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Abstract 

The concept of bisection of a harmonic oscillator or hydrogen atom, vised in the 
past in establishing the connection between U(3) and 0(4) , is generalized into mul­
tisection (trisection, tetrasection, etc). It is then shown that all symmetries of the 
N-dimensional anisotropic harmonic oscillator with rational ratios of frequencies 
(RHO), some of which are underlying the structure of superdeformed and hyper-
deformed nuclei, can be obtained from the U(N) symmetry of the corresponding 
isotropic oscillator with an appropriate combination of multisections. Furthermore, 
it is seen that bisections of the N-dimensional hydrogen atom, which possesses an 
0(N+1) symmetry, lead to the U(N) symmetry, so that further multisections of 
the hydrogen atom lead to the symmetries of the N-dim RHO. The opposite is in 
general not true, i.e. multisections of U(N) do not lead to 0(N+1) symmetries, the 
only exception being the occurence of 0(4) after the bisection of U(3). 

1 I n t r o d u c t i o n 

Anisotropic harmonic oscillators with rational ratios of frequencies (RHOs) 

[1-7] of current interest in several branches of physics. Their symmetries form 

the basis for the understanding [8-12] of the occurence of superdeformed and 

hyperdeformed nuclear shapes [13,14] at very high angular momenta. In addi­

tion, they have been recently connected [15,16] to the underlying geometrical 



structure in the Bloch-Brink α-cluster model [17]. They are also becoming of 

interest for the interpretation of the observed shell structure in atomic clusters 

[18], especially after the realization that large deformations can occur in such 

systems [19]. An interesting problem is to what extend the various symmetries 

of the RHOs, occuring for different frequency ratios, are related to other known 

symmetries. A well-known example is the case of the 3-dimensional RHO with 

frequency ratios 2:2:1, which is known to possess the 0(4) symmetry [20]. 

In this paper we show how the symmetries of the N-dim RHO can be obtained 

from the U(N) symmetry of the corresponding isotropic harmonic oscillator 

(HO) by appropriate symmetry operations, namely multisections, which are 

generalizations of the concept of bisection, introduced in [20]. It will further­

more be shown that these symmetries can also be obtained from the 0(N+1) 

symmetry of the N-dim hydrogen atom, since a bisection leads from 0(N+1) to 

U(N), so that farther multisections lead to RHO symmetries. However, despite 

the fact that the N-dim RHO symmetries can be obtained from the 0(N+1) 

symmetry by appropriate multisections, they are not orthogonal symmetries 

themselves (with the exception of 2:2:1 mentioned above). 

In Section 2 of this paper multisections of the N-dim harmonic oscillator are 

defined and used in obtaining the symmetries of the various RHOs. A similar 

procedure is followed in Section 3 for the N-dim hydrogen atom. Section 4 

contains discussion of the present results and implications for further work. 

Multisections of the harmonic oscillator 

The Hamiltonian of the N-dim RHO reads 

Η = \Σ[ΡΙ + %), α) 
mi 

where m, are natural numbers prime to each other. The energy eigenvalues 

are given by 
N 1 / 1 

where nk is the number of quanta in the fc-th direction. Alternatively, the 

energy eigenvalues can be written as [21,22] 

£ = Σ + Ι ^ (3) 

with qk = 1,2,..., m*;, the connection between the two pictures been given by 

nk = [nk/mk]mk + mod(n f c,m f c), (4) 
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Ν 

Σ = £>*/"»*]> (5) 

qk = mod(nkìmk) + l, (6) 

where [χ] stands for the integer part of x. 

2.1 The 3-dimensional oscillator 

Let us consider the completely symmetric irreps of U(3), [iVOO], the dimensions 

of which are given by 

ä(N)^N + 1f + 2 \ N = 0,l,2,... (7) 

Using the Cartesian notation (nx,ny,nz) for the U(3) states, as in [20], we 
have the following list: 

N=0: (000) 

N=l : (100) (010) (001) 

N=2: (200) (020) (002) (110) (101) (011) 

N=3: (300) (030) (003) (210) (120) (201) (102) (021) (012) (111) 

N=4: (400) (040) (004) (310) (130) (301) (103) (031) (013) (220) (202) (022) 
(211) (121) (112) 

N=5: (500) (050) (005) (410) (140) (401) (104) (041) (014) (320) (230) (302) 
(203) (032) (023) (311) (131) (113) (221) (212) (122). * 

We see that the corresponding degeneracies are 1, 3, 6, 10, 15, 21, . . . , which 
correspond to the dimensions of the U(3) irreps, as mentioned above, i.e. to 
the 1:1:1 HO. 

Choosing only the nz=odd states y one is left with the following list 

N=l : (001) 

N=2: (101) (011) 

N=3: (003) (201) (021) (111) 

N=4: (301) (103) (031) (013) (211) (121) 

N=5: (005) (401) (041) (203) (023) (311) (131) (113) (221), 
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while choosing only the n2=even states, one is left with the following list: 

N=0: (000) 

N=l : (100) (010) 

N=2: (200) (020) (002) (110) 

N=3: (300) (030) (210) (120) (102) (012) 

N=4: (400) (040) (004) (310) (130) (220) (202) (022) (112) 

N=5: (500) (050) (410) (140) (104) (014) (320) (230) (302) (032) (212) (122). 

