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Abstract

First results from the 56Ni(d,p)%7Ni experiment performed at REX-ISOLDE - CERN
are presented. In this experiment, the newly built T-REX particle detection system
was successfully coupled to the v-ray MINIBALL detector array towards to a better
understanding and studying of the single particle character of the neutron rich Ni
isotopes.

Key words: Radioactive ion beams, nuclear structure, nuclear ractions, transfer
reactions

1 Introduction

Theoretical studies indicate that the size of shell gaps can alter when changing
the N/Z ratio leading to changes in magic numbers when going away from the
valley of stability. One of the most interesting regions of the chart of nuclides is
situated around %Ni. The observation of the high excitation energy of the first
2% state of this nucleus [1], in combination with the minimum in the systemat-
ics of B(E2;2—0) values [2,3], has led to interpretations in terms of a harmonic
oscillator subshell closure. On the other hand, the two-neutron separation en-
ergies in the N=40 region do not present any irregularity - characteristic of
a shell closure [4,5]. In view of this controversial experimental evidence, the
single particle character of ®’Ni has been decided to be investigated [6].

In the last four decades the one-nucleon transfer reactions have been proved
to be the workhorse for the deduction of spectroscopic information for nuclei
at -or near the valley of stability. Nowadays, the development of radioac-
tive ion beams allows access to nuclei that were previously unapproachable.
Accordingly, the excitation spectrum of ®’Ni was studied by performing the
%Ni(d,p)®'Ni reaction study in inverse kinematics with an energy of 3 MeV /u.

2 Experimental Setup

The experiment was performed at REX-ISOLDE (CERN). The %Ni beam was
produced by using the 1.4 GeV proton beam from the CERN PS Booster. The
proton beam was impinging on an UCx target. The produced Ni atoms were se-
lectively ionized by using the RILIS laser ion source and accordingly were mass
separated in the ISOLDE general purpose separator. The post-acceleration to
2.95 MeV /u was utilized by the REX-ISOLDE linear accelerator after bunch-
ing and charge breeding.
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Fig. 1. A simplified drawing of the experimental setup. The left side of the MINI-
BALL array, vacuum chamber, and particle detection is cut away for visualisation
purposes

Afterwards, the %Ni beam with intensity 10° pps was sent to the T-REX
particle detection setup [7] surrounded by the MINIBALL ~-ray detector array
[8]. A simplified drawing of the experimental setup can be seen in Fig. 2.

The MINIBALL array consists of eight clusters and each cluster from three
HPGe crystals 6-fold segmented. The overall detection efficiency of the 24
MINIBALL crystals was ~8% at the energy of 1 MeV.

T-REX consists of position sensitive AE-E telescopes facilitating the detec-
tion and identification of the light target-like reaction products. The solid
angle coverage of T-REX amounts to 58.5% of 47 solid angle. Despite the
minimal thickness of the CDy secondary target (100 ugr/cm?) the overall en-
ergy resolution of the particle detection setup (T-REX) was not enough to
resolve the excitation energies of the quite dense level scheme of S"Ni. The
needed resolution for the determination of the excitation energies was finally
achieved through the MINIBALL ~-ray spectrum prompt coincident with pro-
tons detected by T-REX.

3 Results

In spite of the special interest in the mass region around %Ni the previously
available spectroscopic information was limited. Only a few levels and a few
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| Excitation energy vs Gamma energy |
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Fig. 2. The excitation energy of the residual nucleus (7Ni) as deduced from the
kinetic energy of the protons plotted together with the ~y-ray energy detected in
coincidence with the the protons. The transitions that de-excite directly to the
ground state are lying across the diagonal (black line). Other populated levels that
deexcite through an intermediate level are lying above the diagonal (e.g. the 2.2
MeV state indicated with the red circle).
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Fig. 3. Partial level scheme of 5"Ni

~-ray transitions were known. As can be seen in Fig. 2 by combining the
particle dection with v-ray spectroscopy levels up to the excitation energy of
6 MeV were identidied. The first results of the present work are summarised
in the level scheme of ®’Ni seen in Fig. 3. In this figure all the observed levels
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below 2 MeV are shown. Above 2 MeV the partial level scheme focuses on the
most populated levels with feeding probability greater than 5%. The remaining
(d,p) strength is distributed among other states up to 6.0 MeV in excitation
energy and will be discussed in Ref. [9]. In total 17 levels of which 7 are shown
between 2.0 and 5.8 MeV were identified and characterised by their v decay.

Additionally, by recording the angular distribution of the detected protons the
spin and parity of the populated levels will be identified by means of DWBA
calculations. In the same way the relative spectroscopic factors (SF) will be
also deduced. As a final step in terms of the physics interpretation of the
experimental results large-scale shell model calculations will be performed [9].
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