HNPS Advances in Nuclear Physics

Vol 7 (1996)
HNPS1996
Hi eﬂef:fr Nu{:lmr
FRowiE -evay Quantum chrono-topology of nuclear and sub-
nuclear reactions - The measurement problem
C. Syros, C. Schulz-Mirbach, G. Raptis
Advances |
: doi: 10.12681/hnps.2418
Iin

Nuclear Physics

7th Hellenic
Symposium

Makedonian Pablications

To cite this article:

Syros, C., Schulz-Mirbach, C., & Raptis, G. (2019). Quantum chrono-topology of nuclear and sub-nuclear reactions - The
measurement problem. HNPS Advances in Nuclear Physics, 7, 191-207. https://doi.org/10.12681/hnps.2418

https://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at: 20/01/2026 01:56:01



Quantum chrono-topology of nuclear and sub-nuclear
reactions - The measurement problem

C.Syros, C.Schulz-Mirbach* and G.Raptis

University of Patras
Laboratory of Nuclear Technology
P.O.Box 1418

261 10 Patras, Greece

e-mail: C.Syros@upatras.gr

Abstract

The conventional tacit assumption that nuclear and sub-nuclear reactions take place in the Newto-
nian universal time is replaced in the present paper by a time topological space based on the inter-
action proper time neighbourhood. It is developed and used to solve a problem related to the nucle-
ar reaction theory, the quantum measurement problem. The time topology is disconnected and

satisfies the separation axioms of the topological space J 4 - In this topology the U+R Penrose dy-
namics is implemented by means of a time evolution operator, U, nnp ,constructed using a quantized

version of Gel'fand's theory - the generalized random quantum field theory (QRQFT). As an applica-
(ion the quantunt measurement problem solution is presented.
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I Introduction

The explanation of the disaccordance[1,2] between the time reversal invarian-
ce of the basic equation of physics, like the Schroedinger, the Dirac equations
and the quantum field theories (QFT) and the overwhelming majority of the
macroscopic phenomena makes up a great part of the first line research acti-
vities during the last decades all over the world.On the other hand the disco-
very of chaos phenomena also in nuclear physics [3] induced the idea to many
researchers that chaos and irreversibility may be connected by means of a not
yet discovered fundamental relationship.

These developments seen in relation with the persisting well-known paradoxes
of quantum theory make clear that possibly a fundamental concept in physics
has been ill-defined and it must be revised [4].

The time idea attracted since long the attention of many researchers. Vari-
ous new time models [S] have been proposed. None of them has been decisive-

ly advanced to a the position to explain the open issues of quantum theory.

In a series of papers [6] the idea of a new time topology was advanced and in-
teresting results were obtained, like the derivation of statistical mechanics from

QFT in Minkowski’ s metric among others.

The purpose of the present paper is to apply chrono-topology and give a solu-
tion of the mesurement problem of quantum theory in nuclear physics. The
chrono- topology implies that the physical fields on the quantum level beco-

me generalized random and infinitely divisible [7].

In the next section I1 the fundamentals of the new time topology and some

useful definition are presented in order to facilitate the understanding.

II The time topology in quantum physics

In order to make precise the description and to facilitate the understanding, it
is expedient to give first some notation and some definitions from general to-
pology which are required for the presentation of the results.

Let a set 7,called the space, be given with a family{ 7} of subsets 7
together with the empty set &. The elemenfs of g are called points of the

space and the elements z are called open sets.
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Definition 1

A pair (9,1t) of 9 andt represents a topological space,if the following condi-
tions are satisfied [8]:

(i) Derandd et .

() If U, er,and U, € 7 ,thenU N U, € 7.

(i) If L ={A, A, ..} isafamily of clements of T and I is a subset of the in-
dex set Jsuch that A, € v, Vie I, then U A, er.
i€/

It is clear that the intersection ﬂA,. of a finite subset {A , ie/c J}of open sub-

sets is open.

Definition 2

A space ,9,is called regular if and only if for every xe J and every neighbour-
hood ¥ of x in a fixed subbase ® there exists a neighbourhood U of x such that

U < W, where U is the closure of U .