We see that in both cases the degeneracies aie 1, 2, 4, 6, 9, 12, 16, 20, . . . , 
which are the degeneracies of the 3-dim RHO with ratios 2:2:1. Therefore a 
bisect ion of the 1:1:1 RHO states, distinguishing states with mod(n2,2) = 0 
and states with mod(n2,2) = 1, results it two interleaving 2:2:1 sets of levels. 

By analogy, a t r isect ion can be made by distinguishing states with mod(nz, 3) 
= 0 or mod(nz ,3) = 1 or mod(n2,3) = 2. For mod(n2 ,3) = 0 we obtain 

N=0: (000) 

N = l : (100) (010) 

N=2: (200) (020) (110) 

N=3: (300) (030) (003) (210) (120) 

N=4: (400) (040) (310) (130) (103) (013) (220) 

N=5: (500) (050) (410) (140) (320) (230) (203) (023) (113), 

while for mod (nz, 3) = 1 one has 

N = l : (001) 

N=2: (101) (011) 

N=3: (201) (021) (111) 

N=4: (004) (301) (031) (211) (121) 

N=5: (401) (104) (041) (014) (311) (131) (221), 

and for mod(n2,3) = 2 one has 
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N=2: (002) 

N=3: (102) (012) 

N=4: (202) (022) (112) 

N=5: (005) (302) (032) (212) (122). 

The degeneracies obtained are 1, 2, 3, 5, 7, 9, 12, 15, 18, . . . , which correspond 
to the 3:3:1 RHO. Therefore a trisection of the 1:1:1 HO results in three 
interleaving sets of 3:3:1 RHO states. 

Similarly a tetrasection is defined by selecting states with mod ( ^ , 4 ) = 0, 
or 1, or 2, or 3. In the case of mod(nz,4) = 0 one has 

N=0: (000) 

N=l : (100) (010) 

N=2: (200) (020) (110) 

N=3: (300) (030) (210) (120) 

N=4: (400) (040) (004) (310) (130) (220) 

N=5: (500) (050) (410) (140) (104) (014) (320) (230), 

while for mod(n2,4) = 1 one obtains 

N=l: (001) 

N=2: (101) (011) 

N=3: (201) (021) (111) 

N=4: (301) (031) (211) (121) 

N=5: (005) (401) (041) (311) (131) (221), 

for mod(nz,4) = 2 one has 

N=2: (002) 

N=3: (102) (012) 

N=4: (202) (022) (112) 

N=5: (302) (032) (212) (122), 
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and for mod(n^,4) = 3 one gets 

N=3: (003) 

N=4: (103) (013) 

N=5: (203) (023) (113) . 

The degeneracies obtained are 1, 2, 3, 4, 6, 8, 10, 12, 15, 18, . . . , which char­

acterize the 4:4:1 RHO. Therefore a tetrasection of the 1:1:1 HO leads to four 

interleaving sets of 4:4:1 RHO states. 

In general, an η-section of the 1:1:1 HO is obtained by separating states with 

mod(nz,n) =0, or 1, or 2, . . . , or η — 1. In this case η interleaving sets of the 

n:n:l RHO states, which corresponds to an oblate shape, are obtained. It is 

clear that n-sections using nx or ny instead of nz lead to the same conclusions. 

One can consider successively more than one bisections, trisections, etc. Let 

us consider more than one bisections first. 

Getting the results of the mod (nz, 2) = 0 bisection of the HO and applying a 

mod (ny, 2) =0 bisection on them we obtain 

N=0: (000) 

N = l : (100) 

N=2: (200) (020) (002) 

N = 3 : (300) (120) (102) 

N=4: (400) (040) (004) (220) (202) (022) 

N = 5 : (500) (140) (104) (320) (302) (122). 

The degeneracy pattern is 1, 1, 3, 3, 6, 6, 10, 10, i.e. "two copies" of the 
1:1:1 degeneracies, which corresponds to the 2:1:1 RHO. The same result is 
obtained for any combination of two bisections along two différèrent axes. 

Bisecting the 1:1:1 HO for a third time, along the ar-axis this time by using 
mod(nx ,2) =0, one obtains 

N=0: (000) 

N=2: (200) (020) (002) 

N=4: (400) (040) (004) (220) (202) (022). 
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Table 1 

Degeneracies of various 3-dim anisotropic harmonic oscillators with rational ratios 
of frequencies (RHOs) obtained from the U(3) symmetry of the isotropic 3-dim 
harmonic oscillator (HO) by the application of various multisections. The first line 
corresponds to the isotropic 3-dim HO. In the rest of the lines the first column con­
tains the appropriate multisection, while the second column contains the frequency 
ratios mi : 7Π2 : ?7i3 of the resulting RHO. 

