Ø and ∞
separately, in a field of quadrupole and exchange strengths such that °/§ = 3
(° = °0.0958, § = °0.287), for the two cases U(5)-SU(3) (left) and U(5)-SO(6)
(right).

their behaviour with ª and ¬. Next, by replacing them in the expressions of
the single particle energies one obtains the minimum single particle energies
(fig. (2)) and similarly the minimum total energies .

4 Quantal analysis

In the microscopic treatment of the problem the quadrupole and exchange in-
teraction strengths are written in terms of BCS occupation probabilities and
are proportional to the strengths used in the classical analysis (see [11,7]).
Therefore, one can study how the spectrum evolves when moving from a
particle-like to a hole -like picture.
The behaviour of the ground state energy and its derivatives is another indica-
tor of a phase transition (see fig. (3), left), even though the eÆect is smoothed
out due to the finiteness of the system. Other quantities, such as the expec-
tation value of the number of d-bosons can be used as order parameters [12]:

∫(1)
i =

h√i |n̂d|√ii
N

, (9)

were the expectation values are taken with respect to each of lowest states of
total angular momentum J = 11/2, ..., 1/2 (fig. (3), right).
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Fig. 2. Minimum single particle energies normalized to (°N°) as functions of the
control parameter ª with exchange interaction (right) and without (left) , for the
U(5)-SU(3) (top) and U(5)-SO(6) (bottom) transitions.

5 Experimental evidence

The presence of discontinuities in the two-neutron separation energies of the
isotopes of 61Pm, 63Eu, 65Tb [13] is evident as can be seen in fig. (4, (left)),
much like their even-even counterparts 60Nd, 62Sm, 64Gd that are represen-
tative examples of a U(5)-SU(3) transition. By subtracting the smooth con-
tribution linear in N in the two-neutron separation energies one can isolate
the eÆect due to the deformation (fig. (4, (right))). A study of the negative
parity states of the 61Pm, 63Eu, 65Tb isotopes has been conducted [7] based
on previous studies [14,?].
The author would like to thank F. Iachello and A. Leviatan whose contribution
and guidance have been instrumental for this project.
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Fig. 3. Ground state energy E0 and its derivatives (left) and quantum order para-
meter ∫(1)

i (right) as functions of ª for a j = 11/2 particle coupled to a core of 10
bosons undergoing a U(5)-SU(3) transition. No exchange interaction- particle like
spectra (v2 = 1)
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