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Abstract The purpose of this study is to investigate photon attenuation parameters of Colombia Resin-
39 (CR-39) lens, which are linear attenuation coefficient (LAC), mass attenuation coefficient (MAC), half
value layer (HVL), tenth value layer (TVL), mean free path (MFP), effective atomic number (Zgy) and
effective electron density (N.g). MACs were determined theoretically and with simulation in the energy
range from 0.01 to 10° MeV. Also, obtained MACs of CR-39 lens were compared with MACs of pure
aluminum and lead. Theoretically obtained Zoy values were compared with Zey results obtained by the
computer software.

The results of this study are; a) the theoretically obtained MACs values are in agreement with MACs
obtained results from simulation software, b) the theoretically obtained Zeyvalues are in agreement with
Zey obtained by the computer software c) the MACs of CR-39 lens are much lower than MACs of pure lead
whereas there is not too much differences between MACs of CR-39 and pure aluminium d) the HVLs, TVLs
and MFPs rise with increasing photon energy while the LACs and MACs reduce with increasing photon
energy.
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INTRODUCTION

Exploring the gamma-ray properties of the different materials and compounds are significant
because gamma-rays are used in various objectives such as nuclear power plants, radiation dosimetry,
medicine, industry, shielding, efc. [1-4]. Protection from the ionizing radiation effect is necassary for
the humans because it causes distortion on the biological, atomic, molecular structure of the materials
[5]

Gamma-rays interact with matter as photoelectric effect, Compton scattering and pair production
and it depends on incident photon energy and structure of the absorber material. Photoelectric effect is
dominant at low gamma-ray energies whereas pair production is dominant at high gamma-ray energies
especially greater than 1022 keV. Compton scattering is prominent in the mid-photon energy range [6].

The gamma-ray attenuation parameters which are linear attenuation coefficient (LAC), mass
attenuation coefficient (MAC), total atomic cross section (g,), total electron cross section (o),
effective atomic number (Z.rr) and effective electron density (N.g), half value layer (HVL), tenth value
layer (TVL), mean free path (MFP) are significant to decide the effects of the gamma-rays in matter
[7]- These parameters can be determined by experimentally, theoretically and computer simulation
[8,9].

The attenuation parameters of many different materials such as soil, oil-soil samples [10], raw wood
and binderless particleboards of Rhizophora spp. [11], carbohydrates, (Esculine, Sucrose, Sorbitol, D—
Galactose, Inositol, D—Xylose) [12], some vitamins (retinol, beta—carotene, thiamine, riboflavin,
niacinamide, pantothenic acid, pyridoxine, biotin, folic acid, cyanocobalamin, ascorbic acid,
cholecalciferol, alpha—tocopherol, ketamine, hesperidin) [13], some building materials [14], different
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types of glasses [15-17], some polymers (polyoxymethylene, poly acrylonitrile, natural rubber,
polyethyl acrylate, polyphenyl methacrylate, and polyethylene tetraphthalate) [18-20], plastic [20-21]
have been investigated in the scientific literature by the researchers.

In this study, Columbia Resin 39 (CR-39) plastic polymer having chemical composition Ci2Hi307
which is called allyl diglycol carbonate [22-24] was investigated. CR—39 is generally used for nuclear
reaction physics, radon dosimetry, radiobiological measurements as nuclear track dedectors and
production of the eyeglass lenses [24,25].

The aim of this study is to investigate attenuation parameters of gamma radiation which are MACs,
LACs, HVLs, TVLs, MFPs, atomic cross section, electron cross section Z.g and Negr of the CR-39 lens.
The theoretically obtained MACs of CR—39 lens have been compared with the MACs obtained by the
simulation code. Also theoretically obtained MACs of CR—39 lens have been compared with MACs of
the Aluminium and lead. Theoretically obtained Z.s values have been compared Z.r values obtained by
the computer software.

