
  

  HNPS Advances in Nuclear Physics

   Vol 7 (1996)

   HNPS1996

  

 

  

  A Method of Determining Channeling Parameters in
Backscattering Geometry 

  M. Kokkoris, S. Kossionides, T. Paradellis, Ch.
Zarkadas, E. N. Gazis, C. T. Papadopoulos, R. Vlastou,
X. Aslanoglou   

  doi: 10.12681/hnps.2408 

 

  

  

   

To cite this article:
  
Kokkoris, M., Kossionides, S., Paradellis, T., Zarkadas, C., Gazis, E. N., Papadopoulos, C. T., Vlastou, R., & Aslanoglou,
X. (2019). A Method of Determining Channeling Parameters in Backscattering Geometry. HNPS Advances in Nuclear
Physics, 7, 122–129. https://doi.org/10.12681/hnps.2408

Powered by TCPDF (www.tcpdf.org)

https://epublishing.ekt.gr  |  e-Publisher: EKT  |  Downloaded at: 05/05/2024 21:16:13



A Method of Determining Channeling 
Parameters in Backscattering Geometry 

M. Kokkoris a , S. Kossionides a , T. Paradellis a , 

Ch. Zarkadas a , E. N. Gazis b, C.T. Papadopoulos b, 

R. Vlastoub, X. Aslanoglouc. 

a N. G S. R. Demokritos, Institute of Nuclear Physics, Tandem Accelerator, 
Laboratory for Material Analysis, Ag. Paraskevi 153 10, Athens, Greece. 

b N. T. U. Α., Department of Physics, Athens 157 80, Greece. 
c University of Ioannina, Department of Physics, Ioannina, Greece. 

Abstract 

The energy loss of channeled protons in silicon has been measured in the past in 
the transmission geometry and was found to be approximately half of the normal 
loss, thus confirming the equipartition rule. Other measurements however, concern
ing different crystals (e.g. Ge), deviated from this theory. In the backscattering ge
ometry, the most successful corresponding attempts combined RBS with the nuclear 
resonance phenomenon. Nevertheless, they involved ether considerable additions to 
the standard goniometer setup commonly used, or tedious Monte-Carlo calculations, 
thus limiting their applicability. ïïi the present work, a method for the determina
tion of the energy loss and dechanneling probabilities of axially channeled protons 
in silicon [100], in the energy range Ep = 1.7-2.6 MeV, is presented. It is carried out 
in situ, using the same experimental setup and beam properties (size, divergence) 
with the ones present in the actual analysis of a sample. The results obtained are 
in good agreement with already existing values in literature. 

1 Introduction 

Several experiments have been carried out so far to establish the energy loss 
of channeled particles. The first measurements of this sort were carried out 
on thin silicon targets in the transmission geometry [1] and the experimental 
energy loss was found to be approximately half of the normal loss (incurred 
in a randomly oriented crystal), and so to confirm the equipartition rule [2]. 
Nevertheless, other experiments carried out with different crystals (such as 
Ge), using the same geometry, deviated from this theory [3]. In all the above 



mentioned measurements, the determined quantity was the average energy 
loss of the so called best channeled particles. Such particles move far from the 
lattice nuclei in the region of low electron density and thus their energy losses 
are substantially less than the poorly channeled ones. 

Recently, another experimental design has been used, in which the energy 
spectra of particles backscattered by a thick single crystal are registered. 
These measurements provided reliable numbers for practical purposes but 
they involved either considerable additions to the standard goniometer set
up commonly used, or tedious Monte-Carlo calculations, thus limiting their 
applicability. In these experiments the energy spectra measured with a crys
tallography direction aligned to the incident beam are formed by particles 
dechanneling at different depths. The most successful of the above mentioned 
attempts were the ones using the nuclear resonance phenomenon, combining 
the RBS data with those of the ^Alfp, 7) reaction [5], the 19F(p, 7) reaction 
[6], or the œSi(p, 7) one [7]. 
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FIGURE 1. Random and channeling spectra of Si [100] at Ep = 1.95 MeV. 
The change of the resonance shape and the shift of the minimum are clearly 
visible. 

