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54006, Greece. 

Abstract 

The harmonic oscillator energy level spacing Κω for atomic clusters as a function 
of the particle number Ν is expressed analytically in terms of the parameters of 
a Woods-Saxon (or Symmetrized Woods-Saxon) potential which approximates the 
effective spherical self-consistent jellium model potential. The expressions derived 
depend an the particular scheme adopted to approximate the potential by the har
monic oscillator one and on the assumed dependence of the potential radius R on 
N. It is also observed, considering the case of sodium clusters,that for large Ν the 
expressions of Ηω are in good agreement with the well known expression of Ηω in 
terms of the Wigner-Seitz radius. 

The determination of the harmonic oscillator (HO) energy level spacing Ηω 

for atomic clusters and its variation with the particle number Ν is discussed 
in literature [1-3], by adopting the approach which is traditionally followed in 
Nuclear Physics [4] and adjusting it to the case of atomic clusters. The essential 
idea is that the energy scale is directly related to the size of the cluster. It is 
assumed that the cluster valence electrons have a constant density ρ0 equal to 
the bulk conduction electron density and the size of the (spherical) cluster is 
normalized so that it contains exactly Ν electrons,that is RQ = rsN

1/3 ,where 
rs = ( 4 " ) * ' 3 is the Seitz-Wigner radius. By equating the mean-square radius 
of such a density distribution to that which results on the basis of the HO 
model in the case of large N, there results the following expression for Ηω: 

Ηω = ( ^ ) ' 3 ^ - Γ Γ 2 Γ Ϊ = 4Qrs-
2N~^ (1) 

8 2me 

where rs is in atomic units and Ηω in eV. It is of interest to note the similarity 

of expression (1) with the "order of magnitude" expression for Ηω which results 

by dividing the bulk Fermi energy SF {SF = ( Ç ) ^ ^ ^ - 2 ) by the number of 

the separate energy levels in a spherical potential which is of the order Nî [5]. 



An improved expression for Κω has also been derived [1-3] by taking into ac
count that the electron density calculated in self-consistent jellium calculations 
extends beyond the boundary at R = RQ. This "spill-out" of the electrons (in 
the terminology used in this context [3,6,7,8]) was modeled by Clemenger by 
using an additive correction t to .ßo.Thus, the constant density of the Ν elec
trons is adjusted to fill a sphere of an effective radius RQ + t. Taking into 
account this correction, there results the following improved expression for 
Κω: 

Κω = 49r s-
2AT3 (χ + - Ι ^ ) " 2 (2) 

rsN' 

The value oft may be estimated from polarizability measurements. For sodium 

(rs = 4) the estimate is t = 1.44 a.u.[l,2] 

The object of this note is to consider another, quite different, analytic way of 
determining the HO energy level spacing , which is followed for the first time 
to our knowledge, pertaining to atomic clusters.This is done by using previous 
experience in Hypernuclear Physics. Namely, we use the approach described in 
refs.[9,10] and we adjust it to the cluster case. For this purpose, the effective 
spherical self-consistent jellium model potential is firstly parametrized by a 
Woods-Saxon (or symmetrized Woods-Saxon [11]) potential, as has been done 
by several authors [6,12]. Secondly, this Woods-Saxon potential: 

V0 

Vw.s.{r) = ΈΞΕ (3α) 
1 + e a. 

or the corresponding symmetrized one: 

Vsws = —VQ [1 + exp{- ) ] - 1 + [1 + exp(- Γ ' S l " ' ' 
a a 

(36) 

is approximated in the interior of the cluster and as far as possible near its 

surface by an harmonic oscillator potential VHO{T) '· 

VHo(r) = -D + ^r2 (4) 

where D = VQ and RQ is the distance from the origin where VHO becomes zero. 
(The R and RQ used in expressions (3) and (4) should not be confused with the 
R and RQ used earlier). More precisely, we make a sort of "best approximation 
in the mean of the potential V(r) — —Vof(r) by the V#o(r) "by choosing RQ 

in such a way that the following condition is satisfied: 

J = J \V(r) - VHO(r)\2dr = min (5) 

ο 

The optimum value of RQ = Rm is determined by means of the relation (see 
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ref 9.). 
m 

l^+f(Rm)]Rm> = 4j f(rydr (6) 

ο 

which in the case of the Woods-Saxon potential (V(r) = Vw.s.) or the sym

metrized one Vsws leads to the simple expression: 

*» = Φ ' Λ [ 1 + Φ'1' (7) 

by omitting terms which are negligible, unless Ν is too small. 