U(3) 
1 bisection 
1 trisection 

1 tetrasection 
2 bisections 
2 trisections 

2 tetrasections 
3 bisections 
3 trisections 

3 tetrasection 

1:1:1 
2:2:1 : 
3:3:1 ] 
4:4:1 ] 
1:1:2 3 
1:1:3 ] 
1:1:4 ] 
1:1:1 I 
1:1:1 ] 
1:1:1 3 

L 3 
L 2 
L 2 
I 2 
L 1 
L 1 
I 1 
L 3 
L 3 
. 3 

6 
4 
3 
3 
3 
1 
1 
6 
6 
6 

10 
6 
5 
4 
3 
3 
1 

10 
10 
10 

15 
9 
7 
6 
6 
3 
3 

15 
15 
15 

21 
12 
9 
8 
6 
3 
3 

21 
21 
21 

28 
16 
12 
10 
10 
6 
3 

28 
28 
28 

36 
20 
15 
12 
10 
6 
3 

36 
36 
36 

18 
15 
15 
6 
6 

22 
18 
15 
10 
6 

26 
21 
21 
10 

The degeneracy pattern is 1,3, 6, 10, . . . , i.e. that of the original 1:1:1 HO. 

Furthermore one can easily see that: 

i) Two trisections along different axes lead to degeneracies 1, 1, 1, 3, 3, 3, 6, 6, 

6, . . . , i.e. to the 3:1:1 RHO pattern ("three copies" of the 1:1:1 degeneracies). 

ii) Three trisections lead to the original 1:1:1 HO degeneracy pattern. 

iii) Two tetrasections lead to degeneracies 1, 1, 1, 1, 3, 3, 3, 3, 6, 6, 6, 6, . . . , 

i.e. to the 4:1:1 RHO pattern ("four copies" of the 1:1:1 degeneracies). 

iv) Three tetrasections lead back to the original 1:1:1 HO pattern. 

The results obtained so far are summarized in Table 1. 

m general one can see that: 

i) Two η-sections (along different axes) lead to the degeneracy pattern of n:l : l , 

i.e. to "n copies" of the 1:1:1 degeneracies. n:l: l corresponds to a prolate shape. 

ii) Three η-sections lead back to the degeneracy pattern of the 1:1:1 HO. 

One can, of course, apply successive n-sections with different n. For example, 

applying mod(n2,2) = 0, mod(nj,,3) = 0 and mod (^ ,3) = 0 one obtains the 

degeneracy pattern 1, 1, 2, 1, 2, 4, 2, 4, 6, . . . , which corresponds to the 2:2:3 
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Table 2 

Same as liable 1, but for the 4rdim oscillator. 

U(4) 
1 bisection 

2 bisections 
3 bisections 
4 bisections 
1 trisection 

2 trisections 
3 trisections 
4 trisections 

1 tetrasection 

1:1:1:1 
2:2:2:1 
2:2:1:1 : 
2:1:1:1 : 
1:1:1:1 : 
3:3:3:1 1 
3:3:1:1 ] 
3:1:1:1 1 
1:1:1:1 \ 
4:4:4:1 ] 

L 4 
L 3 
L 2 
L 1 
L 4 
L 3 
L 2 
L 1 
L 4 

3 

10 
7 
5 
4 
10 
6 
3 
1 

10 
6 

20 
13 
8 
4 

20 
11 
6 
4 

20 
10 

35 
22 
14 
10 
35 
18 
9 
4 

35 

56 

20 
10 
56 
27 

4 
56 

30 

35 

10 

40 

10 

55 

10 

70 

20 

oscillator. 

In general one can see that by applying a fc-section, an /-section and an m-

section along different axes one obtains the degeneracy pattern (kl) : (mk) : 

(/ra), where common factors appearing in all three quantities (kl), (mk), (Im) 

can be dropped out. 

We have therefore seen t it all the symmetries of the 3-dim RHO can be 
obtained from the U(3) symmetry of the isotropic 3-dim HO by an appropriate 
set of n-sections. 

A special remark can be made about the 2:2:1 case. The degeneracies obtained 
there correspond to the dimensions of the irreps of 0(4), given by 

ά(μι, μ 2) = (μι + j"2 + 1)(μι - μι + 1). (8) 

In particular, the degeneracies 1, 4, 9, 16, .. . correspond to the integer irreps 

(μ, 0) with μ = 0, 1, 2, 3, . . . , while the degeneracies 2, 6, 12, 20, . . . correspond 

to the spinor irreps (f, | ) with η - 1, 3, 5, 7, This result has been first 

found by Ravenhall et al. [20]. It has been pointed out that 0(4) is obtained 

by imposing a reflection condition on U(3). For example, 0(4) is obtained 

by selecting the states with ηζ=οάά, a procedure which is equivalent to the 

insertion of an impenetrable barrier across the xy plane. 

2.2 The 4-dimensional oscillator 

The relevant information is given in Table 2. The symmetry of the HO in this 

case is U(4). The first line of the table corresponds to the dimensions of the 
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symmetric irreps of U(4), [TV, 0,0,0], given by the equation 

d{N) = \{N + 1)(N + 2)(N + 3). (9) 
D 

Notice that these degeneracies coincide with the dimensions of the symmetric 

irreps (Ν, 0) of Sp(4). (It is known that Sp(4) is a subalgerbra of U(4).) 

