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Determination of the Harmonic Oscillator
Energy Level Spacing for Atomic Clusters

M.E.Grypeos and B.A.Kotsos

Department of Theoretical Physics Aristotle University of Thessaloniki, GR
54006, Greece.

Abstract

The harmonic oscillator energy level spacing fiw for atomic clusters as a function
of the particle mumber N is expressed amalytically in terms of the parameters of
a Woods-Saxon (or Symmetrized Woods-Saxon) potential which approximates the
effective spherical self-consistent jellium model potential. The expressions derived
depend on the particular scheme adopted to approximate the potential by the har-
monic oscillator one and on the assumed dependence of the potential radius R on
N. It is also observed, considering the case of sodium clusters,that for large N the
expressions of Aiw are n good agreement with the well known expression of fiw in
terms of the Wigner-Seitz radius.

The determination of the harmonic oscillator (HO) energy level spacing Aw
for atomic clusters and its variation with the particle number N is discussed
in literature [1-3], by adopting the approach which is traditionally followed in
Nuclear Physics [4] and adjusting it to the case of atomic clusters. The essential
idea is that the energy scale is directly related to the size of the cluster. It is
assumed that the cluster valence electrons have a constant density gy equal to
the bulk conduction electron density and the size of the (spherical) cluster is
normalized so that it contains exactly N electrons,that is Ry = r,N¥/3 where
fiy =1 4:2 )}/3 is the Seitz-Wigner radius. By equating the mean-square radius
of such a density distribution to that which results on the basis of the HO
model in the case of large N, there results the following expression for Aw:
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where 7, is in atomic units and fw in €V. It is of interest to note the similarity
of expression (1) with the ”order of magnitude” expression for Aw which results

by dividing the bulk Fermi energy cr (e5 = (& )5 i7“8 ?) by the number of

the separate energy levels in a spherical potential which is of the order N'¥ [5].



An improved expression for fiw has also been derived [1-3] by taking into ac-
count that the electron density calculated in self-consistent jellium calculations
extends beyond the boundary at R = Ry. This "spill-out” of the electrons (in
the terminology used in this context [3,6,7,8]) was modeled by Clemenger by
using an additive correction t to Ro.Thus, the constant density of the N elec-
trons is adjusted to fill a sphere of an effective radius Ry + ¢. Taking into
account this correction, there results the following improved expression for

hw:
t

= @

The value of t may be estimated from polarizability measurements. For sodium
(rs = 4) the estimate is ¢ = 1.44 a.u.[1,2]

hw = 49r,"2N"5(1 +

The object of this note is to consider another, quite different, analytic way of
determining the HO energy level spacing , which is followed for the first time
to our knowledge, pertaining to atomic clusters.This is done by using previous
experience in Hypernuclear Physics. Namely, we use the approach described in
refs.[9,10] and we adjust it to the cluster case. For this purpose, the effective
spherical self-consistent jelilum model potential is firstly parametrized by a
Woods-Saxon (or symmetrized Woods-Saxon [11]) potential, as has been done
by several authors [6,12]. Secondly, this Woods-Saxon potential:

Vo
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ws(r) = =7 = (3a)
or the corresponding symmetrized one:
r—R -r—R
Vsws = =Vo |[1 + ezp( - N+ + exp( p Nt -1 (30)

is approximated in the interior of the cluster and as far as possible near its
surface by an harmonic oscillator potential Vio(r) :

VHo(T') =-D+ %7‘2 (4)

where D = V; and Ry is the distance from the origin where Vo becomes zero.
(The R and R, used in expressions (3) and (4) should not be confused with the
R and R, used earlier). More precisely, we make a sort of "best approximation
in the mean of the potential V(r) = —Vf(r) by the Vyo(r) "by choosing Ry

in such a way that the following condition is satisfied:
Ro
I / IV(r) = Viro(r)|? dr = min (5)
0
The optimum value of Ry = R,, is determined by means of the relation (see
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ref 9.).
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which in the case of the Woods-Saxon potential (V(r) = Viy.s) or the sym-
metrized one Vsws leads to the simple expression:

