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Coherent neutrino scattering off the 48Ti

nucleus

D.K. Papoulias and T.S. Kosmas

Division of Theoretical Physics, University of Ioannina, GR 45110 Ioannina,
Greece

Abstract

The method of fractional occupation probabilities of the orbits is adopted in order
to obtain nuclear form factors to be used for reliable cross sections calculations
of the dominant coherent neutrino-nucleus reaction channel. To this purpose, the
multipole decomposition method of Donnelly-Walecka is employed. The response of
the 48Ti nucleus in solar and Supernova neutrino detection is investigated through
our realistic nuclear structure cross sections calculations, based on the solution of
the BCS equations. The present results indicate that the momentum dependence
of the nuclear form factors cannot be neglected from the cross section, especially in
the energy region of Supernova neutrinos (or for neutrinos having higher energies),
because differences of even orders of magnitude may occur.

1 Introduction

Coherent neutrino-nucleus scattering, which is the dominant reaction channel,
is widely recognised as an excellent probe for exploring astrophysical phenom-
ena [1–3], for deeper understanding the Supernova (SN) explosion mechanisms,
as well as for investigating the interior of distant stars [4,5]. Moreover, the
exotic neutrino-nucleus reactions, offer interesting probes to investigate new
physics beyond the Standard Model (SM). Such possible, lepton flavour vi-
olating (LFV) processes have the form να(ν̃α) + (A,Z) → νβ(ν̃β) + (A,Z),
where α 6= β [6]. The LFV parameters entering the latter flavour changing
neutral current (FCNC) reactions, can be constrained from recent and future
very sensitive experiments searching for exotic µ− → e− conversion, like the
COMET at J-PARC, JAPAN and the Project X at Fermilab, USA, using 48Ti
and 27Al respectively, as nuclear targets [7,8].
In the present work, we make an attempt to investigate in detail the response
of the 48Ti nucleus, due to its great experimental interest, according to the
SM neutrino reactions represented by να(ν̃α) + (A,Z)→ να(ν̃α) + (A,Z). We
adopt the Donelly-Walecka method [9–11] and solve the BCS equations [12],
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to perform realistic and accurate cross sections calculations [13–15]. We also
employ the method of fractional occupation probabilities of the states [16],
based on analytic expressions, for evaluating the proton charge density dis-
tribution and the nuclear form factors [17,18], entering the coherent rate. To
this purpose, we extend the previous studies, by introducing more parameters,
with which we increase the number of ”active” nucleons in a nuclear system.
Then we compare the predictions with the experimental data [19].

2 Brief description of the formalism

2.1 Neutral current neutrino-nucleus cross sections

At low and intermediate energies, considered in the present study, any semilep-
tonic process is described by an effective interaction Hamiltonian, written in
terms of the leptonic jlept

µ and hadronic Jµ currents as

Heff = −GF√
2
jlept
µ (x)J µ(x), (1)

where GF is the well-known Fermi constant. In the Donnelly-Walecka multi-
pole decomposition method, the neutral current double differential SM cross
section from an initial |Ji〉 to a final |Jf〉 nuclear state reads [1,10]

d2σi→f
dΩ dω

=
G2
F

π

εiεf
(2Ji + 1)

( ∞∑
J=0

σJCL +
∞∑
J=1

σJT

)
, (2)

where εi (εf ) is the initial (final) neutrino energy. The cross sections σJCL (for
the Coulomb-longitudinal operators) and σJT (for the tensor operators) are
defined in [10] and are written in terms of the matrix elements (ME) of seven
basic irreducible tensor operators, which in our convention are [9,11]

〈j1||T Ji ||j2〉 = e−yyβ/2
nmax∑
µ=0

P i, Jµ yµ, i = 1, · · · , 7. (3)

Therefore, their evaluation is necessary for performing nuclear cross sections
calculations. The coefficients P i, Jµ , have been computed recently in Refs.[9,11].
For coherent neutrino scattering, we are interested in the present paper, only
the Coulomb operator, T 0

