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Means of the Hypervirial Theorems Technique.
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Department of Theoretical Physics, University of Thessaloniki, Thessaloniki
54006, Greece

Abstract

The method of the Hypervirial Theorems is used to obtain analytically the
ground-state:Schroedinger eigenfunction for a wide class of potentials in non-relativistic
Quantum Mechanics.The whole scheme, despite its simplicity, yields in many cases
a good approximation.

The method of the Hypervirial Theorems (HVT)[1 — 7] is a powerful technique
of Perturbation Theory without eigenfunctions. The energy eigenvalues in non-
relativistic Quantum Mechanics are obtained in the form of an expansion, the
first terms of which are, in many cases, sufficient to achieve a reasonable
approximation.

The question arises whether the same technique can be used to obtain the
corresponding eigenfunctions in a fair approximation. Here we address this
question for quite a general class of potentials of the form :

Ve)=-Yef(F)  0Sr<o (1)
where Vo > 0, R > 0.

The dass of potentials we are interested in, is further2 specified by assuming
that f is an even amalytic function of z = & , with :—zé |r=0< 0. Thus, such
potentials behave like an harmonic oscillator potential near the origin.

It will be also assumed in this note that the function f tends to zero at large
r.

Typical examples of that oscillator-like class of potentials is the Gaussian and
the Poeschl-Teller-type potential V(r) = —V,cosh™? (;—2) Another example



is the potential of the form:

V()= o @)
1+ e(ﬁ)

There has been shown [7] that the application of the Hypervirial Theorems
technique enables one to study the class of potentials (1) in quite a general way
and obtain approximate expressions not only for the energy eigenvalues but
also for other quantities of physical interest, such as the expectation values
of the kinetic and the potential energy operators of a particle moving non-
relativistically in such a potential and of the mean-square radius of its orbit
in a given energy eigenstate. In the present study use is made of those results
by considering , in the interest of simplicity, the ground-state of a particle ,of
mass p , moving in a potential of the above mentioned class.

In an effort to obtain an approximate ground-state eigenfunction for a poten-
tial belonging to the class specified attthe beginning, using the above men-
tioned approximate expressions for E,uand < r? >,(with n = 0 and [ = 0),we
proceed as follows:

We break up the desired eigenfunction into two parts :

Uin (7) 0<r< Ry
Uy (r) = 3
") Uez(T) Ry<r<oo ' )

As long as Ry is sufficiently large, the "extbrnal” wave function u., (r) is:
Uz (1) = CeF (4)

where

_ [
k=17 |Eol ®)

On the other hand, the solution in the internal region, u, (r) , can be ap-
proximated by the ground- state eigenfunction of an appropriately specified
harmonic oscillator (HO):

,_2
Uin (r) = Nre™ 27 (6)
A plausible requirement, for the determination of the H.O. parameter b, is
that the mean square radius (m.s.r) of the H.O. ground state orbit equals the
corresponding one obtained through the HVT scheme:

<r? >{0=<r? >q (1)
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where the expectation values are calculated with respect to the ground state
harmonic oscillator wave function and that of the given potential, respectively.
Note that < r? >p (as well as Ey) is known approximately in terms of the
potential parameters, through the formulae mentioned above.Therefore, the
parameter b of the H.O. potential follows immediately from Eq(7):

b:”§<7‘2>m (8)

The radius Ry can be determined by the continuity condition of the wave
function and its derivative:

Uin (RO) = Uex (RO) (9)

(du,-;r(r))Ro _ (du;;r(r))% (10)

These conditions yield the following equations:

" NRoe™#* = Ce+Fo (11)
2 2
(1 - %) Ne ¥ = —Che*Fo (12)

By solving the above equations with respect to Ry one obtains:

Ry = %/ch2 [1+ \/1+4(kb)‘2| (13)

Since k and b are given in terms of the potential parameters, so is Rp.

Having determined Ry, u., (r) follows readily, as from Eq(11) we have:

R2

C = NRoe o ¢*Fo (14)

Therefore:
R2

Ty [P) = NRge™ 5 ¢+(r=FRo) (15)

. . ; 0 t<o0 ;
Considering the unit-step function : 8 (t) = the eigenfunc-

1 0<t :

tion ug (r) can be written as :

u (r) = Neo {[1 —0(r — Ro)] re" 7 18 (r — Ro) Roe—;j'e_k(r'}z")} (16)

58



0<r<oo

The constant Np will be determined through the normalization condition:
/ugo (r)dr =1 (17)
0

After some algebra one obtains:

L
2

_ 113 3 2 2 g2 )
Nm={7r ’ —b—r<3 R°)+& "%l} (18)

+ 2 \2®) "%
where use has been made of the incomplete Gamma function I'(g, z) (See e.g.
ref [9]).

Owing to the fact that R, is, in many cases, sufficiently large, Eq(18) can be
further simplified so that :

1+ % (%)2 ~ Ry (kb”)'l] } % (19)

In order to test the accuracy of the ground state wave function, which can be »
obtained in the described approximate way, we consider the Gaussian potential

-

i 3 R2
Ngp =262 {7r5 - 2%9@—:9

V(r) = —Vpe & (20)

To be more specific and close to a problem of physical interest we consid-
ered such a potential as a first approximation to the self-consistent A-nucleus
potential-as in certain other studies [10, 11]. Then the potenial radius R may
be expressed in terms of the mass number of the core nucleus A. (using the
rigid-core model [12]) by means of the relation

R = 7‘()145;lT (21)

where 79 is a parameter which may be expressed in terms of the potential
depth V5 and the volume integral of the spin-averaged A—nucleon potential:
Van| -

The existing two potential parameters, namely the potential depth V; and the
radius parameter ro have been determined by least-squares fitting some known
experimental values of the A-particle binding energy in hypernuclei and are
the following [11]: Vo = 34,16 MeV ro =1,199fm

Visualization of the results can be achieved by plotting the eigenfunctions
obtained through the present method against those obtained by numerical
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integration One can easily observe that the heavier the hypernuclei the better
the coincidence of the plots which validates the proposed approach for the
analytic determination of the wave function, especially for heavy hypernuclei.
This is clear from fig.1 and fig.2 in which the ground-state wave functions

correspond to A, = 20 and A, = 40.
100 —
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Fig.1 Plot of the analytic eigenfunction ug (broken line) for A. = 20 against
the corresponding uyym (solid line) obtained through numerical integration
of the Schroedinger equation

We further note that a measure of the quality of the achieved approximation
is the value of the integral:

Iy = /Iumm-(r) — ug (r)l2 dr (22)

where Upym () is the corresponding normalized eigenfunction obtained through
numerically integrating the Schroedinger equation .For various hypernuclei one
obtains:

(A In
20 0,025
40 0,005

| 80 0,004 |

where Ac is the mass number of the core nucleus of the hypernucleus.
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It is seen that the value of Iy decreases considerably with A. so that the
heavier the nuclei the better the approximation.

In conclusion, the present approach appears to provide a quite simple and
efficient way of obtaining approximate analytic ground state wavefunctions
for quite a wide class of potentials of physical interest, by using the results of

the Hypervirial Theorems technique.
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Fig.2 Plot of the analytic eigenfunction ug (broken line) for A, = 40 against
the corresponding unym (solid line) obtained through numerical integration
of the Schroedinger equation
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