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Abstract

The energy loss of channeled protons in silicon has been measured in the past in
the transmission geometry and was found to be approximately half of the normal
loss, thus confirming the equipartition rule. Other measurements however, concern-
ing different crystals (e.g. Ge), deviated from this theory. In the backscattering ge-
ometry, the most successful corresponding attempts combined RBS with the nuclear
resonance phenomenon. Nevertheless, they involved either considerable additions to
the standard goniometer setup commonly used, or tedious Monte-Carlo calculations,
thus limiting their applicability. In the present work, a method for the determina-
tion of the energy loss and dechanneling probabilities of axially channeled protons
in silicon [100], in the energy range Ep = 1.7-2.6 MeV, is presented. It is carried out
in situ, using the same experimental setup and beam properties (size, divergence)
with the ones present in the actual analysis of a sample. The results obtained are
in good agreement with already existing values in literature.

1 Introduction

Several experiments have been carried out so far to establish the energy loss
of channeled particles. The first measurements of this sort were carried out
on thin silicon targets in the transmission geometry [1] and the experimental
energy loss was found to be approximately half of the normal loss (incurred
in a randomly oriented crystal), and so to confirm the equipartition rule 2].
Nevertheless, other experiments carried out with different crystals (such as
Ge), using the same geometry, deviated from this theory [3]. In all the above



mentioned measurements, the determined quantity was the average energy
loss of the so called best channeled particles. Such particles move far from the
lattice nuclei in the region of low electron density and thus their energy losses
are substantially less than the poorly channeled ones.

Recently, another experimental design has been used, in which the energy
spectra of particles backscattered by a thick single crystal are registered.
These measurements provided reliable numbers for practical purposes but
they involved either considerable additions to the standard goniometer set-
up commonly used, or tedious Monte-Carlo calculations, thus limiting their
applicability. In these experiments the energy spectra measured with a crys-
tallographic direction aligned to the imcident beam are formed by particles
dechanneling at different depths. The most successful of the above mentioned
attempts were the ones using the nuclear resonance phenomenon, combining
the RBS data with those of the * Al(p, ) reaction [5], the F(p, ) reaction
6], or the 2Si(p, v) one [7].
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FIGURE 1. Random and channeling spectra of Si [100] at Ep = 1.95 MeV.
The change of the resonance shape and the shift of the minimum are clearly
visible.

In the present work a method of analyzing RBS spectra is presented in the
energy range of proton resonances in ®Si, allowing an estimation of the energy
losses of channeled protons in situ, using the same experimental setup and
beam properties (size, divergence) with the ones present in the actual analysis
of the sample. The obvious advantage in this case is that since the channeling
parameters are very semsitive, depending on the quality of the target, the
energy and the collimation of the beam, the ambient temperature and the
very nature of channeling (axial or planar), the method can be customized to
provide reliable results in any experimental setup and it can be extended to
other projectile-target combinations.
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2 Experimental setup

The experimental setup at N.C.S.R. Demokritos includes a goniometer system
(RBS-400 by Charles Evans and Associates) which permits experiments for
backscattering spectroscopy in the case of oriented or non-oriented crystalline
targets [12].

The proton beam was well collimated and the beam spot dimensions remained
almost unchanged during the measurements (1.5 X 1.5 mm? with a variation
of 10% at the most). The crystal was of average quality, showing a surface
Xmin Of approximately 5% for the analyzed energy range.

3 Principle of the method

The cross section for elastic scattering of protons shows two strong resonances
in the energy range into consideration (Ep = 1.7-2.6 MeV) at Ep = 2.09 MeV
and at Ep = 1.67 MeV with corresponding natural widths of 52.0+£0.8 and
15.640.6 keV (8). In fig. 1, a typical backscattering s~~ctrum is shown where
in the random case the interference pattern between nuclear and Rutherford
scattering can be observed [7, 8]. The interference minima, which will be the
focus of the present work, occur at Ep = 2.07 MeV and Ep = 1.62 MeV respec-
tively and appear shifted towards lower energies in the channeling geometry.
The motion of a proton originally channeled, as shown in fig. 2, can be de-
scribed as follows: The proton moves within the low electron density channel
for a length £ losing energy at a rate S(E).. The energy of the proton of initial
energy Eo at the point of dechanneling (A) can be described in general by the
following equation:

Ey=E, — [{S(E" ) dr (1)
where E;, < E < EFo.

Using the quantity €, defined [10] as the ratio of the average stopping power
in the channel to the one in the amorphous medium:

_ 5(E).
¢=5@, @

and replacing the integral with the average value S(E')the equation finally
becomes:

Ei=FE,—¢-S(E'), -£ (3)
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Assuming an exponential decay law with depth for the intensity of the chan-
neled beam, the dechanneling distance £ can be related to the decay constant
)\ as follows [6]:

£= - In(5E)4)

where: Io = fraction of initially channeled protons and R = ratio of the inte-
grated channeled to random spectra over the same energy region.

After dechanneling, the particle moves on along the same direction (the small
angle of dechanneling can be ignored for all practical purposes) for a distance
x, but now in a medium considered to be amorphous, until the backscattering
occurs. The motion of dechanneled particles can be subsequently described by
equations derived for the case of amorphous targets [9].