5.1 Ta 9.1
= (—)3 = 7
F= AL R o
by omitting terms which are negligible, unless N is too small.

The expression for Aw follows immediately, since from (4) the spring constant
k = mw? equals to 2‘1—%, Ry = R,, Thus, we obtain the following expression of

hiw in terms of the potential parameters V5,a and R of the Woods-Saxon (or
symmetrized Woods-Saxon) potential:

B L R 2 _L
Ao = =2l Ry = [—2Wl ) R + (TS ®)

Before we proceed, it is instructive to recall that an harmonic oscillator po-
tential, which is very useful because of its valuable analytic advantages, has
also its shortcomings. For example, physical quantities sensitive to the sur-
face region are not reproduced well by such a potential. Related to this is
the remark made in ref.[13] where a truncated (at Ro) HO potential was used
for clusters in the context of the discussion of magic numbers and there was
pointed out that it does not lead to the same ordering of levels as the more
realistic Woods-Saxon potential. Difficulties of this type are not surprising in
view of relevant experience from Nuclear Physics and may be faced by adding
to the HO potential a negative term which is proportional to the square of
the orbital angular momentum. The variation of Zw with N, we are discussing
here, has, however, a rather different scope. It aims at providing some informa-
tion on how an "average energy level spacing” of the self-consistent potential
varies with the particle number. We also get an idea of how the shape [14]
of this self-consistent potential changes "on the average” (i.e. neglecting its
fluctuations and its behaviour near the surface of the system) as the particle
number varies.

It is clear that in the approach we follow the variation of Aw with the particle
number N depends essentially on the variation of the potential radius R with
N. The potential depth V; and the parameter ¢ which determines the surface
thickness of the potential are roughly mdependent of N and are given by
their best fit values in a fitting procedure [11]. Regarding the expression of
R = R(N), the following three possibilities are considered: )R = ro N3 ii)R =
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where ry = ro(1 + %)15 . The first expression is the mostly used [6,12], while
the 1i)[12] and iii) are expected to be better approximations for comparatively
smaller clusters and are discussed i ref.[11] where the parameters are deter-
mined by least-squares fits. The quality of the fit is almost the same for these
two expressions, although with the latter one it is marginally better. The com-
plex expression iii) originates from the observation that the volume integral
of the (symmetrized) Woods-Saxon potential for each cluster var.2s with N as
¢N + d, where c and d are constants. The parameters 7o and j are given by
the expressions ro = ( 47%0 )% and 8 = ¢ Expression (9) is somewhat different
from the corresponding "rigid-core” model expression for R, which has been
used in Hypernuclear [15-17] and Nuclear [18] Physics, the difference being

that in the latter expression § = 0 and therefore ry = ro.

We finally note that the values of the parameters in the above expressions of
R depend on the region of N used for the fit. Here we shall use mainly expres-
sion (9). The best fit values, if the fitting of the symmetrized Woods-Saxon
potential is made to the Ekardt [19] effective potentials for sodium clusters
with 8 < N < 198, are [11]: Vp = 6.03eV,ro = 2.2954,a = 0.784, 3 = 10.49,
while, if the fitting is restricted to the potentials of the above clusters with
N > 90, the corresponding best fit values are : Vg = 6.02eV,ry = 2.374,a =
0.884, f = 1.064.

Expression (8) may be expanded in powers of N as follows:

By, 28

P9,
h - = - S e, _1 —2_
w [—me_ro2] (5)3N 3[1 3N + Py N
4p . 3t
S N N (10)

We may notice that, at least to order N~*, the above expression for fiw is
independent of the parameter o and only negative integral powers of N appear
in the expansion. The coefficients of the terms given in (10), except the first
one, become zero if # = 0.