In the present work a method of analyzing RBS spectra is presented in the 
energy range of proton resonances in ^Si, allowing an estimation of the energy 
losses of channeled protons in situ, using the same experimental setup and 
beam properties (size, divergence) with the ones present in the actual analysis 
of the sample. The obvious advantage in this case is that since the channeling 
parameters are very sensitive, depending on the quality of the target, the 
energy and the collimation of the beam, the ambient temperature and the 
very nature of channeling (axial or planar), the method can be customized to 
provide reliable results in any experimental setup and it can be extended to 
other projectile-target combinations. 
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2 Experimental setup 

The experimental setup at N.C.S.R. Demokritos includes a goniometer system 

(RBS-400 by Charles Evans and Associates) which permits experiments for 

backscattering spectroscopy in the case of oriented or non-oriented crystalline 

targets [12]. 

The proton beam was well collimated and the beam spot dimensions remained 

almost unchanged during the measurements (1.5 X 1.5 mm2 with a variation 

of 10% at the most). The crystal was of average quality, showing a surface 

Xmin of approximately 5% for the analyzed energy range. 

3 Principle of the method 

The cross section for elastic scattering of protons shows two strong resonances 

in the energy range into consideration (Ep = 1.7-2.6 MeV) at Ep = 2.09 MeV 

and at Ep = 1.67 MeV with corresponding natural widths of 52.0±0.8 and 

15.6±0.6 keV (8). In fig. 1, a typical backscattering s^ctrum is shown where 

in the random case the interference pattern between nuclear and Rutherford 

scattering can be observed [7, 8]. The interference minima, which will be the 

focus of the present work, occur at Ep = 2.07 MeV and Ep = 1.62 MeV respec

tively and appear shifted towards lower energies in the channeling geometry. 

The motion of a proton originally channeled, as shown in fig. 2, can be de

scribed as follows: The proton moves within the low electron density channel 

for a length I losing energy at a rate S(E)c/l. The energy of the proton of initial 

energy Eo at the point of dechanneling (A) can be described in general by the 

following equation: 

Ee = E0-f£S(E')chdr (1) 

where Ε* < E < Eo. 

Using the quantity ε, defined [10] as the ratio of the average stopping power 

in the channel to the one in the amorphous medium: 

f _ S(E)ch (η) 
5 * S(E)r W 

and replacing the integral with the average value 5'(£^/)the equation finally 
becomes: 

Ε£ = Ε0-ε- S(E')r • i (3) 
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Assuming an exponential decay law with depth for the intensity of the chan

neled beam, the dechanneling distance I can be related to the decay constant 

λ as follows [6]: 

/ = - λ · / η ( ί # ) ( 4 ) 

where: Io = fraction of initially channeled protons and R = ratio of the inte
grated channeled to random spectra over the same energy region. 

After dechanneling, the particle moves on along the same direction (the small 

angle of dechanneling can be ignored for all practical purposes) for a distance 

x, but now in a medium considered to be amorphous, until the backscattering 

occurs. The motion of dechanneled particles can be subsequently described by 

equations derived for the case of amorphous targets [9]. 

Thus, the depth Dßmjn , at which the resonance minimum is observed, can be 
expressed, according to the above arguments, as: 

DRmin = X + ί — JEt

Rm%n S(E") ~ * ' 'n(~7ö~)(*v 

where Eßm t n the energy of the interference minimum and EßTOtn < E < E*.-
If we replace the integral with the average value of the stopping power S(E), 
the above relations can be simplified and combined as follows: 

DRmi„ = Ë ^ ë i _ λ . („( !=£) ^ 

=> DRmin - S g i - * = - ( l - e %%) · λ · Ζ»(1#χβ) 

Close to the target's surface, where S(E') / S(E") ~ 1, the relationship is 

linear with slope equal to — (1—ε)·λ. We can therefore use the experimental 

points close to the surface for an approximate determination of this product. 

4 Results and discussion 

Dividing the aligned spectra channel by channel with the random ones, the 
function χ(χ) is obtained. The part containing the resonance region is excluded 
(fig. 3) and the remaining points are fitted with an exponential function of the 
form: χ(χ) = Io.(l— e~x/x). For the energy range into consideration, the decay 
constant was found to vary between 7.5±0.2 and 8.4±0.2 μιη (fig. 4), showing 
that the initial beam divergence was roughly constant. For the analysis we 
used the value: λ = 8.1±0.2 μιη. 