One bisection of U(4) leads to the 2:2:2:1 degeneracies. 

Two bisections of U(4) lead to the 2:2:1:1 degeneracies 1, 2, 5, 8, 14, 20, 30, 

40, 55, 70, . . . . Out of these, 1, 5, 14, 30, 55, . . . correspond to the symmetric 

irreps (μ,0) of 0(5), while 2, 8, 20, 40, 70, . . . correspond to the ( | , | ) irreps 

of 0(5). The relevant formula is: 

c?(mi, m 2 ) = -(2m! + 3)(2m2 + l)(m! + m2 + 2){mx - m 2 + 1). (10) 
6 

Notice that the dimensions of the integer irreps (1, 5, 14, 30, 55, . . . ) are re­

produced exactly, while the dimensions of the half-integer irreps are half of the 

ones given by eq. (10), which are 4, 16, 40, 80, 140, . . . , respectively. Therefore 

the 2:2:1:1 symmetry is not 0(5), although it bears certain similarities to it. 

The occurence of a symmetry resembling 0(5) is not surprising, since U(4) is 

isomorphic to 0(6), which does have an 0(5) subalgebra. The generators of the 

0(5) subalgebra in terms of the U(4) generators have been given explicitly in 

[23,24] . It is also known that 0(5) is isomorphic to Sp(4), which is a subalgebra 

of U(4), since in general U(2n) possesses an Sp(2n) subalgebra. 

Three bisections of U(4) lead to the 2:1:1:1 degeneracies, i.e. to "two copies" 

of the U(4) degeneracies. 

Finally, four bisections of U(4) lead back to the U(4) degeneracies character­

izing the 1:1:1:1 HO. 

Similarly one can see that a trisection of U(4) leads to the 3:3:3:1 degeneracies, 

two trisections of U(4) lead to 3:3:1:1, three trisections of U(4) lead to 3:1:1:1, 

i.e. to "three copies" of the U(4) degeneracies, while four trisections of U(4) 

lead back to U(4). 

2.3 The 5-dimensional oscillator 

The relevant results are shown in Table 3. In the first line the dimensions of 

the symmetric irreps [Ν, 0,0,0,0] of U(5) appear, given by the formula 

< w = ^ N + ^ N + 2 ) ( N + 3 ) ( ^ + 4 ) · ( n ) 

26 



Table 3 

Same as Table 1, but for the 5-dim oscillator. 

U(5) 
1 bisection 

2 bisections 
3 bisections 
4 bisections 
5 bisections 

1:1:1:1:1 
2:2:2:2:1 
2:2:2:1:1 
2:2:1:1:1 
2:1:1:1:1 

1:1:1:1:1 

1 
1 
1 
1 
1 
1 

5 
4 
3 
2 
1 
5 

15 
11 
8 
6 
5 
15 

35 
24 
16 
10 
5 

35 

70 
46 
30 
20 
15 
70 

30 
15 

50 70 105 140 

There is no symplectic subalgebra in this case. 

One bisection of U(5) leads to the 2:2:2:2:1 degeneracies, while two bisections 

lead to the 2:2:2:1:1 pattern. 

Three bisections lead to the 2:2:1:1:1 degeneracies 1, 2, 6, 10, 20, 30, 50, 

70, 105, 140, 196, . . . . In particular, the degeneracies 1, 6, 20, 50, 105, 196, 

. . . correspond to the dimensions of the integer irreps (TV, 0,0) of 0(6), while 

the intermediate degeneracies 2, 10, 30, 70, 140, ...resemble the half-integer 

irreps (f, | , | ) of 0(6). The relevant formula is 

d(mx, m 2 , m 3 ) = —(mi + m 2 + 3)(mi + ra3 + 2)(m2 + m 3 + 1) 

(mi - ra2 + l)(mi - m 3 + 2)(ra2 - ra3 + 1). (12) 

Again there is a factor of 2 difference for the half-integer irreps: The results 

in Table 3 are | times the results given by the above equation. Therefore the 

2:2:1:1:1 symmetry is not an 0(6) symmetry. 

Finally, four bisections lead to the 2:1:1:1:1 degeneracy pattern, while five 

bisections lead back to the U(5) degeneracies. 

2-4 The 6-dimensional oscillator 

In this case the symmetry is U(6). The relevant results are given in Table 4. 

In the first line, the dimensions of the symmetric irreps [Ν, 0,0,0,0,0] of U(6) 

appear, given by the formula 

d(N) = ^(N + 1)(JV + 2)(N + 3)(N + 4)(JV + 5). (13) 

They coincide with the dimensions of the symmetric irreps (JV, 0,0) of Sp(6). 
It is known that Sp(6) is a subalgebra of U(6). 
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Table 4 

Same as Table 1, but for the 6-dim oscillator. 