- It is seen from expression (10) that the leading term which determines the HO
energy level spacing for large particle number is:
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For sodium clusters, we obtain, using the first set of the parameters, fiw,s =
3.08N~5. If we use the second set of parameters which is more appropriate
for large N, we obtain fiw,, = 2.978 N 5. These expressions are in very good
agreement with the expression hiw = 3.06 N5, which follows from expression
(1) applied to the present case (r, = 4). For smaller values of N the Zw given
by expression (8) deviates from its asymptotic behaviour and leads to smaller
values, in comparison with those resulting from the asymptotic expression.
This is clear from fig 1, where Aw and Aw,; are plotted. The same is the case
if expression (1) and (2) are compared. In this case, however, the difference in
the values of the HO energy level spacing is larger.
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Fig. 1 The HO energy level spacing Aw versus the particle number N, using
the potential parameters Vj = 6.03eV,ro = 2.295A4,a = 0.784, 8 = 10.49.
The solid line is obtained by means of formula (8), while the dot-dashed line
is its asymptotic expression fw,s. The dotted line is obtained by means of
formula (2) of Clemenger.

It is a useful to point out, that the way in which one ”adjusts” the HO potential
is not unique [9]. For example, if the harmonic oscillator is determined by the
conditions: D = V; and Viyo(R) = Viws.(R) that is Ry = /2R the "reduction
factor” would be —= =~ 0.707, which does not differ very much from (%)15 a”

0.737, deduced from (8) and (10).

Other possible integral conditions, which differ from (5) may be considered
[9]. Another possibility, which in fact has not been used in connection to hy-
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pernuclei so far and might be worthy to be investigated would be to determine
D and R, in (4) by means of the conditions:

/wo /v
0

and f -
/mmmﬂwzfvmﬁm (12)

These conditions lead to the following expression of Ry in terms of the param-
eters of Viys.:

= GYRRL + (S (13)

Furthermore, the parameter D of the osc111ator potential is given now by the

expression:
1

3,31 wa.,]"2
RPN Ta 14
D=Vos (o)t [1+ (Y] (14)
In contrast to the previous cases, the parameter D depends now on N and in
addition D is (usually) larger than V4. The expression of hw is in this case:

o = M CE G R+ (g

ma 3

Py (13)

This is expanded as follows, using expression (9) for R:

st Btpt ) "
One should notice the additional terms (~ N~3,~ N~%etc.) appearing in
(16) in comparison with (10). It is further seen that because of the different
"reduction factor”: (%)15(%)% ~ 0.835 (instead of (%)15 ~ 0.737 i the previous-
case) the values of fiw,s will be about 11% larger in this case. In fig.2 the
values of fiw from (15) and the corresponding values of the leading term fhw,,
have been plotted versus N using the set of parameters V5 = 6.03eV,ry =
2.295A4,a = 0.78A4, 8 = 10.49. It is seen again that the values of iw lie between
the values of iw,s and those obtained by means of Clemenger’s expression (2).
For very small N the values obtained from the two expressions of fw approach
each other considerably.

In the previous analysis we have considered, as usually, electronic states. Anal-
ogous treatment can be made for the atoms in the cluster if the corresponding
potential is given. Approximation of the latter by harmonic oscillator poten-
tials has been useful [20].
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In conclusion, the knowledge of the effective self-consistent potential in jellium
model cluster calculations offers the possibility of determining the HO energy
level spacing, in quite a different analytic way from the one, which has been

followed so far in Cluster Physics.
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Fig. 2 The HO energy level spacing iw versus the particle number N, using
the potential parameters V; = 6.03eV,ro = 2.2954,a = 0.784, 8 = 10.49.
The solid line is obtained by means of formula (15), while the dot-dashed

line is its asymptotic expression fw,,. The dotted line is obtained by means

of formula (2) of Clemenger.
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