The topological spaces may be ordered in a hierarchy according to the restric-

tions which are imposed on them.These restrictions are called axioms of sepa-
ration. Here are the axioms of separation concerning the fundamental interac-

tions physics:

Definition 3

0. 4 topological space,d,is called a 7 , -space,if for every pair of distinct points
t,.,t, € Jthereexists an open t’ containing exactly one of these points.

1. 4 topological space, .Jis called a = -space,if for every pair of distinct points
t\,t, €3I thereexistsanopen v ‘C J such that either t, € v’,t, €17’ or
t, gc’ t,er’ .

2. A topological space,J,is called a 3 , -space,or a Hausdorff space ,if for eve-
ry pair of distinct points t,,t, € J there exist opensets v | ,T , C J such
that t, et |, t,et,and 7z, N7,=0.

3. A topological space,J is called a 3 , -space or a regular space, if it isa J | -
space and for every t € I and for every closed set F €T, such that t ¢ there
exist open sets T ,,7, such that tetr,, 5 €t, andv, (1 7,= .
4. A topological space,d is called a 7 , -space or a normal space, if 3 isa 3, -spa-
ce and for every pair of disjoint closed subsetst | ,T , there exist open sets U and
Vsuch thatt | c U, v, = Vand Uﬂ V=g.

Clearly, a 7, -space is a J , -space so that the hierarchy holds :
Fg =8, 285,259, =3,
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11 Time generation in quantum physics

By "mixing" the time and the space variables, as it happens in the Lorentz
transformation, we do not yet fully eliminate the classical, absolute character
of the time. Such should be achieved better by attaching to every single nuc-
lear reaction its own time neighbourhood.This time neighbourhood contains

values corresponding exactly to observables changing as long as the interacti-
on is going on.

Considering that in a nucleous each nucleon's history is described by its own
set of time neighbourhoods - each one starting and erding with the starting
and the ending of the corresponding interaction (causing associated changes
in observables of the pertinent nucleon) it is not obvious at first sight, which
one of the many «pieces» of time (which, by the way, clearly may overlap
partially or entirely,in the sense of the relativistic simultaneity) would be ap-
propriate to describe the nucleus as a physical system.This difficulty is avoid-

ed by introducing the notion of the /PN.
In conformity with the above ideas we shall prove the following

1.1 The time as a map of the observables changes

Proposition 1

The changes (Ax’,At’jof the coordinates (x',t") in observer’s moving reference
system of an event (x,t) in'its rest system of reference are linear functions of the
changes (Ax,At).

Proof
Consider the Lorentz transformation:
xX'=y.(x-v1) 3)
r=y.(t- Blex), 4)

where y =1/ [ (1-8 2), B=wr.

Let x =0 in (3). Any change, A, of the time, ¢, is a linear function of the
change A x’of x’,

The converse is also true: It follows from (4) that the change A 7’,of the time,

t", for £ = 0is a linear function of the change, A x, of the space variable,x, and
vice versa.

Therefore
AXx'=-y vAdt, 5)
At'=-y B/e. Ax (6)

and the proof is complete.
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Remark 1

This obvious and rather trivial result is known to many people since almost
one century, However, its special meaning seems to have escaped hitherto
our attention: If we convene to consider the coordinate x as an observable,
then (5) is a regular,continuous map of the change of an observable to a line-

ar set, the interaction praper time neighbourhood.

Table 1. Orders of magnitude of the IPNs for QED and QCD following
from (5- 6) and the magnitudes of atoms and nuclei (f=v/c)

Theory B approx. radius [m] set diameter d(t) [s]
QED 1 107 107
QCD 1 7 M

In addition, A x represents in physics the displacement of, e.g., a particle. By
generalizing this to any observable change one obtains a map of the changes
onto the time-space. This is a generalization of Proposition I- .

II1.2 The construction of the time-space topology

The Axioms I to Il are considered as the cornerstones of the present new
chrono-topology and are based on the following Definitions 1 and 2.

Axiom 1.

All time definitions, classical or quantal, are based on some process implementing a
change of an observable, natural or technical and generates a time neighbourhood.
The generated time neighbourhood (IPN) is a regular into-map of just this change.
Axiom II.