1 ≡ M̂00 (see, Eq.(8)), contributes. Then, the dif-
ferential cross section with respect to the scattering neutrino angle becomes
[14]

dσ

d cos θ
=
G2
F

8π
E2
ν (1 + cos θ)Q2

WF
2(q2), (4)

2
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where the weak charge is defined as QW =
[(

1− 4 sin2 θW
)
Z −N

]
. The

kinematics of the reaction, imply that the magnitude of the three momentum
transfer, written in terms of the incoming neutrino energy Eν (for coherent
scattering εi = εf ≡ Eν) and the scattering angle θ (laboratory frame), is

q2 = 4E2
ν sin2 θ

2
. (5)

However, from an experimental physics point of view, experiments are more
sensitive to the kinetic energy of the recoiling nucleus given by T = q2/2M ,
rather than the orientation of the scattering neutrino. Thus, expressing the
differential cross section with respect to the nuclear recoil energy T , in the
low energy approximation T � Eν , one finds [15]

dσ

dT
=
G2
F M

4π

(
1− M T

2E2
ν

)
Q2
WF

2(q2), (6)

where M stands for the mass of the target nucleus. It can be seen from
Eqs.(4,6) that the nuclear form factor has been taken into account, which
from a nuclear physics point of view cannot be neglected, due to the finite
nuclear size.

More precise cross sections calculations become possible by explicitly solving
the BCS equations [12]. The differential cross section reads

dσ

d cos θ
=
G2
F

2π
E2
ν (1 + cos θ) |〈g.s.||M̂00(q)||g.s.〉|2, (7)

where the g.s.→ g.s. transition ME is given by

〈g.s.||M̂00(q)||g.s.〉 =
1

2

[(
1− 4 sin2 θW

)
Z FZ −N FN

]
. (8)

In the latter equation the form factors for protons (neutrons) are

FNn =
1

Nn

∑
j

[j]〈g.s.||j0(qr)||g.s.〉
(
V
p(n)
j

)2
(9)

where [j] =
√

2j + 1, Nn = Z (or N), V
p(n)
j are the BCS probability ampli-

tudes, determined by solving iteratively the BCS equations and j ≡ (n`)j are
the quantum numbers of the h.o. orbits included in the assumed model space.
We note that, in the approximation of FZ ≈ FN and |Jπi 〉 = |g.s.〉 ≡ |0+〉 for
the ground state, Eq.(7) coincides with Eq.(4).

In the rest of this work, we describe an effective method towards obtaining
the form factor which is compared with the simple shell-model predictions
through nuclear cross sections calculations.

3
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2.2 Evaluation of the form factors

The radial nuclear charge density distribution ρ(r), for harmonic-oscillator
(h.o.) wavefunctions, is written in the following form [17,18]

ρ(r) =
1

π3/2b3
e−(r/b)2 Π

(
r

b
, Z
)
, Π (χ, Z) =

Nmax∑
λ=0

fλχ
2λ, (10)

where χ = r/b, with b denoting the h.o. size parameter. Nmax = (2n + `)max

stands for the number of quanta of the highest occupied proton (neutron) level
and the coefficients fλ are expressed as [16]

fλ =
∑

(n,`)j

π1/2(2j + 1)n!Cλ−`
n`

2Γ
(
n+ `+ 3

2

) (11)

where Γ(x) is the Gamma function. The nuclear form factor, which is the
Fourier transform of the nuclear charge distribution density, after a straight-
forward manipulation can be cast as

F (q2) =
1

Z

∫
ρ(r)j0(qr) d3r, (12)

with j0 being the zero order spherical Bessel function. It has been shown that,
by using the charge density distribution of Eq.(10), the form factor F (q2),
reads [17,18]

F (q2) =
1

Z
e−(q b)2Φ (q b, Z) , Φ (q b, Z) =

Nmax∑
λ=0

θλ(q b)
2λ. (13)

The expression giving the coefficients θλ is given in Ref.[18]. For a detailed
description and further information, the reader is referred to Refs.[16–18].
Up to now, it has been considered that the occupation probabilities, an`j, are
equal to unity for the states below the Fermi surface and zero for those above it.
In Ref.[16], the authors introduced depletion and occupation numbers, αi, as
parameters to describe the partially occupied levels of the states. The following
relation should be satisfied ∑