U(6) 
1 bisection 

2 bisections 
3 bisections 
4 bisections 
5 bisections 
6 bisections 

1:1:1:1:1:1 
2:2:2:2:2:1 
2:2:2:2:1:1 
2:2:2:1:1:1 
2:2:1:1:1:1 
2:1:1:1:1:1 
1:1:1:1:1:1 

1 
1 
1 
1 

ι 
1 
1 

6 
5 
4 
3 
2 
1 
6 

21 
16 
12 
9 
7 
6 

21 

56 

12 
6 

56 

27 
21 

42 
21 

77 112 182 252 

One bisection leads to the 2:2:2:2:2:1 degeneracy pattern, while two bisections 

lead to 2:2:2:2:1:1 and three bisections lead to 2:2:2:1:1:1. 

Four bisections lead to degeneracies resembling the dimensions of 0(7) irreps. 

The degeneracies 1, 7, 27, 77, 182, ...correspond to the dimensions of inte­

ger 0(7) irreps of the form (m,0,0), while the numbers 2, 12, 42, 112, 252, 

...resemble the dimensions of the half-integer irreps ( ^ , | , | ) of 0(7). The 

relevant formula is 

d(mi, m 2 , m 3 ) = ^ ( 2 m i + 5)(2m2 + 3)(2m3 + 1) 

(mi + m 2 + 4)(mi + m 3 + 3)(m2 + m 3 + 2) 

(mi — m 2 + l)(mi - m 3 + 2)(m2 - m 3 + 1). (14) 

This formula gives for the integer irreps the results of Table 4, but for the half-

integer irreps it gives 4 times the results of Table 4. Therefore the 2:2:1:1:1:1 

symmetry is not an 0(7) symmetry. 

2.5 The N-dimensional oscillator 

.The symmetry is U(N). Ε Ν is even, there is an Sp(N) subalgebra, if Ν is odd 

there is no such subalgebra. 

Ν bisections lead back to the U(N) irreps. 

Ν—1 bisections lead to the 2:1:1:... :1 symmetry, i.e. to "two copies" of the 

U(N) irreps. 

Ν—2 bisections lead to the 2:2:1:1:... :1 symmetry, which bears certain simi­

larities to O(N-f-l). The dimensions of the integer irreps are obtained correctly. 

The dimensions of the odd irreps differ by a factor of 2 " - 1 , where u = N/2 for 
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Ν even or ν — (Ν - 1)/2 for Ν odd. Therefore the 2:2:1:1:... :1 symmetry is 

not in general 0(N+1). 

N—3 bisections lead to the 2:2:2:1:1:... :1 degeneracies. 

Two bisections lead to the 2:2:... :2:1:1 degeneracies. 

One bisection leads to the 2:2:... :2:2:1 degeneracies. 

Similarly 

one η-section leads to the n:n:. . . :n:n:l degeneracies, 

two η-sections lead to the n:n:.. . :n:l:l degeneracies, 

N—2 η-sections lead to n:n: l : . . . :1:1, 

N—1 η-sections lead to n : l : l : . . . :1:*1, 

Ν η-sections lead back to U(N). 

3 Multisections of the hydrogen atom 

So far we have considered multisections of the N-dim harmonic oscillator. 

We are now going to consider multisections of the hydrogen atom (HA) in 

Ν dimensions, which is known to be characterized by the 0(N-f 1) symmetry 

[25], which is also the symmetry characterizing a particle constrained to move 

on an (N-j-l)-dim hypersphere. 

3.1 The 3-dimensional hydrogen atom 

The 3-dim hydrogen atom is known to possess the 0(4) symmetry. We know 

that the irreps of 0(4) are characterized by two labels μι, μ2 and are denoted 

by (μι, μ 2), while the irreps of 0(3) are characterized by one label μ[ = L (the 

usual angular momentum quantum number) and are denoted by (μ\ ). When 

making the reduction 0(4) D 0(3), μ[ obtains all values permitted by the 

condition μι > μ[ > μι [26]. Furthermore, the decomposition 0(3)DO(2) can 

be made, the irreps of 0(2) characterized by the quantum number M = L, 

L - l , 1 - 2 , . . . , - ( X - l ) , -L. 

We are going to consider the completely symmetric irreps of 0(4), which are 

of the form (μι, 0). The (LM) states contained in each 0(4) irrep are shown in 

lable 5. The dimensions of the irreps are 1, 4, 9, 16, 25, . . . , as expected from 
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Table 5 

Decomposition of completely symmetric 0(4) irreps (corresponding to the 3-dim 

hydrogen atom) using the 0(4) D 0(3) D 0(2) chain. In the last column the states 

are labelled by (LM), where L is the 0(3) quantum number and M is the 0(2) one. 

0(4) 0(3) (LM) 

(00) (0) (00) . 

(10) (1) (0) (11) (10) (1-1) (00) 

(20) (2) (1) (0) (22) (21) (20) (2-1) (2-2) (11) (10) (1-1) (00) 

(30) (3) (2) (1) (0) (33) (32) (31) (30) (3-1) (3-2) (3-3) 

(22) (21) (20) (2-1) (2-2) (11) (10) (1-1) (00) 

(40) (4) (3) (2) (1) (0) (44) (43) (42) (41) (40) (4-1) (4-2) (4-3) (4-4) 

(33) (32) (31) (30) (3-1) (3-2) (3-3) 

(22) (21) (20) (2-1) (2-2) (11) (10) (1-1) (00) 

(50) (5) (4) (3) (2) (1) (0) (55) (54) (53) (52) (51) (50) (5-1) (5-2) (5-3) 

(5-4) (5-5) (44) (43) (42) (41) (40) (4-1) (4-2) 

(4-3) (4-4) (33) (32) (31) (30) (3-1) (3-2) (3-3) 

(22) (21) (20) (2-1) (2-2) (11) (10) (1-1) (00) 

eq. (8), since only the integer irreps occur. As pointed out by Ravenhall et al. 