Every fundamental interaction is associated with (different among them, but)

a finite change of the related physical observable. Sets of observables’ changes
have intrinsic the random character, as to their embedment in the Newtonian

time. They start at irregular Newtonian times and have, within limits, stochasti-
cally distributed durations. They may be thought of as embedded in the Newtoni-

an universal time, R', but their union has not the topology of R'.
Axiom III

The elements of the empty set, &,0f a class of sets {O, l/l €Z"} of observables,

O, , are not observable, and their values are identically equal to zero.
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Fig. 1. Representation of six IPNs {2‘,.[1‘ =1,2,..6}, the union,J ,, of their pro-
Jjections, and a subset, T < R', of the Newtonian universal time, R, in which J "
may be considered as embedded.

Here is the principal definition of the interaction proper-time neighbourhood,

the IPN:

Fundamental Definition 4

Let O, be an observable characterizing one or both particles of a given pair of
interacting quanta.

Let AO, be the corresponding change due to a fundamental interaction. We
define the IPN (interaction proper- time neighbourhood) as the regular and
coOntinuous map.

7,= IPN = [:AO, > 7, = f(AO,) e J,. (7

IPN is a time “quantum” of the process corresponding to the fundamental
interaction under consideration,characteristic of and proper to that interaction

and only to that.

II1.3 The many-folded super space-time
Definition 5
1. Let Kx Ay pairs of quanta interact.

2. Let {T |k €[LK]= 1, © Z"}be a family of subsets T. < R'such that

(I.nT.=2N(k,x'Yel, cZ"}.
2 Let {r, €1, ,VA, e[lLA =1, & ely} beafamily of IPNs such that
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(T NTq =D for A #2,"}.
We define:
i) The A, -fold disconnected time-space by
o Pei= 7y B9800, 8)
{6(z,,, )} may be thought as the random absolute values of vectors orthogonal

at every point of Riemann space-like super-surfaces.
i) The A, -fold,disconnected superspace-time in the sense of A, -fold Riemann
superspace-time by

Mf(r =(r,@rz®...®rAr)xR3 . C)]

where R’is a 3-dimensional Riemann space .

The formulation of a physical theory in terms of generalized random and infi-
nitely divisible fields requires appropriate space-time structures of the above
form for the existence of conservation laws. '

To make this clear, let us consider one single /PN, z,, and the corresponding

space-time, Me; . The lower index signifies that Mt =ir,, x R’, and this spa-
cetime is simple in time, i.e., a subset of a Riemann space. If R’is flat, then

Mo, becomes a subset of the Minkowski space.
If there are two different 7PNs, such that on the one hand z, n 7, = & and,on
the other hand their projections z, 7, into 7 satisfy x, c x,, then the cor-
responding space-time is M) =i(z, ®7,)x R’. This space-time is two-fold in -
time.
In case R’ = 7, the Buclidean 3-space, M?,is not a subset of Minkowski’s
space anymore.
It is said in terms of relativistic simultaneity fully or partly simultaneous ac-
cording to the relations

(my cm)A(my 2m,) or (7, c7,) v(x, c7)
respectively.
More generally,if A, IPNs satisfy

T,NT, =,V(A,A)el,
and their projections into 7,

(mycr )Nz, on,)yor (m, ca)vin,cn,), V(4,4 )Y el ,

then the structure of X/l_;k_ is even higher.

Ina A_- fold in time space-time the decomposition of divisible field £ in up
to A, terms is possible without interfering neither with the definition of the fun-
ction notion nor with conservation laws of physics,cases in which,for example,
f(x)# 2f(x). Anillustration of our time-space

K=4,(A, =1,A,=2,A, =2,A,=1) isgiven in Fig. 1, while the case K=3
(A, =2,A, =3,A; =«)time-space is shown in Fig. 2 .
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Fig. 2. Three types of many - folded topological time-spaces: Two - fold, I} ,
three-fold, 7 and k-fold, 7', .These time-spaces give rise to the creation of

. —a4 —a4 —4
the space-times, M2, M2, M.