The expression for Ηω follows immediately, since from (4) the spring constant 

k = πιω2 equals to 2j9t,Ro = Rm Thus, we obtain the following expression of 
0 

Ηω in terms of the potential parameters Vo,a and R of the Woods-Saxon (or 
symmetrized Woods-Saxon) potential: 

Ηω = [¥-2Vof>l£ = \£-W,]Hl )»*-'[l + Ο 2 ] " ' (8) 
me me ο Κ 

Before we proceed, it is instructive to recall that an harmonic oscillator po
tential, which is very useful because of its valuable analytic advantages, has 
also its shortcomings. For example, physical quantities sensitive to the sur
face region are not reproduced well by such a potential. Related to this is 
the remark made in ref.[13] where a truncated (at Ro) HO potential was used 
for clusters in the context of the discussion of magic numbers and there was 
pointed out that it does not lead to the same ordering of levels as the more 
realistic Woods-Saxon potential. Difficulties of this type are not surprising in 
view of relevant experience from Nuclear Physics and may be faced by adding 
to the HO potential a negative term which is proportional to the square of 
the orbital angular momentum. The variation of Ηω with N, we are discussing 
here, has, however, a rather different scope. It aims at providing some informa
tion on how an "average energy level spacing" of the self-consistent potential 
varies with the particle number. We also get an idea of how the shape [14] 
of this self-consistent potential changes "on the average" (i.e. neglecting its 
fluctuations and its behaviour near the surface of the system) as the particle 
number varies. 

It is clear that in the approach we follow the variation of Ηω with the particle 

number Ν depends essentially on the variation of the potential radius R with 

N. The potential depth Vo and the parameter a which determines the surface 

thickness of the potential are roughly independent of Ν and are given by 

their best fit values in a fitting procedure [11]. Regarding the expression of 

R = R(N), the following three possibilities are considered: i)R = r0Nï n)R — 
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TQÌVS + b and iii) 

1 + 1+2?< 
ira 

lÌNÌ 
6 

1 η 
2 

. 

3 

+ 1 -
4 πα 

1 + 2 7 ( ^ V Î 

(9) 
where r'0 = r0(l + j | ) 3 · The first expression is the mostly used [6,12], while 
the ii) [12] and iii) are expected to be better approximations for comparatively 
smaller clusters and are discussed in ref.[ll] where the parameters are deter
mined by least-squares fits. The quality of the fit is almost the same for these 
two expressions, although with the latter one it is marginally better. The com
plex expression iii) originates from the observation that the volume integral 
of the (symmetrized) Woods-Saxon potential for each cluster varies with Ν as 
cN + d, where c and d are constants. The parameters r 0 and β are given by 
the expressions TQ = ( τ ^ τ ) * and β = -. Expression (9) is somewhat different 
from the corresponding "rigid-core" model expression for R, which has been 
used in Hypernuclear [15-17] and Nuclear [18] Physics, the difference being 
that in the latter expression β = 0 and therefore r'0 = TQ. 

We finally note that the values of the parameters in the above expressions of 
R depend on the region of Ν used for the fit. Here we shall use mainly expres
sion (9). The best fit values, if the fitting of the symmetrized Woods-Saxon 
potential is made to the Ekardt [19] effective potentials for sodium clusters 
with 8 < Ν < 198, are [11]: V0 = 6.03eV,ro = 2.295Â,« = 0.78Â,/? = 10.49, 
while, if the fitting is restricted to the potentials of the above clusters with 
Ν > 90, the corresponding best fit values are : Vo = 6.02eV,ro = 2.37Â, a = 
0.88Â,/? = 1.064. 

Expression (8) may be expanded in powers of Ν as follows: 

Ηω — 
me r0

2 V 1 - f iV" 1 + ? f AT2 

14/?3

 Λ Γ_3 35/?4

 AT, 

34 35 
(10) 

We may notice that, at least to order N~4, the above expression for Ηω is 
independent of the parameter a and only negative integral powers of Ν appear 
in the expansion. The coefficients of the terms given in (10), except the first 
one, become zero if β = 0. 