Thus, the depth Dgy;p, at which the resonance minimum is observed, can be
expressed, according to the above arguments, as:

Ditmin = 3+ € = fERmn B\ In(15B)(5)

where Eg,.;, the energy of the interference minimum and Eg,:, < E < E,.
If we replace the integral with the average value of the stopping power S(E),
the above relations can be simplified and combined as follows:

DRmin = E%E(Lg:)& - X-in(58) =
o— : S(E' -
= Dpynin — 25 min = (1 _¢ %E—l)) X~ In(X=2)(6)

Close to the target’s surface, where S(E') / S(E") =~ 1, the relationship is
linear with slope equal to — (1—¢)-A. We can therefore use the experimental
points cose to the surface for an approximate determination of this product.

4 Results and discussion

Dividing the aligned spectra channel by channel with the random onmes, the
function x(x) is obtained. The part containing the resonance region is excluded
(fig. 3) and the remaining points are fitted with an exponential function of the
form: x(x) = lo.(1—e~*/*). For the energy range into consideration, the decay
constant was found to vary between 7.5+0.2 and 8.4+0.2 um (fig. 4), showing
that the initial beam divergence was roughly constant. For the analysis we
used the value: X = 8.140.2 ym.

It should be noted that the most striking difference between the random and
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channeled spectra is the shape of the peaks. In the random case the shape of
the peak still resembles the shape of the thin target yield as presented in the
literature [8]. In the axial case [100], which is analyzed in the present work, the
broadening is much larger. Another effect is the progressive shallowing of the
minimum that preceded the peak in the random spectrum, which is caused by
particles with a lower energy loss on their incoming trajectories. The resonant
shapes are further broadened with mcreasing iitial energy, mainly due to
the energy straggling, since the shapes appear at greater depths. It is also
important to note the ever mcreasing contributions from particles continuously
dechanneling along the way till they reach the resonance energy, with the two
extreme cases being particles dechanneled initially at the surface and particles
dechanneling immediately before reaching the resonance energy. With the use
of the mean channeling distance we average over the different trajectories.
A B

/

A = position where dechanneling occurs
B = position where backscattering occurs

FIGURE 2. Diagram showing the scenario of the proton movement inside the
silicon target.

If we constrain the analysis to mitial energies relatively close to the energy of
each resonance, meaning that the corresponding resonance shape appears at
a depth of a few microns at the most, we can ignore the straggling factor. For
these depths it can be assumed that since the maximum appears at the same
channel -due to the strong contribution of the mitially dechanneled particles
of the beam, the whole information of the channeling procedure is contained
in the change of the position of the minimum. The position of the resonance
minimum in the random spectra can be used with a RUMP-like program
to recalibrate the energy scale of the MCA into a depth scale. Thus, the
position of the correponding minimum, Dpgy;,, from the channeled spectra
can be calculated , under the assumption that the backscattered particles exit
the crystal n a random direction.

The corresponding fractions R are determined by integrating over the entire
range of the resonance up to 30, thus for 98% of the energy region where
the resonant term in the total cross section is dominant. The total error in R
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(including statistical error of experimental data and systematic error due to
the method of integration adopted) is estimated to be of the order of 10%.
After the extraction of the experimental quantities involved in eq. 6, the val-
ues of the modified distance Drpin—[(E0—ERmin) / S(E)'] versus the modified
logarithm —In[(1—R) / Io] can be plotted as shown in fig. 5, including exper-
imental points from both resonances. The offset of the line is very close to
zero (0.09+0.16), demonstrating the validity of our hypothesis near the tar-
get surface. The inclination of the line, determined with the least squares fit
method assuming weighted errors in both individual parameters, was found to
be 2.840.4 pm, leading to a value of € = 0.644+0.07, in good agreement with
the transmission experiments. For the corresponding mean stopping powers,
standard values from literature have been used [10].

i
= e
Model: Exponential fit
1-0.00464
1 1095
A=840pm, 6, =0.14um
:': L] L T LJ IJ )J 1J
H 0 15 » ] 2 »
Depth (in pm)

FIGURE 3. A typical spectrum at Ep = 1.7 MeV, showing x as a function of
depth (with the use of RUMP for the depth calibration of the MCA) with the
appropriate exponential fit following the exclusion of the interference region
where great anomalies in the ratio occur.

5 Conclusion

This method offers a simple tool for the determination of the average channel-
ing energy losses of protons in a silicon bulk target. The results are obtained
in situ for the crystal into consideration and no complicated mathematical
analysis is required. The value of ¢ extracted can be subsequently used in a
RUMP-like program for elemental analysis in channeling geometry. It is be-
lieved that it can be applied to other projectiles, namely a-particles in silicon
[11], as well as in more complicated crystals, such as Al,O; and MgO.

Nevertheless, due to all the analyzed arguments, it is evident that at greater

depths the simplified hypothesis cannot reproduce the experimental data, the
linearity is lost, and the method used for the integration fails. A detailed
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simulation would have to take into account the different impact parameter-
s, different trajectories, energy and spatial straggling, thermal effects, initial
divergence of the beam as well as the total cross section for the whole spec-
trum. An interesting attempt presented recently [7], dearly demonstrates the
difficulties and compromises in accuracy one should tolerate if such a task is
undertaken. It is believed that a lot of fine and complex details need to be
studied before a standard method for the analysis of any sample in channeling
geometry is established.
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FIGURE 4. Mean channeling distance at Ep = 1.7, 2.1 and 2.6 MeV, showing
that X varies insignificantly for the energy range into consideration.
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FIGURE 5. Plot of the modified distance (eq. 6) versus the modified logarithm
using the experimental points at Ep = 1.7, 1.75, 1.8, 2.15, 2.2 MeV for the
linear fit (¢ — points from the resonance at 1.67 MeV, * — points from the
resonance at 2.09 MeV).
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