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Abstract

The experimental data for the charge (proton) density differences of the even Ca
mclei is analyzed by means of a simple phenomenological model where the effects
of certain type short and long range correlations have been accounted. Short range
correlations are approximated through the Jastrow type correlation function while
for long range correlations the fluctuations of the muclear surface are comsidered.
The analysis shows that the combined effects of these correlations lead to a bet-
ter description of the experimental charge (proton) density differences. Moreover,
the calculated charge mean square radii of the even C'a muclei exhibit a parabol-
ic behaviour and compare well with the experimental isotope shifts from the laser
spectroscopy measurements.

1 Introduction

Calcium nuclei have been of great experimental as well as theoretical interest.
It is the only magic element for which precision measurements on isotope
shifts [1, 2] (see also Andl et al. [3]) have been carried out over a full neutron
shell, namely the 1f7/, shell between the two doubly magic isotopes ©Ca
and ®(Ca.The empirical data for the isotope shifts [1] show an anomalous
A dependence. The addition of neutrons to the “*Ca core leads to an increase
of the charge radii up to *Ca. Then adding more neutrons the charge radii
start to decrease. The very interesting feature is that the charge radii of the
two doubly magic nuclei  Ca and ®Ca have practically the same value. It is
noted, however, that the electron scattering experiments have. shown that the
charge distributions of these magic nuclei are not identical [4]. Moreover, muon
spectroscopy, electron and hadron scattering provide more information on the
charge and mass distributions [5]. Experimental data for the form factors and



their isotopic change for some even stable isotopes is available. Therefore, the
rich experimental input makes C'a nuclei attractive for theoretical study.

In a very recent publication [6] the role of short range correlations (SRC) in
reproducing the empirical data for the charge (proton) density differences of
ever Ca nuclei was examined. In that approach the cluster expansion [7, §]
truncated at the two body term was employed and SRC of Jastrow type [9]
were considered. The parameters of the model were adjusted to reproduce
the experimental isotope shifts [1, 2] of C'a nuclei. It turned out that the
calculated values for the differences of the density distributions exhibited the
correct trend. It should be noted, however, that the comparison with the
data was not very good in all cases. The maximum for the proton density
difference of ®Ca — *Ca (see fig. 4 of ref. 6) was not reproduced well. This
was an indication that additional correlations were necessary to improve the
agreement with the experiment. On the other hand, recently, the effect of
fluctuations of the nuclear surface was also imncluded in the model [10]. It
was shown that the combined effects of SRC and of the surface fluctuation
correlations (SFC) improved the description of the experimental charge form
factors of 0 and °Ca nuclei.

Here the study of ref. 6 is extended by including the effect of SFC. Specifically,
we investigate the effects of SFC on the charge (proton) density differences
of Ca nuclei, while simultaneously approximating SRC through the Jastrow
correlation factor.

In Secs. 2 and 3 the formalism for the SRC and SFC is briefly discussed, while
in Sec. 4 the numerical results are reported and commented.

2 Correlated charge form factors, densities and m.s radii

Expression for the correlated charge form factors, Fi,(gq), of the closed s-p
and s-d shell nuclei were derived [11-15] in the framework of the factor cluster
expansion of Ristig, Ter Low and Clark [7, 8] using the Jastrow ansatz for
the correlated wave-functions. This type of correlations is characterized by
the correlation parameter A,;s which enters in the normalized correlated wave
functions of the relative motion:

Puis(r) = Nus[l — exp(=Ausr?/6?) b (r) 1)
where N, s are the normalization factors, ¢,;(r) are the harmonic oscillator

(HO) wave functions and b = /2, (b; = {/fi/mw) is the harmonic oscillator

parameter for the relative motion.
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In this approach the expression for the point proton form factor, F(g), takes
the form:

F(q) = Fi(q) + Fa(q) (2)

where Fi(g) is the contribution of the one-body term to F'(¢), which can be
written easily in closed form [6]. The contribution of the two-body term, F3(q),
to the form factor F(q) can be expressed in a rather simple way in a closed
form by means of the matrix elements:

s k) =< Yuslir(qr/2)ns > 3)

These are simple polynomials and exponential functions of g% [11-15]. The
correlation parameter A,s is taken state independent (As = A). It is noted
that it has been shown i [15], that the effect of the state dependence of
the short range correlations is small. Then the charge form factor, Fix(g), is
written: Feu(q) = folq) X fom(q) x F(g) with f,(¢) and fom(g) being the
corrections due to the finite proton size [11] and the centre of mass motion
[16] respectively.