It is seen from expression (10) that the leading term which determines the HO 
energy level spacing for large particle number is: 
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h(jJns = 
_r 2% 

•)»ΛΓ" (H) 

For sodium clusters, we obtain, using the first set of the parameters, huas = 

3.08N~ 3. If we use the second set of parameters which is more appropr ia te 

for large N, we obtain Κωα8 = 2.978N~ 3. These expressions are in very good 

agreement with the expression Ηω = 3.06iV~3, which follows from expression 

(1) applied to the present case (rs = 4). For smaller values of Ν the Ηω given 

by expression (8) deviates from its asymptotic behaviour and leads to smaller 

values, in comparison with those resulting from t h e asymptotic expression. 

This is clear from fig 1, where Ηω and Ηωα3 are p lot ted. The same is the case 

if expression (1) and (2) are compared. In this case, however, the difference in 

the values of the HO energy level spacing is larger. 

2, 2.00 Η ' 

200 

Fig. 1 The HO energy level spacing Ηω versus the particle number N, using 

the potential parameters V0 = 6.03eV,r0 = 2.295Â,a = 0.78Â,/? = 10.49. 

The solid line is obtained by means of formula (8), while the dot-dashed line 

is its asymptotic expression Ηωα8. The dotted line is obtained by means of 

formula (2) of Clemenger. 

It is a useful to point out, that the way in which one "adjusts" the HO potential 

is not unique [9]. For example, if the harmonic oscillator is determined by the 

conditions: D = VQ and VHO{R) = Vw.s.(R) that is Ro = y/2R the "reduction 

factor" would be 4 j ~ 0.707, which does not differ very much from ( | )3 ~ 

0.737, deduced from (8) and (10). 

Other possible integral conditions, which differ from (5) may be considered 

[9]. Another possibility, which in fact has not been used in connection to hy-
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pernuclei so far and might be worthy to be investigated would be to determine 

D and RQ in (4) by means of the conditions: 

fio 00 

ί VH0(r)dr = J V{r)dr 

an( RQ OO 

/ VHo(r)r2dr = I V(r)r2dr (12) 

ο ο 

These conditions lead to the following expression of RQ in terms of the param

eters of Vw.s.'· 

Ro = φ ^ [ 1 + φ 2 ] * (13) 

Furthermore, the parameter D of the oscillator potential is given now by the 

expression: 

°=v4¥ .πα ,9 
1 + ( * > 

(14) 

In contrast to the previous cases, the parameter D depends now on Ν and in 

addition D is (usually) larger than VQ. The expression of Η ω is in this case: 

^ = [ ^ 2 V „ ] ^ ) ^ ) ' î Ä - ' [ l + Ä 2 ] - ' 
me 2 5 H 

This is expanded as follows, using expression (9) for R: 

h2 2V0 

(15) 

V V 2 
e ' 0 mP r, 

N"> —(—) 2Λ^"3 - ϊ-Ν~ι + 
12>o 3 

5 . f o . 4 , r _ i 5 ^ ,7τα. 2 A r _ 5 

288 KrQ' 12 V r 0 

+ (16) 

2 4 

One should notice the additional terms (~ iV~3 ;~ N~*etc.) appearing in 

(16) in comparison with (10). It is further seen that because of the different 

"reduction factor": (§)*(§)* ^ 0.835 (instead of ( | ) s ~ 0.737 in the previous 

case) the values of huas will be about 11% larger in this case. In fig.2 the 

values of Ηω from (15) and the corresponding values of the leading term Ηωα5 

have been plotted versus Ν using the set of parameters V0 = 6.03eV,ro = 

2.295Â, a = 0.78Α,β = 10.49. It is seen again that the values of Ηω lie between 

the values of Ηωα3 and those obtained by means of Clemenger's expression (2). 

For very small Ν the values obtained from the two expressions of Ηω approach 

each other considerably. 

In the previous analysis we have considered, as usually, electronic states. Anal
ogous treatment can be made for the atoms in the cluster if the corresponding 
potential is given. Approximation of the latter by harmonic oscillator poten
tials has been useful [20]. 
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In conclusion, the knowledge of the effective self-consistent potential in jellium 

model cluster calculations offers the possibility of determining the HO energy 

level spacing, in quite a different analytic way from the one, which has been 

followed so far in Cluster Physics. 
250 - i 

* 2.00 H 

J 1.50 -

j | 100 -

0 50 

Fig. 2 The HO energy level spacing Κω versus the particle number N, using 

the potential parameters V0 = 6.03eV,r0 = 2.295Â,e = 0.781, β = 10.49. 

The solid line is obtained by means of formula (15), while the dot-dashed 

line is its asymptotic expression huas. The dotted line is obtained by means 

of formula (2) of Clemenger. 
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