THEORETICAL CALCULATIONS

The linear attenuation coefficient (LAC) and mass attenuation coefficient (MAC) of CR—-39 lens
were calculated using the Beer Lambert law as following equations [6]:

I =lje " (1)
Hm =% @

where u and p,,, are LAC and MAC of the absorber, respectively, x is the thickness of the sample, p is
the density of the absorber, I is counts of per seconds of point sources with absorber and I, is counts
of per seconds of point sources without absorber.

The MACs are calculated for mixtures and components considering basic ingredients of the
absorber by using following equation [26]:

= = S (2) ®

p P/
where w; is the weight fraction of the atomic components and (“ / p). is the MAC of the i*" element.
4

(“ /p)i at all the absorption edges of all the components of the elements are calculated using

interpolation for the atomic photoeffect cross section, coherent (Rayleigh) and the incoherent
(Compton) scattering cross sections, cross sections for electron-positron production in the fields of the
nucleus and of the atomic electrons also including the photoeffect cross sections for the individual
atomic subshells [26].

In this study MACs of the CR-39 lens were calculated theoretically using WinXCom software [27].
WinXCom is Windows version of XCOM which was developed by the Berger and Hubbell [28] for
computing MACs or photon interaction cross-sections for any element, compound or mixture at
energies from 1 keV to 100 GeV [27].

In following equation 4 and 5 represent total atomic cross section per atom g, (cm?/atom) and
total electronic cross section per electron g, (cm? /electron);
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g, = l( /p)material (4)
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where N is the Avogadro’s number, 4; is the atomic weight of the i*" element, w; is fractional weight,
f; is the molar fraction of the i*" element and Z; is the atomic number of the i*" element [3,11].

Effective atomic number Z is calculated using following equation [3,11]:
Oa

Zeff = O'_e (6)
Effective electron density N, s; (electron/g) is related with (Z.ss) and it is calculated using following
equation [3,11]:

(N/p)material

Negr = p (7)
The HVL, TVL and MFP are calculated as follows [29,30]:
HVL =2 (®)
VL =" ©)
MFP = (10)

SIMULATION PROCEDURE

Geant4 simulation toolkit is used for the simulation of mass attenuation coefficients [31-33]. Geant4
is a very powerful simulation software and currently used by many researchers around the world. It is
one of the best simulation programs to investigate the particles passing through matter. It is used in the
areas of nuclear physics, high energy physics, accelerator physics, medical physics and space sciences.
There are many collaborators still developing the software. Research groups also create libraries for
their own works which are contribute the developing of the toolkit. For this study Livermore library
(Low Energy Electromagnetic Physics), which is an official Geant4 library, was used to determine the
mass attenuation coefficients.

Using Geant4, one can calculate the attenuation coefficients by either directly from desired material
or simply creating the experiment conditions and counting photons that reached the detector via code
blocks. For both cases the results are almost the same. In this study we used the latter one. The lens and
the detector are shown in Fig. 1.

In Fig. 1, the green cylinder is the lens sample and the blue cylinder is the HPGe detector. The axes
are shown with arrows. Like a real experiment, simulations were done with and without the sample to
calculate the attenuation coefficients. In Fig. 2, it is shown the gamma-ray interactions with the sample
and the detector. Gamma-rays are propagating along all space from a point source. The source is placed
just in front of the sample. The simulation was taken place in air. There is nothing else in the simulation
setup for the gamma rays to interact and change the results.

Obtained results were discussed in the next section along with the theoretical ones.
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Figure 1. Graphical demonstration of experiment setup

Figure 2. The point source and the interactions of gamma rays with sample and detector

RESULTS AND DISCUSSION

The variation of LACs and comparison MACs between WinXCom [27] and Geant4 [31-33] of CR-
39 lens are shown in Fig. 3 and Fig. 4, respectively. Also, obtained MACs of CR-39 were compared
the MACs of pure aluminum (4/) and lead (Pb) which are commonly used as shielding materials (see
Fig. 5).

