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Group contractions and conformal maps in
nuclear structure models

Dennis Bonatsos,

Institute of Nuclear Physics, N.C.S.R. “Demokritos”, GR-15310 Aghia Paraskevi,
Attiki, Greece

Abstract

Group contraction is a procedure in which a symmetry group is reduced into a
group of lower symmetry in a certain limiting case. Examples are provided in the
large boson mumber limit of the Interacting Boson Approximation (IBA) model by
a) the contraction of the SU(3) algebra into the [R’]SO(3) algebra of the rigid rota-
tor, consisting of the angular momentum operators forming SO(3), plus 5 mutually
commuting quantities, the quadrupole operators, b) the contraction of the O(6)
algebra into the [R°]SO(5) algebra of the y-unstable rotator. We show how contrac-
tions can be used for constructing symmetry lines in the interior of the symmetry
triangle of the IBA model.

In mathematics, a conformal map is a function which preserves angles. We show
how this procedure can be used in the framework of the Bohr Hamiltonian, leading
to a Hamiltonian in a curved space, in which the mass depends on the nuclear
deformation (3, while it remains independent of the collective variable v and the
three Euler angles. This Hamiltonian is proved to be equivalent to that obtained
using techniques of Supersymmetric Quantum Mechanics.

Key words: Group contactions, Interacting Boson Approximation model,
conformal maps, Bohr Hamiltonian.

1 Group contractions

The SU(3)— [R?]SO(3) contraction [1,2] is a procedure in which the full SU(3)
algebra, consisting of 8 noncommuting generators, is shrinked into an SO(3)
algebra (consisting of 3 noncommuting generators), accompanied by 5 mu-
tually commuting operators (the quadrupole operators). This simplification
occurs in the limit of large boson number in which, in SU(3), all intrinsic exci-
tations rise in energy, isolating the ground state band so that SU(3) goes over,



approximately, into a simple rigid rotator. The resulting algebraic structure
is, indeed, known [3] to be the algebra of the rigid rotator.

The SU(3) commutation relations read

[Le, L) = —V2(1E10|1€ + v) Ley, (1)

[Le, Qs = —VB(1E20|26 + 1)Q% 5 c40 2)
3 /5 .

[QSU (3),67 QSU @)l = 4\/;(252’/‘15 + V)Lt (3)

The second order Casimir operator is

R 3. .
ClSU)] = 5 208 Qs+ 51 1], (4)
while its eigenvalues in the Elliott basis, (A, i), are
2
Co(\, p) = g(/\2Jr/f+/\M+3A+3u). (5)

If we consider SU(3) irreducible representations (irreps) with large values of
Cy(A, ), that is for large boson numbers, we can rescale the quadrupole op-
erator as

Q(Q)
~(2) _ SU(3),§ (6)
dsu(s).e = 02()\ M) .

The first two commutation relations remain unchanged by the rescaling, while
the last one becomes

A

~(2) ~(2) _3/5 Lecw
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Then in the limit of large values of Cy(\, i) one gets

~(2) ~(2)
[Gs0(3).¢0 dsva) ] = 0- (8)

This result, which is obtained for large boson number, is called the contraction
of SU(3) to [R’]SO(3), where [R°]SO(3) is the algebra of the rigid rotator
3], generated by the angular momentum operators of SO(3) and the five

commuting operators qSU 3,6 E=-2,-1,0,1,2.



An immediate consequence of Egs. (7) and (8) is that, in the contraction limit,
terms proportional to the angular momentum L can be ignored. In the IBA
framework, in which L is proportional to (did)®, this implies that (d'd)! terms
can be ignored.

In the limit of large values of Co(A, ) and A > p the intrinsic quadrupole
moments become [2]

1
QO—2\/§

@A +utd), =\ Bu-K@tK+2, ()

where K is the eigenvalue of the angular momentum projection on the body-
fixed z-axis, for which K < L is valid, as one can see from the algorithm of
the SU(3)DSO(3) reduction. For states with A >> L (therefore also A >> K)
and A >> p one then obtains [1]

A

qo = ﬁ’ (10)

while g, becomes negligible. Since the ground state band belongs to the (2N, 0)
irreducible representation (irrep) of SU(3), while other low-lying bands belong
to irreps (2N —4i — 64,2i), 7 =0,1,2,..., 7 = 0,1,2,... with relatively low i, j,
the contraction occurs in the large N limit. Thus in the case of interest the
intrinsic quadrupole moment becomes

g = NV2. (11)

An equivalent statement is that one can approximately replace the operator
Qg[)](:s) by the scalar A/v/2, as one can see from Eqs. (4) and (5), since the

terms containing L and i are negligible in this limit, having as a consequence
that only the first term in the rhs of these equations survives. A formal justi-
fication for this replacement is given in Ref. [4], where matrix elements of the
commutators of the relevant parts of the Hamiltonian with the quadrupole
operator are properly considered, resulting in the appearance of the intrinsic
quadrupole moment.