It is important that the time in ,e.g., the rest frame of a particle is related to

its corresponding interaction. If to all JPNs were given the properties of one
single /PN the time-space would lose its randomness.

We put just this time in the equations of Schroedinger,of Dirac and of QFT
in connection with problems of nuclear and sub-nuclear interactions. The

time change within an [PN cannot generate the impression of flowing: i) It
escapes the discrimination power of the human sensors. ii) There is one sin-

gle IPN and no ordering is feasible.

On the contrary,for a moving observer the reaction time may flow or not flow
further depending, according to (4) above, on whether the particle changes
either its position, x, or its time, ¢, or both, or any other of its observables.
Hence, it is clear that the particle reaction time cannot be identified with the
universal time which is the union of the maps of all observable changes occur-

ring in the entire observable universe.

Remark 2

The factor g, determines the structure of the new space-time —AZ:A . The spa-

ce-time, ﬁ:n, , kxA -fold in time is the natural space-time for the application

of the theory of the generalized and inifinitely divisible fields .
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Remark 3
Time-dependent quantum equations not including interactions do not sup-

ply us with any physical information with respect to the evolution of the
particle system. For example,an electron moving in vacuum without interacti-

on is described by free field quantum time - dependent equations, but it does
not exist. It is not observable, if it does not interact.

However, the situation is still more complex: The kind of time topology na-
ture chooses in every individual case of interacting particle systems, depends
on the number of the interacting particle pairs and on whether the interacti-
ons are partially or totally simultaneous in the sense of relativity. One easily
realizes based on our definition of the time, that the topological space, 7, ,

tends to the space with the natural topology of R, if the number of the inter-
acting particles becomes very large and the intersections of the adjacent
IPNs are not empty anymore [9]. More precisely:

{ (7, = natural topology of T, — RYA(Mu— M*) for K — Z*} (10)

M is the physical space-time created by the dynamics and yields the scenery
for the evolution of the dynamical particle systems.
M* Minkowki’s pace-time,is a mathematical construction representing the

limit 24 of an infinity of interacting particles, such that {z A'V/l eA—> 27"}

is a covering basis of R’ (no simultaneous interactions).

IV.1 Chrono-topology and irreversibility considerations

The chrono-topology opens new possibilities for the investigation of the U and

R kinds of time evolution. We continue here the examination of these aspects.

1) The fundamental equations of physics- icluding interactions - as well as the
phenomena described by them are time-reversal invariant on every single
IPN,t . The conservation laws are valid for U processes.All phenomena are
time reversible inside one and the same /PN, ¢, during U time evolution.

i) But (attention!) the event that the time-reversed interaction action-integral
equals the action - integral of the (factual) reverse interaction has a zero
probability measure.

The probability measures for these processes have the following properties:

i) The measure, y,,,.., .for the direct process is associated with a mathematical-

ly realizable and physically possible process.

1i) The measure, 15, ,merea LOT the time-reversed process is associated with a

mathematically realizable and physically (in the same 7) impossible process.

iii) The measure, fy, ueinteracion » 1OF the reverse interaction corresponds to a

process both mathematically and physically possible, It is important to reali-

ze, however,that a mathematically time reversed and the factually reverse

reactions do not take place in the same 7.

The combination of the measures have the properties:
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H Direct » .u Time—reversed * H Re verseint eraction > O ’
15 g = 1=
Pr()babl/lly meas ure{ :u])irect - lu[{evemcimemcn’on 5= 0’
Probability measure{ f e = Hame-reversed § = 1+

These relations can become more clear with the help of three,generally, diffe-
rent well-ordered /PNs {r, > 7, > 7} . Suppose that the direct and the time-

reversed reactions take place for ¢ e 7,. Since the factually reverse reaction
cannot proceed simultaneously with the direct reaction, it will take place ei-
therinrer,>7,0rinrer,; <r7,.

This expresses the physical fact that

{TIME-REVERSED REACTION !dtH(t) , L ET, }
# {IdtH(z‘) of the REVERSE REACTION ,(tet,>1,) v({ €7, <7,)}.

The above relation (i.e., “mathematically time-reversed reaction” is different
Jrom the “action of the factually reverse reaction”) is true, because the /PNs
{r,,7,,7,} may be different in two respects:

1) As sets.