The MAC gives information about evaluating of the mean number of the interactions between
incident photons and material which take place in a dedicated mass-per-unit field thickness of the
investigated matter. The MAC is free of the density and physical situation of the absorber therefore it
is more significant than the LAC [20]. As shown in Fig. 3, 4 and 5, the LACs and MACs decrease with
increasing photon energy and it tends to be stable at higher photon energies because photoelectric effect
is dominant at low photon energies, Compton scattering takes place at intermediate photon energies
whereas pair production replaces at higher photon energies [7]. The theoretically obtained MACs by
using WinXCom are agreement with obtained MACs by the Geant4 simulation software (see Fig. 2).
The MACs of CR-39 are agreement with A/ whereas the MACs of CR-39 are lower than Pb especially
at low and high photon energies as shown in Fig. 5.
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Figure 3. Variation of LACs versus photon energies
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Figure 4. Variation of MACs versus photon energies
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Figure 5. Comparison of MACs of CR-39, Al and Pb versus photon energies

Variations of HVLs, TVLs and MFPs versus photon energies as shown in Fig. 6. The HVL, TVL
anf MFP of CR—39 increase with increasing photon energies. The HVL and TVL are described as the
thickness of the absorber which decreases the intensity by a foctor of two and ten, respectively which
are required for the radiation dosimetry evaluations. The MFP is average distance of a two successive
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photons where reduces 63% of the total intensity will interact [30]. The HVL and TVL of the absorber
should be small for the strong radiation shielding [29].
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Figure 6. Variation of HVLs, TVLs and MFPs versus photon energies
Zesr and Negr are used to define for the compounds and mixtures because the atomic number of
compounds and mixtures can not decribes with single atomic number against to incident photon energy.

Netr anf Zerr (see Fig. 7 and Fig. 9) depend on the incident photon energy also Zesr is ratio of the total
electron cross section to total electronic cross section and Nef is the number electrons per unit mass [5-

34].
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Figure 7. Variation of effective electron densities versus photon energies

Variation of effective electron density, total atomic cross section, total electronic cross section and
effective atomic number versus photon energies are presented in Fig. 7, 8 and 9, respectively. The Zs
values obtained using MACs values from WinXCom are agreement with obtained Z.ir values from
AutoZeff software [35]. The Nesr and Zcsr sharply decreases at low photon energies, it tends to be stable
at intermediate energies then these parameters increase again and tends to be constant at higher photon
energies. The reason of this process is interaction of photons with matter as photelectric effect, Compton
scattering and pair production. Especially, intermediate photon energies Compton scattering is effective
and cross section of the Compton scattering varies linearly with atomic number [5].
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Figure 8. Variation of total atomic cross section and total electron cross section versus photon energies
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Figure 9. Variation of effective atomic numbers versus photon energies

CONCLUSIONS

In this study, radiation shielding parameters which are LACs, MACs, HVL, TVL, MFP, Z. and
Neir were calculated. The MACs were determined theoretically and with simulation in the energy range
from 0.01 to 10° MeV. It was concluded that theoretically obtained MACs values of CR-39 lens were
agreement with values obtained from Geant4 simulation software. The MACs of CR—39 lens were
nearly equal to MACs of aliminum. The MACs of CR-39 lens were nearly equal to MACs of Aluminum
though these values were lower than MACs of lead. The LACs, MAC:s, total atomic cross section and
total electronic cross section decrease with increasing photon energies whereas HVLs, TVLs and MFPs

rise with increasing photon energies. Theoretically obtained Z.ir values were compared with Z. values
obtained from AutoZeff software. It was deduced that theoretically calculated Zeff values are close to
obtained Z.sr values from AutoZeff software especially low and medium photon energies but there was
significant differences at higher than 100 MeV.

In the future, the LACs and MACs can be calculated as experimentally and obtained results can be
compared with theoretical and simulation results of CR—39 lens.
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