[20], a bisection can be effected by inserting an impenetrable barrier through 

the center of the hydrogen atom. Only the states with L — M = o d d remain 

then. ^From Table 5 one sees that the remaining states are: 

μι = 1: (10) 

μχ = 2: (10) (21) (2-1) 

μλ = 3: (10) (21) (2-1) (32) (30) (3-2) 

μχ = 4: (10) (21) (2-1) (32) (30) (3-2) (43) (41) (4-1) (4-3) 

μχ = 5: (10) (21) (2-1) (32) (30) (3-2) (43) (41) (4-1) (4-3) (54) (52) (50) (5-2) 

(5-4), 

which correspond to degeneracies 1, 3, 6, 10, 15, . . . , i.e. the degeneracies of 

U(3). 

Keeping the states with L — M = e v e n one is left with 

μχ = 0: (00) 

μχ = 1: (00) (11) (1-1) 
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μ2 = 2: (00) (11) (1-1) (22) (20) (2-2) 

μ ι = 3: (00) (11) (1-1) (22) (20) (2-2) (33) (31) (3-1) (3-3) 

μ ι = 4: (00) (11) (1-1) (22) (20) (2-2) (33) (31) (3-1) (3-3) (44) (42) (40) (4-2) 

(4-4) 

μ ι = 5: (00) (11) (1-1) (22) (20) (2-2) (33) (31) (3-1) (3-3) (44) (42) (40) (4-2) 

(4-4) (55) (53) (51) (5-1) (5-3) (5-5). 

The resulting degeneracies are again 1, 3, 6, 10, 15, 21, . . . , i.e. U(3) degenera­

cies. Therefore a bisection of the 3-dim hydrogen atom, effected by choosing 

states with mod(L — M, 2) = 0 or mod(L — M, 2) = 1, is leading to two in­

terleaving sets of U(3) states. Choosing states with mod(L + M, 2) = 0 or 1 

obviously leads to the same results. 

The fact that by bisecting 0(4) one obtains U(3) has been first pointed out by 

Ravenhall et al. [20]. Once the U(3) symmetry of the 3-dim HO is obtained, 

any further multisections on it will lead to RHO degeneracies, as pointed out 

in subsec. 2.1. We briefly show how this can be carried out by a few examples. 

i) Selecting states with mod(X — M, 4) = 0 gives 

μ ι = 0: (00) 

μι = 1: (00) (11) 

μι = 2: (00) (11) (22) (2-2) 

μ ι = 3: (00) (11) (22) (2-2) (33) (3-1) 

μ ι = 4: (00) (11) (22) (2-2) (33) (3-1) (44) (40) (4-4), 

i.e. it leads to degeneracies 1, 2, 4, 6, 9, . . . , which are those of the 2:2:1 RHO. 

The same result is obtained by choosing states with mod(L — M, 4) = 2. 

Therefore the operation of dividing the states with mod(Z — M, 2) = 0 of 

the 3-dim HA according to the mod(L — M,4) is equivalent to a bisection of 

the 3-dim HO. The same holds for mod(L -f M, 4), as well as for dividing the 

mod(L — M, 2) = 1 states of the 3-dim HA according to mod(L — M,4) = 1 

or 3. 

ii) Selecting states with mod(L — M, 6) = 0, or 2, or 4 (or 1, or 3, or 5) leads 

to degeneracies 1, 2, 3, 5, 7, 9, 12, . . . , i.e. to the degeneracies of the 3:3:1 

RHO. Therefore this operation is equivalent to a trisection of the 3-dim HO. 

The same holds for mod(L + M, 6). 

iii) Selecting states with mod(X — M, 8) = 0, or 2, or 4, or 6 (or 1, or 3, or 5, 
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Table 6 

Decomposition of completely symmetric 0(5) irreps (corresponding to the 4-dim 
hydrogen atom) using the 0(5) D 0(4) D 0(3) chain. 

0(5) 

(00) 

(10) 

(20) 

(30) 

(40) 

0(4) 

(00) 

(10) (00) 

(20) (10) (00) 

(30) (20) (10) (00) 

(40) (30) (20) (10) (00) 

0(3) 

(0) 

(i) (o)2 

(2) (I) 2 (0)3 

(3) (2)2 ( l ) 3 (0)4 

(4) (3)2 (2)3 (I) 4 (0)5 

or 7) leads to degeneracies 1, 2, 3, 4, 6, 8, 10, 12, . . . , i.e. to the degeneracies 

of the 4:4:1 RHO. Therefore this operation is equivalent to a tetrasection of 

the 3-dim HO. The same holds for mod(L + M,8). 