2) As set diameters,{ 5(z,),A=123}.

On the other hand, the ranges of any functions in {r,,7,,7,} are, with high
probability, different at least for two reasons:

i) 6(z,),A =123 ,as numbers: Probability measure {6(z,)= (), j #i} =0,
and

i) 7,,4=123 aspoint sets: Probability measure{{r }(\{t,} =} =1,]#i.

1V.2 Planck time and chrono-topology

Despite the differences between our space-time topology in the conception
and in the construction method and the space-time foam of S. Hawking [10]
there is, nevertheless, a certain resemblance in the limit 5(z , ) — Planck time,

VA € Z", when the interactions become very fast.

If the «foam» time intervals had all the Planck time magnitude, they would
loose their random character.

If the observers lived inz, it would be impossible to compare 7 ,withz, for

Jj #i.Because each r, isits own unit in the rest frame. However,such a com-
parison is for the human observers perfectly possible,because our senses are
exposed to quanta coming from many different,but,more or less,overlapping
interactions in 7 < R’ due to our ability to observe (almost) simultancously
more than one physical changes.

The time space topology / , introduced above bears intrinsically the random
character of the IPNs. It is this property that imposes randomness to every
function of the time. An important observation is that the randomness can be
perceived by the observers, because they are living in the background of the

Newtonian time which has the topology of R’.
Some examples of functions defined in 7 becoming random in ./ , are :

1) The space-time coordinates for the moving observer of a particle system. The
observers are almost in all cases moving with respect to the interacting elemen-
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tary particles, so that observation is mediated by Lorentz transformations.

ii) All observables expressed as functions of the space-time coordinates in the
rest frame of reference of the observer. _

iii) The components of the quantum fields which become generalized random

fields.

iv) The Hamiltonian and the Lagrangian densities become generalized random
and infinitely divisible fields, thus admitting the representation

F((x),8p(x)) = F(@(x,), 8p(x)) + F(@(x,), p(x))+.. +F (9%, ). dp(x, ),

k=23,.and A, =12,...A for x € M, .
for x,A, € Z* and with probability distributions independent of k, A,..
v) The metric tensor g, of the space-time in General Relativity.

The IPNs, as maps of finite observables’ changes through interactions, they

are compact in R’ ,and their set diameters are empirically inversely proportio-
nal to the strength of the interaction.

V.1 The wave function reduction in nuclear measurements

Let us now see Penrose’s most clear view in the matter of the problem [4]:

“ The quantum measurement problem is to understand, how the procedure R
can arise - or effectively arise - as a property of a large - scale behavior in U-
evolving quantum systems. The problem is not solved merely by indicating a pos-
sible way in which an R-like behavior might conceivably be accommodated. One
must havea theory providing some understanding of the circumstances under
which(the illusion ?) R comes about” .

This is exactely the way followed in constructing the theory which simultane-
ously describes thelU-and the R-processes in quantum field theory with exact-
ly the same accuracy.Here is,however, an additional aspect: In this approach
R comes about not only for large- scale systems, but also for single quantum
particles, thus enabling us to get a glimpse of the neutral kaon branching pro-
cess and to solve the Schroedinger cat’s puzzle, too. The first and basic idea
came to us from [6] and a first derivation has been given in [1,2].

Penrose continues: “It appears that people often think of the precision of quan-
tum theory as lying in its dynamical equations, namely U. But R itself is also ve-
ry precise in its prediction of probabilities, and unless it can be understood, how
it comes about ,one does not have a satisfactory theory”.