It should be noticed that the above results have been obtained in irreps with
A >> L, thus they regard the low lying part of the spectrum.

A similar procedure is followed in the contraction of O(6) to [R®]SO(5) [5,6].
This is a procedure in which the full O(6) algebra, consisting of 15 noncom-
muting generators, is shrinked into an SO(5) algebra (consisting of 10 non-
commuting generators), accompanied by 5 mutually commuting operators (the
quadrupole operators). The resulting algebraic structure is known [6] to be the
algebra of the v-unstable rotator.



The first contraction has been used in Ref. [4] for determining a line of approx-
imate SU(3) symmetry inside the symmetry triangle of the IBA, as described
by S. Karampagia in this conference [7].

2 Conformal maps

In Ref. [8] it has been proved that the position-dependent effective mass for-
malism can be equivalently expressed in a curved space. We shall prove here
that this connection is possible also in the case of the Bohr Hamiltonian.

Ordering the coordinates as

=2, =0, ¢=v, =0 g¢="1, (12)

the kinetic energy in the standard Bohr Hamiltonian [9] can be represented as

B (ds\’
ro(Y, "

where

ds* = gi;dgidg;, (14)

the symmetric matrix g;; having the form

gt 912 g1z O 0
go1 g2 O 0 0
(gij) =191 0 g3 0 0 [, (15)
0 0 0O gaa O
0 0 0 0 g5
with
J J- J:
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where the moments of inertia are

2
Ji = 4B3* sin? (7 - k;) . (19)

The determinant of the matrix is

Db

5 3?sin? © = 4% sin® 3y sin” O. (20)

The relevant volume element is then

dV = 2/3* sin 3 sin Od®dOdrd3dry. (21)

The inverse matrix is found to be
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Using these matrix elements and the value of the determinant from Eq. (20)
in the usual Pauli-Podolsky prescription [10]

d 1 3
0 V20 = —0;,/99" 0,9, (28)

i _ i 9%



we obtain
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where @) are the components of the angular momentum in the intrinsic frame

Q= —i ( ;01:(2) 88@ + smz/;— + cot@coswa((;> (30)
Qy:—z’< zzgaaq)—i-cosw—cot@smw ¢> Q.= —1i ;w' (31)

The connection between the position-dependent effective mass and curved
spaces has been considered in Ref. [8]. According to the findings of Ref. [8],
one expects in the present case all elements of the matrix (15) to be divided

by f?
Gij
gl] - f; (32)

As a result, the determinant of the matrix will be

g
g/ = 7](‘107 (33)
and the volume element will be
d
ot a0

The elements of the inverse matrix will be

T (35)

In Ref. [11] the Bohr equation with a mass depending on the deformation

By
B = Gy (36)




where By is a constant, has been considered, leading to a modified Bohr equa-
tion of the form

[ 1VFO F N R
1= |5y o T,

2
+f7 z Qi k) +Vesp| V= eV, (37)

2
83 - 12331n2 (’}/—%W

where reduced energies ¢ = ByFE/h? and reduced potentials v = ByV/h? have
been used, with

vers = 0(B,7) + 1(1 G- NV + ; (; - 5) @ _ )\) (V1) (38)

According to Ref. [8], in order to obtain the Schrodinger equation in the form
of Eq. (37), one has to start with the equation

H,¥ = [ v%rug}~ [ a\fgwaﬂbg] (39)

where

U = 52y, (40)

while reduced energies and reduced potentials are used, as in Eq. (37). The
exponent in the last equation is related to the dimensionality of the space.

Substituting the ¢’ matrix elements and determinant in Eq. (39), and per-
forming the relevant calculation (which closely resembles the pure Bohr case,
except for the 44-term), we see that Eqs. (39) and (37) do coincide with

. o d L2
g = tegy + [ = 2f)? +4fﬁf f=Lop=th

This result has several important consequences.

1) It becomes clear that solving the Schrédinger equation (37) with deforma-
tion dependent mass is equivalent to solving a modified Bohr equation (39)
with different metric matrix ¢’ and another effective potential, u,. Between the
two equivalent schemes, one chooses to solve Eq. (37) instead of Eq. (39), just
because the former can be solved analytically through the use of SUSYQM
techniques.



2) The wave functions ¥ = f5/20 are accompanied by the volume element
dV' =dV/f>. As a result

/ﬁ/*\ifdv’:/(f5/2\11*)(f5/2\11)0?5/ :/\If*wv, (42)

i.e., the wave functions ¥ of the deformation dependent mass problem corre-
spond to the usual Bohr volume element dV'.

3) The simple relation between ¥ and ¥ also shows that the wave functions
U satisfy the well-known 24 symmetries of Bohr wave functions [9], which
the wave functions U satisfy by construction. If these symmetries were not
satisfied, the solutions could not have been used for the description of nuclei.

The solution of Eq. (37) using SUSYQM techniques [11] is described in this
conference by P. E. Georgoudis [12].
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