Combining two of the above operations one obtains the results corresponding 

to the appropriate multisections of the HO. Thus: 

i) Selecting states with mod(L — M,4) = 0 and mod(L + M, 4) = 0 one finds 

the degeneracies 1, 1, 3, 3, 6, 6, 10, 10, . . . , which correspond to the 2:1:1 

RHO. 

ii) Selecting states with mod(L — M,6) = 0 and mod(L + M, 6) = 0 one finds 

the degeneracies 1, 1, 1, 3, 3, 3, 6, 6, 6, . . . , which characterize the 3:1:1 RHO. 

iii) Selecting states with mod(L —M, 8) = 0 and mod(i/ + M, 8) = 0 one finds 

the degeneracies 1, 1, 1, 1, 3, 3, 3, 3, 6, 6, 6, 6, . . . , which correspond to the 

4:1:1 RHO. 

3.2 The 4-dimensional hydrogen atom 

The 4-dim hydrogen atom is characterized by the 0(5) symmetry. The irreps 

of 0(5) can be labelled as (μι,μ 2), while the irreps of 0(4) can be labelled by 

(μί,/4). When making the reduction 0(5)D0(4), μ[ and μ2 take the values 

permitted by the relation μι > μ[ > μ2 > μ'2 [26]. Continueing further the 

reduction 0 ( 5 ) D O ( 4 ) D O ( 3 ) D O ( 2 ) one obtains the lists of states given it Table 

6. The dimensions of the irreps are 1, 5, 14, 30, 55, . . . , as expected from eq. 

(10), since only the integer irreps occur. 

Selecting states with mod(L — M, 2) = 0 or 1 one obtains the degeneracies 1, 

4, 10, 20, 35, . . . , which characterize U(4), i.e. the 4-dim isotropic HO 1:1:1:1. 

Bisecting these results using mod(L — M, 4) one obtains the degeneracies 1, 
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Table 7 

Decomposition of completely symmetric 0(6) irreps (corresponding to the 5-dim 
hydrogen atom) using the 0(6) D 0(5) D 0(4) D 0(3) chain. 

0(6) 

(000) 

(100) 

(200) 

(300) 

0(5) 

(00) 

(10) (00) 

(20) (10) (00) 

(30) (20) (10) (00) 

0(4) 

(00) 

(10) (00)2 

(20) (IO)2 (00) 3 

(30) (20)2 (IO)3 (00) 4 

0(3) 

(0) 
(1) (0) 3 

(2) ( l ) 3 (0) 6 

(3) (2) 3 ( I ) 6 (0)io 

3, 7, 13, 22, . . . , which correspond to the 2:2:2:1 RHO, while trisecting them 

according to mod(L — M,6) one obtains the degeneracies 1, 3, 6, 11, 18, . . . , 

which correspond to the 3:3:3:1 RHO, and tetrasecting them according to 

mod(L — M,8) one obtains the degeneracies 1, 3, 6, 10, ...,·which are the 

degeneracies of the 4:4:4:1 RHO. 

Combining the bisections mod(L — M, 4) and mod(L + M, 4) one obtains the 

degeneracies 1, 2, 5, 8, . . . of the 2:2:1:1 RHO, while combining of the trisection-

s mod(L — M, 6) and mod(L + M, 6) leads to the 1, 2, 3, 6, 9, . . . degeneracies 

of the 3:3:1:1 RHO. 

The similarity between the 2:2:1:1 degeneracies and the 0(5) degeneracies can 

now be understood as due to the fact that the 2:2:1:1 degeneracies are obtained 

from the 0(5) ones using the appropriate series of bisections described above. 

3.3 The 5-dimensional hydrogen atom 

The 5-dim hydrogen atom is characterized by the 0(6) symmetry, the irreps 

of which can be labelled as (μ 1 ? μ 2 ,μ3), while the irreps of 0(5) can be la­

belled as (μ^,μ^). In the reduction 0(6)1)0(5) the labels μ[ and μ'2 have to 

satisfy the conditions μι > μ[ > μ2 > μ'2 > μ3 [26]. Continueing further the 

reduction 0 ( 6 ) D O ( 5 ) D O ( 4 ) D O ( 3 ) D O ( 2 ) one obtains the results of Table 7. 

The dimensions of the irreps are 1, 6, 20, 50, . . . , as expected from eq. (12), 

since only integer irreps occur. 

Selecting states with mod(L — M, 2) = 0 or 1 one obtains the degeneracies 1, 

5, 15, 35, ...which characterize U(5), i.e. the isotropic 5-dim HO 1:1:1:1:1. 

A further bisection using mod(L — M, 4) leads to the degeneracies of the 

2:2:2:2:1 RHO, while an additional bisection of these results using mod(L + 

M,4) leads to the degeneracies of the 2:2:2:1:1 RHO. 
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Table 8 

Decomposition of completely symmetric 0(7) irreps (corresponding to the 6-dim 
hydrogen atom) using the 0(7) D 0(6) D 0(5) D 0(4) D 0(3) chain. 