It should be noted that the most striking difference between the random and 
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channeled spectra is the shape of the peaks. In the random case the shape of 

the peak still resembles the shape of the thin target yield as presented in the 

literature [8]. In the axial case [100], which is analyzed in the present work, the 

broadening is much larger. Another effect is the progressive shallowing of the 

minimum that preceded the peak in the random spectrum, which is caused by 

particles with a lower energy loss on their incoming trajectories. The resonant 

shapes are further broadened with increasing initial energy, mainly due to 

the energy straggling, since the shapes appear at greater depths. It is also 

important to note the ever increasing contributions from particles continuously 

dechanneling along the way till they reach the resonance energy, with the two 

extreme cases being particles dechanneled initially at the surface and particles 

dechanneling immediately before reaching the resonance energy. With the use 

of the mean channeling distance we average over the different trajectories. 

A Β 

E o 

^ t 
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A=position where dechanneling occurs 

Β = position where backscattering occurs 

FIGURE 2. Diagram showing the scenario of the proton movement inside the 

silicon target. 

If we constrain the analysis to initial energies relatively close to the energy of 

each resonance, meaning that the corresponding resonance shape appears at 

a depth of a few microns at the most, we can ignore the straggling factor. For 

these depths it can be assumed that since the maximum appears at the same 

channel -due to the strong contribution of the initially dechanneled particles 

of the beam, the whole information of the channeling procedure is contained 

in the change of the position of the minimum. The position of the resonance 

minimum in the random spectra can be used with a RUMP-like program 

to recalibrate the energy scale of the MCA into a depth scale. Thus, the 

position of the correponding minimum, Dflmt-n, from the channeled spectra 

can be calculated , under the assumption that the backscattered particles exit 

the crystal in a random direction. 

The corresponding fractions R are determined by integrating over the entire 

range of the resonance up to 3σ, thus for 98% of the energy region where 

the resonant term in the total cross section is dominant. The total error in R 
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(including statistical error of experimental data and systematic error due to 
the method of integration adopted) is estimated to be of the order of 10%. 
After the extraction of the experimental quantities involved in eq. 6, the val
ues of the modified distance Dßmt-n-[(Eo—Eßmjn) / S (E)'] versus the modified 
logarithm —ln[(l—R) / Io] can be plotted as shown in fig. 5, including exper
imental points from both resonances. The offset of the line is very close to 
zero (0.09±0.16), demonstrating the validity of our hypothesis near the tar
get surface. The inclination of the line, determined with the least squares fit 
method assuming weighted errors in both individual parameters, was found to 
be 2.8±0.4 /im, leading to a value of ε = 0.64±0.07, in good agreement with 
the transmission experiments. For the corresponding mean stopping powers, 
standard values from literature have been used [10]. 

FIGURE 3. A typical spectrum at Ep = 1.7 MeV, showing χ as a function of 
depth (with the use of RUMP for the depth calibration of the MCA) with the 
appropriate exponential fit following the exclusion of the interference region 
where great anomalies in the ratio occur. 

5 Conclusion 

This method offers a simple tool for the determination of the average channel
ing energy losses of protons in a silicon bulk target. The results are obtained 
in situ for the crystal into consideration and no complicated mathematical 
analysis is required. The value of ε extracted can be subsequently used in a 
RUMP-like program for elemental analysis in channeling geometry. It is be
lieved that it can be applied to other projectiles, namely α-particles in silicon 
[11], as well as in more complicated crystals, such as AI2O3 and MgO. 

Nevertheless, due to all the analyzed arguments, it is evident that at greater 

depths the simplified hypothesis cannot reproduce the experimental data, the 

linearity is lost, and the method used for the integration fails. A detailed 
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simulation would have to take into account the different impact parameter-

s, different trajectories, energy and spatial straggling, thermal effects, initial 

divergence of the beam as well as the total cross section for the whole spec

trum. An interesting attempt presented recently [7], clearly demonstrates the 

difficulties and compromises in accuracy one should tolerate if such a task is 

undertaken. It is believed that a lot of fine and complex details need to be 

studied before a standard method for the analysis of any sample in channeling 

geometry is established. 
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FIGURE 4. Mean channeling distance at Ep = 1.7, 2.1 and 2.6 MeV, showing 

that λ varies insignificantly for the energy range into consideration. 

Modified logarithm 

FIGURE 5. Plot of the modified distance (eq. 6) versus the modified logarithm 
using the experimental points at Ep = 1.7, 1.75, 1.8, 2.15, 2.2 MeV for the 
linear fit ( · —• points from the resonance at 1.67 MeV, * —> points from the 
resonance at 2.09 MeV). 
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