In the second statement by Penrose it seems to us that the freedom is contain-
ed that R be or not be a consequence of the same dynamics. [t is shown that
theory gives bothlU and R with exactly the same precision, and it is demonstra-
te that U and R come about by means of quantizing the field action-integral.
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V.2 Experience and expectation
After the above due clarifications one is ready to ‘“‘play dice” and answer the
questions entailed by the problem posed at the beginning of this section: In stu-
dying the game, one may do some small calculation and figure out what one
has to expect after throwing a dice.
The probability is 1/6 for getting any number from 1 to 6:
Calculated final state of the dice =
F = 1/6 x(get 1)+1/6 x (get 2)+... 1/6 x (get 6). (n

This is,of course,the result of a calculation of what is foreseen. There is no rela-
tionship whatsoever - causal or acausal - with the a future decision for doing or
not doing the experiment. It is an empirical statistical fact independent of whe-
ther one plays or does not play dice in future. The result of the calculation (11)
will not change after throwing the dice.The equation remains unaffected, if the
dice shows,e.g., 5 or anything else.
After having played dice one knows the fact and one may represent it, e.g., by
Exp(enmental)Res(ults)

E 1x (got 5), and 0 x ( got all others). (12)

exp.
But equation (11) remains unaltered. «Calculations» and «fact» are related on-
lyin observers’ brains.
Fin (11)is atheory-devised construct for predictions based on empirical data,
representing the possibilities for many different (in this case 6) outcomes of dic-
ing.
Equation (12) is of a different character. It is constructed to represent a posteri-
ori one single fact:The outcome of one single experzment and there can be no ques-
tion about any reduction.
Next, one may make more perfect the theory of playing dice and construct an
operator,D, describing the dice playing.One wants D to describe the dice-throw-
ing.This will be done by applyng D on F. The result of this application will, if
the theory is a good one, be F,, . It will induce the reduction on the paper, not

in Nature.
If F and D represent exactly the system and the action on it respectively, then
DF =1x (got5), and 0 x ( got all others), (13)
= F

exp.
and D describes exactly the way of taking and throwing the dice ( the dyna-
mics) in the particular experiment above. It has nothing to do with a statisti-
cal theory (Einstein).
Let us see a little more precisely what means the expression:“in the particular
experiment”. [t means:
i) A definite motion of the hand of the particular experimentalist,implemenied
through a definite preparation and function of his hand-muscle system.
ii) Adefinite motion of his arm,implemented through a definite preparation and
Junction of the arm-muscle system.
iii)Adefinite electrical conductance or polarization and function of the neural
synapses system etc. leading from the brain to the fingers of his hand.
V) A certain preparation and function of his brain,conscious to a certain de-
gree of the programme to be carried out. This degree of consciousness may dif-
Jfer from one experimentalist to an other, and to an experimentalist in differ-
ent experiments.
V) Acertain interaction between his «willvand his brain in order that the latter

repares itself and acts.
prep if 909



These five steps of preparation are subject to large uncertainties, both mac-
roscopic and quantum mechanical. The magnitudes of the uncertainties in-
crease with increasing index value in the above enumeration scheme from
i) to v).

Moreover,what is virtually fully undefined is the description in physical
terms of the interaction between the «will» and the brain.

Hence,the construction of the operator D for experiments of the above
type is not an easy task for today’s Science and Technology. The difficulty
is localized in the lack of knowledge in the quantum description of the indi-
vidual human functions.

However, in most nuclear physics experiments participation of human bo-
dy’ s functions at the realization of experiment’s crucial parts is to a well-
defined degree excluded. Also, the human brain is involved only in the pre-
paration of the experiment, in the analysis and in the interpretation of the
ExpRes. Hence, the construction of the operator D in nuclear experiments
is in general feasible and easier.

Similar is the situation in quantum theory. Long experience and deep in-
sight have shown two series of facts:

i) If one constructs a certain function, £, appropriate to the problem at

hand and applies a variational principle, one derives an equation (Schroed-
inger), containing some operators {D}, which corresponds to the problem.
ii) The actions of {D}on a certain function F=f(¥) ( ¥ is a wave function)

describe satisfactorily the ExpRes,and the construction of the function , £,

is correct.

Hence, if the theory is correct, then one must have:

D f(¥) = ExpRes.

Some authors believe that the construction of D is impossible in the frame-
work of the theory of Schroedinger’s equation in such a way that the above
equation is not true in the sense of (13) and R must come from extraneous
agents. One shall try to examine the actual situation in the framework of
the present chrono - topology. One shall try first to clarify the situation
through the following definitions.