The interesting feature of the method is the possibility of finding an analytic
form for the correction to the uncorrelated charge (proton) density distribution
by means of a Fourier transform of F3(¢). Thus the correlated proton density
distribution is written:

psre(r) = pi(r) + pa(r) (4)

3  Surface fluctuation correlations

The role of ground state (long range) correlations has been a matter of detailed
investigation long ago [17-22]. Esbensen and Bertcsh [21] have shown that
fluctuations of the nuclear surface due to zero-point motions coming from
low-lying collective states affect the ground state charge demsity. Barranco
and Broglia [22] have found that the ground state correlations associated with
the surface modes of the Ca isotopes are important and qualitatively explain
the observed behaviour of the mean square (m.s.) radii with the mass number.

In the present work we follow ref. 23, i.e. we consider the ground state cor-
relations which are indroduced due to zero point motion of collective surface
vibrations. According to ref. 23 the proton (or charge) density of a nucleus,
deformed through the zero-point fluctuations, has the form (see also [17-19]
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for a rather similar expression):

fiarlF] = TZEE;_Z pr(r — &) exp [_ﬁf_;;ﬁ] d¢ (5)

where p;(r) is the uncorrelated density, so is a correction needed to conserve
the number of particles in the correlated ground state and o is a measure of
the effect of the zero point fluctuations. The value of o is related to 3, the
deformation parameters for the states of multipolarity A, with the relation:

o 85 i =0) ©)
A

The () parameters can be determined from the values of B(E)) [21, 23]. In
our approach o is taken as a free parameter.

4 Numerical results and comments

The study of the combined effect of SFC and SRC is doue by substituting i (5)
the uncorrelated proton density distribution p;(r) with psgc(r) (formula (4))
where the effect of SRC is accounted through Jastrow type correlations and
then following the procedure of ref 6. We note here, that the use of HO orbitals
for the uncorrelated proton density distribution, although it is a simplification,
has certain advantages. The correction of the centre of mass motion can be
done exactly. Most of the calculations are analytic and closed form expressions
can be derived for various quantities such as the correlated form factor and
density distribution as well as the moments of the density. In addition the
computation time is reduced considerably.

There are three parameters for each nucleus ie. the HO parameter b;, the
parameter A which describes the effect of SRC and the parameter o which
gives a measure of SFC effect.

For the determination of the parameters of the model the available data for
the charge (proton) density differences of the even Ca nuclei is used. It is clear
that such an experimental input provides much more detailed information on
nuclear structure than the isotope shifts measurements (used in ref. 6) which
give information only about the changes of the ms radii. The parameters are
determined by an overall (global) fit of the correlated charge(proton) density
differences

Apeor (40 + 2n) = peor(40 + 2n) — peor (40) (7)
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to the experimental data. More specifically the expression
Apeor (40 + 2n)r? n=124 (8)

is fitted to the experimental charge distribution differences of 2Ca — *Ca
and ¥Ca — *Ca (n=1,2) and the proton density difference of ®Ca — ©Ca
(n=4). The experimental values are taken from refs [24] and [4] respectively.
In the fitting procedure the isotopic change of the charge radii of the doubly
magic nuclei “Ca and ®Ca [1] it is also taken into consideration.

Table 1

The values of the HO parameters b, (in fm), the SRC parameters p (in fm) and the
SFC parameters ¢ for the even Ca nuclei.