(n`)j
all

an`j(2j + 1) = Nn, (14)

where Nn is the number of protons or neutrons respectively. Hence, in this ap-
proximation, the ”active” surface nucleons, (above or below the Fermi level)
have non-zero occupation probability an`j 6= 0 (smaller than unity), while the
”core” levels have occupation probability an`j = 1. Extending the work of
Ref.[16], where three parameters α1, α2, α3 were used to describe the occupa-
tion probabilities, we now use αi, i = 1, 2, 3, 4 parameters (for the definition

4
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of αi, see in Ref.[16]). Therefore, in this parametrization, five single-particle
are assumed as ”active”, and Eq.(16) of Ref.[16] becomes

Π(χ, Z, αi) =Π(χ, Z2)
α1

Z1 − Z2

+ Π(χ, Z1)
[

α2

Zc − Z1

− α1

Z1 − Z2

]
+ Π(χ, Zc)

[
Z ′ − Z
Z ′ − Zc

− α2

Zc − Z1

− α3

Z ′ − Zc

]

+ Π(χ, Z ′)
[
Z − Zc
Z ′ − Zc

+
α3

Z ′ − Zc
− α4

Z ′′ − Z ′
]

+ Π(χ, Z ′′)

[
α4

Z ′′ − Z ′
− λ

Z ′′′ − Z ′′

]
+ Π(χ, Z ′′′)

λ

Z ′′′ − Z ′′
,

(15)

with λ = α1 + α2 − α3 − α4. By replacing the polynomial Π(χ, Z) of Eq.(10)
with the latter expression (and similarly for the form factor of Eq.(13)) and
using the experimental data [19] for the 48Ti nucleus, we fit the parameters αi.
In our analysis, Z2 = 18, Z1 = 20, Z = Zc = 22, Z ′ = 30, Z ′′ = 34, Z ′′′ = 40.

3 Results and discussion

As a first step of our calculational procedure, we evaluated the θλ and fλ coef-
ficients, required for the form factor and the proton charge density of the 48Ti
nucleus. An inversion of the (n`)j levels, compared to that assumed in Ref.[16]
results in the present work, in order to fit the experimental data for 48Ti. These
coefficients are listed below. As mentioned in Ref.[16], an interchange of the
sequence of the levels, does not affect the coefficients of the core orbits (e.g.
our results for the 40Ca nucleus coincide with those of Ref.[16]). The resulting
fractional occupation numbers that fit the charge density distribution with
the experimental data [19] are, α1 = 1.0, α2 = 1.5, α3 = 0.35, α4 = 0.1. The
prediction of the method (which is in very good agreement with the experi-
mental data) is compared with that of the simple shell-model, in Fig.1. We
note that in the momentum transfer range of our interest (i.e. q < 2fm−1) the
form factor has excellent behaviour. By inserting the form factors obtained as
described above in Eqs.(13,15) the resulting cross sections calculations have
a rather high confidence level. The next step of our study was to apply the
form factor discussed previously and using Eqs.(4,6) to perform nuclear cross
sections calculations (see Fig.2). We note that large differences appear if the
form factor dependence is neglected and hence F = 1 is not reliable. How-
ever, at low neutrino energies, i.e. Eν ≤ 20MeV that are relevant for solar
neutrinos, the agreement of these two approximations is rather good. On the
contrary, for the case of Supernova neutrinos (or neutrinos from other sources
with higher energies), a difference of some orders of magnitude may exist. The
scattering angle, has found to play significant role in the angular dependence
of the differential cross section dσ/d cos θ. Forward scattering, (θ = 0) leads

5
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Z (n`)j λ = 0 λ = 1 λ = 2 λ = 3 λ = 4

2 0s1/2 2 (2)

6 0p3/2 6 (2) −2
3

(
8
3

)
8 0p1/2 8 (2) −1 (4)

14 0d5/2 14 (2) −3 (4) 1
10

(
8
5

)
18 0d3/2 18 (2) −13

3 (4) 1
6

(
8
3

)
20 1s1/2 20 (5) −5 (0) 1

4 (4)