V.3 Nature is not divisible in classical and quantal

Definition VIIL.1

Every experiment in systems ranging from atomic to sub - nuclear is divided
into two parts:

i) The experiment proper which involves one fundamental physical interaction,
relies on the laws of quantum physics and characterizes D (D-process).

ii) The process of making a quantum interaction visible may rely either on
quantum laws or on laws of classical physics or on both and is not characteri-
stic of D (non D-process).

iii) There are many ways , X € {W,, P,.Ii = 1,2,...} ,for implementing an ExpRes

appropriate either to wave properties, W,,or to particle properties, F,, but not

simultaneously to both .

iv) Proposition ii) can be implemented in any one of the possible ways

XelW,P |i =1,2,...} ,and, hence, Xis not.an uniquely chacteristic part of the

experiment proper.
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v) The elements of the set {ExpRes(X)},¥Y Xe (W, P, li =12,..}, are equiva-
lent:
ExpRes(X) < ExpRes(Y), ¥V (X.Y)e W, Pli=12,..}. (14)

Remark 4

According to Definition VIII.1 an experiment in quantum physics consists of
a fundamental interaction between two given quantum entities, on the one
hand a structured or an elementary particle, and on the other hand, a mea-
suring apparatus,whose specificallyactive part may be another structured
or annother elementary particle or a field.

Remark 5

The process of making the ExpRes macroscopically observable is a separa-
te step,exterior to the quantum measurement.

Remark 6

The view that in every quantum physics experiment one has the interaction
of a quantum system with a classical apparatus (black box approach) does
not correspond to reality according to the present work premises. Because
the method used for the indication of the result of a fundamental interaction
is not essential to the quantum experiment.As a rule, the ExpRes is obtained
by means of photomultipliers,scintillators, Wilson chambers, Geiger-Mueller
detectors, recoil detectors, spark detectors and other well-known elementary
particle detectors. The way to magnify a quantum interaction does not play
an essential part in the interpretation per se and to the construction of the
operator D, as ( 14) makes clear.

Having the above clarifications in mind one can see that in constructing the
operator, D, implementing the measuring process in a quantum experiment,
one does not need any input extraneous to the interacting quantum system.
One thing,which,however, is not extraneous to the quantum interacting sys-
tem, is the preparation of the experiment. One must, further, specify, what
one understands under «preparation of the experiment».

Definition VIII.2

- The preparation of a quantum experiment consists of two processes:

a) The preparation of the state of the elementary or the structured particle de-
termined to interact with the active part of the measuring apparatus.

b) Preparation of the active part of the measuring apparatus and of its state
to measure either a particle property, P, ,or a wave property, W, .

Definition VIII3
i) A quantum measurement is the experimental determination of one or more
quantum transitions in the prepared system. The transition may consist in the
change(s) of some observable(s)during a fundamental interaction in the pre-
pared quantum system and the active part proper of the measuring apparatus.
ii) The preparation of an experiment influences the system to be measured in
such a way that it increases or diminishes the probabilities for one or a few of
the possible outcomes, constituting the ExpRes to be determined. These ExpRes
are associated by means of the preparation with higher probabilities relative to
all other possible outcomes.

Remark 7
Accordingly,one understands that the critical part of a quantum experiment is
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an interaction between two particles,or between a particle and a field, or bet-
ween two fields causing the evolution of the system whose some observables
are to be determined within its corresponding IPN either in the interacting sy-
stem rest frame of reference or in observer’s system of reference .

V.4 Schroedinger’s equation produces R

Praposition 2
The reduction of the state vector describing a quantum measurement is effect-
ed by the evolution operator D(J( t ) )with the interaction Hamiltonian, H(t),

appropriate to the preparation of the experiment for t € 7. D(6(71)) redu-
ces the probability amplitudes {C,(0)} of all components of the state vector

W(x) =D C,(0m,(x)

representing the system under measurement, except the ones

{C, (0] =12...K < o}
corresponding to the observables {O, ia =12. K <o} to be obtained in the
ExpRes.

