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N e w Di rec t i ons in N u c l e a r T h e o r y 

P.E. Hodgson 
Nuclear Physics Laboratory, Oxford 

1. I n t r o d u c t i o n 

It is not possible in a brief survey of new developments in nuclear theory to do 
more than to select a few topics that seem to be important, and inevitably they are 
linked to my own interests. 

First of all, however, I want to make a general comment on the way we think 
about what we are doing. How do we think about the structure of a nucleus and about 
the mechanisms of a nuclear reaction? Do we write down a Schrodinger many-body 
wave equation and try to solve it subject to specified boundary conditions? Certainly 
that is not what I do. On the contrary, I see the nucleus as a cloud of little balls of 
different colours. They are in constant motion, colliding with each other, sometimes 
forming temporary clusters that soon dissolve again. Occasionally a collision gives one 
ball enough energy to escape from the cloud, and sometimes a ball comes in from outside 
and adds to the confusion. It may just be captured, or it may knock-out another ball 
or a cluster of balls. 

Having visualised the reaction that interests me, I know that I must plunge into 
quantum-mechanical formalism, work out the predictions of my model and compare 
them with experiment. That is the only story that gets submitted to the Physical Re
view. But why are we so bashful, even ashamed, of our simple classical models? The 
reason, I believe, is that we have been brainwashed by the Copenhagen interpretation 
of quantum mechanics to believe that reality is fundamentally fuzzy and that the wave-
function contains all that ever can be known about each individual system. This is a 
profoundly debilitating idea and is actually harming the progress of nuclear physics. 
This may be illustrated by a story from the early days of nuclear physics. 

In 1912, Rutherford discovered the structure of the atom, showing that it is com
posed of a central nucleus surrounded by electrons. It was very natural for him to probe 
deeper and to try to find the structure of the nucleus. Throughout the 1920s and 1930s 
he devised experiments to reveal this structure. He discussed the problem with Bohr, 
who told him that he was wasting his time, because according to his ideas about quan
tum mechanics the nucleus is just a structureless soup that occasionally emits particles; 
it is therefore meaningless to ask about nuclear structure. Discouraged by this, Ruther
ford abandoned his search (Wilson 1983). With hindsight the apparatus available to 
him was not sufficiently sensitive for his purpose, but the story is a striking illustration 
of the debilitating effects of the Copenhagen interpretation of quantum mechanics; it 
prevents us from asking perfectly reasonable questions and thus discourages innovative 
research. 

I believe that it is false to say that reality is fundamentally fuzzy. Nucléons have 
precise positions and momenta (Ballentine 1970), and they interact in precisely-defined 
ways. At present, however, we cannot look into the nucleus and see directly what is 
going on. All we can do is to make measurements on a large number of nuclei, so they 
are inevitably statistical. 

All our measurements of nuclear structure are made by recording individual 
events, such as the emission of a γ-ray or the inelastic scattering of a proton. Our 
theories of nuclear structure and reactions, however, give only the probability distri
butions, such as the half-life or the differential cross-section corresponding individual 
events. Quantum mechanics, by its very nature, enables us to calculate only the aver-



age behaviour of a large number or ensemble of similar systems. All our sophisticated 
nuclear theories are quantum mechanical, and so we can analyse only the average prop
erties of nuclei. As Einstein believed, quantum mechanics is not the final theory, and 
it may well be that a more detailed deterministic theory will ultimately be found. So, 
while at present we have to calculate quantum-mechanically, we can still think about 
the behaviour of individual nucléons in the nucleus and their relations with each other. 
This is done, for example, by Anagnostatos in the work described in section 2. This 
may well stimulate new lines of thought and new experiments that could lead the way 
to a detailed microscopic theory of nuclear structure (Brody 1993). 

It is helpful to think of nuclei in a simple way as a number of nucléons interacting 
with ea~h other and moving around in a small approximately spherical region. Their 
time-averaged positions can be expressed as proton and neutron density distributions. 
Since these nucléons have a finite size and repel each other at small distances, their den
sity distributions are approximately uniform inside the nucleus and, since they attract 
each other strongly at large distances, the density falls rapidly on the outside, giving 
a well defined surface. An exception to this is provided by some nuclei that are nearly 
unstable to neutron emission which have a neutron halo extending to large distances. 
The neutron-proton interaction is stronger than that between like nucléons, and this 
tends to lock the neutron and proton distributions together, making the spatial extent 
of the neutron and proton distributions very similar. Each nucléon moves on a well-
defined orbit in the mean field generated by the other nucléons and has a definite energy 
and the quantum numbers associated with the orbit. The nucléons in each orbit have 
their own density distribution. Occasionally two nucléons collide and interact strongly, 
changing their trajectories. Sometimes two protons and two neutrons combine to form 
an α-particle, and this also moves in a quantum orbit unt!' t is broken up by a further 
collision. 

2. Nuclear Structure 

The structure of the nucleus is dynamic, and not static like a crystal. It may, 
however, be the case that the average positions of the nucléons, the spatial density 
distributions, have regions of higher probability that show a regular structure. 

This aspect of nuclear structure has been studied semi-classically on the nucléon 
level by Anagnostatos (1985) who has developed the isomorphic shell model that com
bines shell- and cluster-model concepts. In this model the nucléons in each shell are in 
dynamic equilibrium and their average positions correspond to the Leech (195/) polyhe-
dra (figure 1) for the spatial distribution of particles on a spherical surface. The particles 
occupy the vertices of the polyhedra and, in each shell, neutrons and protons occupy 
reciprocal polyhedra. The neutrons are assigned to the stable equilibrium polyhedra 
and the protons to the unstable equilibrium polyhedra and together these polyhedra 
are stable. 