A by U g
40 19664 0.5805 0.5284
42 2.0105 0.5788 0.4333

44 1.9845 0.6158 0.4748
46 1.9934 0.6143 0.3401
48 2.0023 0.6129 0.2054

In table 1 the parameters b;, ¢ and o for each even Ca isotope are shown. It
is noted that instead of the SRC parameter A, and in accord with ref. 6, we
report in table 1 the parameter p (1 = 1/b2/)), which is the “actual correlation
parameter”. In the same table our predictions for the parameters of the *Ca
nucleus are also given. These values are determined by an interpolation of the
calculated values for ¥Ca and ®#Ca nuclei.

Using the values of Table 1 the charge (proton) form factors, density dis-
tributions as well as the differences of the demsity distrbutions Ap(40+2n)
= (p(40+2n)— p(40)) can be easily calculated. In Figures 1-2 the quantity
Aper (40 + 2n)r? for the charge distribution differences of ?Ca — *Ca and
“Ca — *Ca (dashed lines) respectively are compared with the empirical data
(solid lines). The same holds also for Figure 3 for the difference ®Ca — ©Ca.
In this case the available experimental values correspond to the proton density
distributions. The two solid lines correspond to the upper and lower values
of the proton density difference. It is seen that all the theoretical curves have
the correct trend and compare well with the experimental values. In Figure 4
the prediction of the model for the proton density difference of ¥Ca — Ca
is shown.

In Figure 5 the calculated isotope shifts of the even Ca nuclei are compared
with the experimental data from the high precision laser spectroscopy mea-
surement. It is seen that the model reproduces very well the empirical data.
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It is noted that in the calculation of the m.s. charge radii of C'a isotopes the

proton and neutron m.s. charge radii were taken into account [25].
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Fig.1 The difference of the charge distributions of 2Ca — *Ca, multiplied by
2, (dashed line) calculated in the present approach together with the
experimental data (solid line) taken from ref. Frosch et al. [24].
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Fig.2 The same as in Fig.1, for the charge distribution difference of
“Ca—2Ca.

In summary, our simple phenomenological model, where the combined effects
of SRC and SFC are accounted, is able to provide a satisfactory description of
the empirical data of the density distribution differences of even Ca nuclei. It
is also able to reproduce well the trend of the variation of the charge radii of
Ca nuclei with the mass number. Moreover the model improves the description
of the experimental charge form factors [10].

Concluding, we would like also to point out that our analysis shows that
by considering only SRC the calculated charge (proton) density differences,
though they have the correct trend, are not very good. The charge form factors
reproduce well all the diffraction minima. The mean square charge radii exhibit
a parabolic behavior. However, the maximum is in the wrong place (*Ca).

On the other hand, accounting only SFC the charge (proton) density differ-
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ences are not reproduced well. Especially for the difference #Ca — ®Ca the
comparison with the experiment is very bad. The calculated isotope shifts
have the correct trend, but the value for “Ca is unnaturally large. Finally the

third diffraction minimum in the charge form factors is not reproduced at all.
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Fig.3 The difference of the point proton distributions of #Ca — *Ca
multiplied by r? (dashed line) calculated in. the present approach together
with the empirical data taken from Emrich et al. [4]. The two solid lines
correspond to the upper and lower values of the experimental proton density
difference.
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Fig.4 The difference of the charge distributions of ¥Ca — ©Ca, multiplied by
r?, (dashed line) calculated in the present approach.

It is therefore the combination of SRC and SFC that gives the correct de-
scription of the density differences as well as of the charge form factors [10],
while simultaneously the parabolic behavior of the charge radii is reproduced
well. One could say that the putative roles of the mean-field, short range cor-
relations and surface fluctuation effects get mixed up to some degree. The

interplay between SRC and SFC improves the correction to the independent
particle model leading thus to a better description of the experimental data

of C'a nuclei.
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Fig.5 The isotope shifts of even Ca nuclei, calculated in the present work
(dashed line) together with the experimental values (solid line) obtained
from the laser spectroscopy measurements (see Otten [1]).
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