0(7) 

(000) 

(100) 

(200) 

(300) 

0(6) 

(000) 

(100) (000) 

(200) (100) (000) 

(300) (200) (100) (000) 

0(4) 

(00) 

(10) (00)3 

(20) (IO)3 (00)6 

(30) (20)3 (IO)6 (00) 1 0 

0(5) 

(00) 

(10) (00)2 

(20) (IO)2 (00)3 

(30) (20)2 (IO)3 (00)4 

0(3) 

(0) 
(1) (0)4 

(2) ( l ) 4 (0) 1 0 

(3) (2)4 ( l ) 1 0 (0) 2 0 

3.4 The 6-dimensional hydrogen atom 

The 6-dim hydrogen atom is characterized by the 0(7) symmetry, the irreps 

of which are labelled by (μι, μ2, //β), while the irreps of 0(6) can be labelled by 

(μ[,μ2,μ3). In the reduction 0 ( 7 ) D O ( 6 ) the labels μ[, μ2, μ3 have to satisfy 

the condition μι > μ[ > μ2 > μ2 > ^3 > μ'3 [26]· Further continueing 

the reduction 0 ( 7 ) D O ( 6 ) D O ( 5 ) D O ( 4 ) D O ( 3 ) D O ( 2 ) one obtains the results of 

Table 8. The dimensions of the irreps are 1, 7, 27, 77, . . . , as expected from 

eq. (14), since only integer irreps occur. 

Selecting states with mod(L — M, 2) = 0 or 1 one obtains the degeneracies 1, 

6, 21, 56, ...which characterize U(6), i.e. the isotropic 6-dim HO 1:1:1:1:1:1. 

A further bisection using mod(L — M,4) leads to the degeneracies of the 

2:2:2:2:2:1 RHO, while an additional bisection of these results using mod(X + 

M,4) leads to the degeneracies of the 2:2:2:2:1:1 RHO. 

3.5 The N-dimensional hydrogen atom 

The N-dim hydrogen atom is characterized by the O(N-fl) symmetry. Only 

the completely symmetric irreps of 0(N+1) occur. Using the chain 0(N+1) 

D O(N) D ... D 0(3) D 0(2) one can find the (LM) states contained in each 

0(N+1) irrep. Bisecting them using mod(L—M, 2) = 0 or 1 one is left with the 

irreps of U(N). Further multisections of the U(N) irreps lead to the appropriate 

symmetries of the N-dim RHO. It is therefore clear that all symmetries of the 

N-dim RHO can be obtained from a common parent, the 0(N+1) symmetry. 

34 



Thus it is not surprising that some of them (notably the 2:2:1:... :1 ones) show 

similarities to the corresponding 0(N+1) symmetry. However, the only case in 

which an N-dim RHO symmetry is identical to an 0(N+1) symmetry occurs 

for N = 3 , for which the 2:2:1 RHO symmetry is 0(4) [20]. The rest of the RHO 

symmetries are not related to any orthogonal symmetries. 

4 Discussion 

The concept of bisection of an N-dim isotropic harmonic oscillator with U(N) 

symmetry, introduced by Ravenhall et al: [20], has been generalized. Trisec­

tions, tetrasections, . . . , η-sections of the N-dim isotropic harmonic oscillator 

have been introduced. They are shown to lead to the various symmetries of 

the anisotropic N-dim harmonic oscillator with rational ratios of frequencies 

(RHO). Furthermore, multisections of the N-dim hydrogen atom with 0 ( N + 1 ) 

symmetry have been considered. It is shown that a bisection of 0(N+1) leads 

to U(N), so that further multisections just lead to various cases of the N-dim 

RHO. The opposite does not hold, i.e. multisections of U(N) do. not lead to 

0(N+1) symmetries, the only exception being the bisection of U(3) which does 

lead to 0(4). Even in the case of the 4-dim HO, which has the U(4) symmetry, 

which is isomorphic to 0(6) and has an 0(5) subalgebra, no multisection, or 

combination of multisections, leading to a RHO with 0(5) symmetry has been 

found. We conclude therefore that the rich variety of the N-dim RHO sym­

metries have a common "parent", the U(N) symmetry of the N-dim isotropic 

harmonic oscillator or the 0(N+1) symmetry of the N-dim hydrogen atom, 

but they are not in general related to unitary or orthogonal symmetries them­

selves. 

Since the RHO is of current interest in relation to various physical systems (su-

perdeformed and hyperdeformed nuclei [8-12], Bloch-Brink »-cluster model 

[15-17], deformed atomic clusters [18,19]), the unification of the rich variety of 

symmetries appearing in the RHO for different frequency ratios in a common 

algebraic framework is an interesting project. In [6] the 3-dim RHO degen­

eracies are obtained as reducible representations of U(3). It could be possible 

to construct an algebraic framework in which the RHO degeneracies occur as 

irreducible representations of an appropriate algebra. Work in this direction 

is in progress [21]. 

Throughout this paper the properties of the completely symmetric irreps of 

U(N) and 0(N+1) have been considered. Similar studies of completely anti­

symmetric irreps, or irreps with mixed symmetry, might be worth exploring. 
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