Proof
The D(5(t )) can be taken equal either to U, (5(7))orll ,(5(7)) de-

pending on the case. In the present case one puts: D (5(7))= U g (00T ).
U oy 5( 7)) =exp{ [(iR)" f d*x H(p(x,1), Bp(x,1)) +A(j,0) ] x

Me

[cos[A(/,0)]-isin[A(j, )]} ), (15)
before quantization.
The expression for the experiment comes about through the selection of the
appropriate quantum numbers in A(j(n),o) following the quantization of
the field action-integral (15).
The kind of quantization to be applied becomes clear from the expectation
to have a non - measure - preserving evolution or a unitary evolution. I.e.,
expect to measure substantial changes in the relative probability measures of
the components characterizing the system before and after the measurement
with respect to the remaining components.
Carrying out the multiplication of the quantities in the brakets [...]x [...] of the
exponent in (15) it is seen that the above requirement is fulfilled according to
(7.13 of ref. [11]), if one puts

A(n,o)=n(2n+1/2),0=1. (16)
From (16) it follows after application of (15) on the state vector that

Uy (30 7)) ¥ (x) = exp( [%‘j d*x H(p(x.0).0p(x,0) FA(j(1),0)] ) ¥ (¥)
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=3 exp( [ [d*x Hox.0),dpx.0) FAGM,0)] ) G, 00,5

n=|

Me

= iexp<[—h“ | d‘xx(w(x,r),aw(x,t»—<j<n>+1/2)1>cn(0>un<_x)

m+K

+ 3 exp( [+h™ [d x(p(x,0),8p(x,0) + (a(n) +1/2)] )C., (O)u, (x)

a=l+m 4
My

+ ) exp<[—h" f d“m(«p(x,t),aq»(x,t))—(j(n)+1/2\1>Cn(0)un(x).
n=l+m+K W
By appropriately choosing the respective action-integral values, i.e., {j(n)} in
each category of states in the sum, one obtains that only the intermediate sum
survives.The corresponding exponents are the sums of two positive numbers.
The first and the third sums above become as small as one likes by taking the
differences in the respective exponents sufficiently small in comparison with
the smallest term in the sum , as implies the preparation of the experiment
aell+mn+K].

U e B( 7 ))¥(x)

K

= z exp<[h‘l fd"x_‘fc’((p(x,t),o’?p(x,t))+(a(n)+1/2)]>(.7a(0)ua(x). 17)

a=l+m M

If the set of the orthonormal functions {u,(x)} are eigefunctions of the energy
operator, then (17) can be simplified in the form

U e B 7)YV ()

= iexp([h" E8(2) + (a(m) +1/ 2)1)C, (O)u, (x)

a=l+m
K

= 2. Ca(8(D)u, (x),

a=l+m
where
C,(8(2)) = exp([h™' E,,6(c) + (ae(m) +1/ 21)C, 0).
Obviously, the probability coefficients for the surviving states is much larger
than the rest of them

|C.(BN >>|C, (8N, Ve e[l,K],¥n € Z* \[LK], (18)

and the proof Propesition 2 is complete.
Remark 8
This is the expected result describing the preparation of the experiment and imp-
lying the reduction, R, of the wave function after the experiment. It is seen that

R is an integral part of quantum dynamics, and it does not need the presence of
any extraneous agents. The numbers a(n) j(n)and K depend on the preparation

and the kind of interaction in the experiment. {a(n)}may be large, {j(n)} are
correspondingly of the orders of {E , }. K is in most experiments equal to 1.
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Remark 9

The novum in the above proof is:

i) It is seen that R does not imply necessarily reduction to one single state, but to
any finite number, K, of final states.

ii) The reduced states are not fully extinguished! They simply become of d very
small probability.

iii) The result ii) above steresses the statistical appearence of quantum theory
which is traced back to the chrono-topology.

VI Conclusions

The chrono-topology implies that the physical fields become generalized and
infinitely divisible random fields. In particular, the Hamiltonian and the Lag-
rangian densities acquire this property. This property has been used by R.P.
Feynman in the derivation of his famous path integral. Based on the chrono-
topology and by quantizing the action integral we obtained the solution of
the measurement problem. The reduction of the state vector consists not in
the vanishing of all components of the state vector except one, but rather
in the extiction of all but one or a finite number of components. This under-
lines the statistical look of quantum theory of nuclear reactions.
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