22 1p1/2 22 (5) −6
(

10
3

)
13
3

(
4
3

)
− 1

120

(
8
15

)
30 0f7/2 30 (5) −10

(
10
3

)
5
6

(
4
3

)
− 1

56

(
8
7

)
34 1p3/2 34 (5) −12 (10) 6

5 (−4) − 29
840

(
232
105

)
40 0f5/2 40 (5) −15 (10) 3

2 (−4) − 1
24

(
8
3

)
50 0h9/2 50 (5) −65

3 (10) 5
2 (−4) − 5

56

(
8
3

)
1

1512

(
32
189

)
Table 1
The exact coefficients θλ (fλ) which are required to determine the proton and neu-
tron form factors (charge density distribution) up to 50Sn, within the chosen model
space.
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Fig. 1. The charge density distribution (left) and the form factor as a function of the
momentum transfer (right), of the 48Ti nucleus. The experimental data are denoted
with dots, the solid (green) line and the dashed (red) lines represent the predictions
of the method of fractional occupation probabilities and single particle shell model
respectively. We see that the introduction of fractional occupation probabilities of
the states improves significantly the agreement with the experimental data.

to maximum dσ/d cos θ and obviously in that case the form factor is equal to
unity due to zero momentum transfer, see Eq.(5).
A numerical integration of Eq.(4) yields the total coherent neutrino nucleus
cross section and is compared to that for point-like nuclei where F = 1, see
Fig.2. We observe that due to the different form factor dependence, the to-
tal cross section, in the range of incident neutrino energy Eν & 80MeV and
higher, appears to behave in a different way. The approximation F = 1 gives

6
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Fig. 2. Top: The differen-
tial cross section dσ/dT (in
units 10−37cm2/MeV ) as a
function of the nuclear recoil
energy T for various neutrino
energies. dσ/dT is compared
to that of point-like nucleus
(F = 1) for Eν = 50MeV and
Eν = 120MeV . For rather low
energies the results coincide,
however for intermediate or high
energies this is not the case.
Middle: The differential cross
section dσ/d cos θ (in units
10−39cm2) as a function of the
incoming neutrino energy Eν , for
some typical angles. We observe
the important affect of the
scattering angle on dσ/d cos θ,
e.g. for backward scattering, even
not shown here, the cross section
is minimized.
Bottom: The total coherent cross
section, σtot (in units 10−39cm2)
as a function of the incident
neutrino energy in MeV (bot-
tom), for 48Ti. σtot appears to
have an asymptotic behaviour at
neutrino energies Eν & 80MeV
or higher.

48Ti

48Ti

dσ
dcos θ

dσ
dT

Eν (MeV)

T (MeV)

90o
60o
15o

165o

F = 1
Fnucl

20MeV

50MeV

80MeV

100MeV

120MeV

48Ti

F = 1
Fnucl

Eν (MeV)

σtot

a rapidly increasing σtot, while our results indicate a slow increase. Moreover,
the present results show that the ground state correlations which are neces-
sarily included in the BCS, do not essentially affect the cross sections above
Eν & 80MeV .

4 Summary and Conclusions

In this work, we reported a general method for making realistic coherent
neutrino-nucleus cross sections calculations in the context of the Donnelly-
Walecka method, i.e. multipole expansion of the hadronic current. Comparing

7
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with other methods (like the simple shell-model) and approximations (where
the form factor is set equal to unity), we ended up with more reliable results.
To this end, we obtained analytic expressions for the form factor (and also
for the proton charge density), assuming fractional occupation probabilities
with many parameters (fitted to the experimental data) and hence improving
previous works. We concluded that, taking into account the momentum vari-
ation of the form factor is of significant importance, especially when we deal
with Supernova neutrinos (or neutrinos with higher energies originating from
other sources). We are currently working towards extending the present study,
so as non-standard neutrino nucleus interactions will be included. We expect
to come out with results in the context of theories going beyond the SM,
using detailed nuclear structure calculations. Such results will be published
elsewhere.
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