The neutrons and protons are treated as hard spheres of radii Rn = 0.974 fm, 
and r p = 0.860 fm; these are the only parameters of the model and are very similar to 
the radii of nucléon bags in the quark model. The dimensions of the shells are then 
determined by the close packing of the shells. 

The assignment of nucléons to the vertices of polyhedra follows the principles 
that identical particles on a shell are interchangeable and that for each particle posi
tion there is a symmetric counterpart. The total energy of the system is minim^ed, 
and this sometimes requires that particular symmetrically distributed vertices are left 
unoccupied. 
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Figure 1. The isomorphic shell model (Anagnostatos, 1993). 

The cumulative numbers of neutrons or protons give the magic numbers, and it is 
notable that these are obtained without introducing the concept of spin-orbit coupling. 
This suggests that the magic numbers are the result of very general symmetry consid
erations that can be represented in the shell model by introducing spin-orbit coupling 
(Anagnostatos 1985). The same magic numbers are predicted for clusters of two kinds 
of alkali atom (Anagnostatos 1988). This model raises many questions that deserve 
serious study, both experimentally and theoretically. 

Many features of nuclear structure can be very simply understood by assuming 
that all the nucléons move independently in a mean field. We thus replace the action of 
all the other nucléons on a particular nucléon by a one-body potential. This can be cal
culated with difficulty and some approximations from the nucleon-nucleon interaction, 
but it is much simpler to assume that it is given by the phenomenological potential 

V(r) = Vc(r) + Uf(r) + Usg(r)L.a, (1) 

where Vc(r) is the electrostatic potential, and U and Us are the strengths of the central 
and spin-orbit potentials. The radial dependence / ( r ) follows rather closely the nuclear 
density distribution, conveniently parametrized by the Saxon-Woods form factor / ( r ) = 
{l + exp[(r— # ) / a ] } - 1 , where R = 1.25Λ1/3 fm is the radius parameter and a ~ 0.65 fm 
is the surface diffuseness parameter, which governs the rate of fall-off in the surface 
region. The radial variation of the spin-orbit term has the form df(r)/dr)/r, which is 
peaked on the nuclear surface. 

This potential has a series of discrete eigenstates characterized by their energies 
and quantum numbers. If we allow nucléons to occupy these states, starting from the 
lowest and restricting the number of nucléons in each state by the Pauli principle, we 
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obtain a useful model of nuclear structure. With potential depths U = 50 MeV and 
Us = 14 MeV, the energies of the states correspond well to those found experimentally 
using one-nucleon transfer reactions. 

The nuclear density distributions can be calculated from this model by squaring 
and adding the wavefunctions of all the nucléons. The charge distributions found in 
this way are in excellent agreement with those found from analyses of electron elastic 
scattering at high energies, and the matter distributions with those found similarly from 
analyses of proton elastic scattering (Ray and Hodgson 1979, Malaguti et al 1982). 

This potential can also account for unbound states in the continuum with the 
addition of an imaginary potential to give the widths oT the states. This is the optical 
potential that describes the scattering of nucléons by nuclei (Hodgson 1963, 1971, 1994). 
The strengths of the real, imaginary and spin-orbit potentials depend on energy in a 
smooth way, so that the nucléon mean field is able to unify bound and scattering states 
(Hodgson 1990). A further unification of the real and imaginary parts of the potentials 
can be obtained using the dispersion relations which connect them together (Hodgson 
1992). 

3 . Nuc léon correlations in nuclei 

The nucléons in the nucleus are incessantly moving; so we can ask what is their 
momentum distribution. This is known in several ways. The cross-sections of (p, 2p) 
and (e, e'p) reactions, for example, in which an incident proton or electron knocks out 
a proton in the nucleus, depends on the magnitude and direction of the struck nucléon. 
Pion production in similar circumstances also depends on the internal momentum dis
tribution; indeed it was first observed at incident energies lower than expected because 
sometimes the incident proton encounters a nucléon in the nucleus moving towards it 
with a high momentum. 

Since the nucléon wavefunctions in momentum and coordinate space are Fourier 
transforms of each other, it might be thought easy to calculate the nucléon momentum 
distribution from the spatial distribution. This is not so; as shown in figure 2 the cal
culated momentum distribution is markedly below the measured distribution a t high 
momenta. High momenta probe short distances; the source of the discrepancy a t high 
momenta is the correlations among the nucléons of short range, which are not described 
by the independent particle model that is used to obtain the wavefunctions. The cor
relations depend on the nucleon-nucleon interaction, which is repulsive at very short 
distances and attactive at somewhat larger distances. When the nucléons collide, they 
are for a short time in a deep attractive potential with a hard-core repulsion a t short 
distances and momentarily have high momenta. It is thus not possible to describe the 
spatial and momentum distributions of nucléons in the nucleus simultaneously by an 
independent particle model. It might be asked why these nucléons with very high mo
menta do not escape from the nucleus. The reason is that they are in a deep potential 
so that, although they have a high kinetic energy, their total energy is always less than 
the escape value. 
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Figure 2. Nucléon momentum distribution in 12C compared with calculations 
using the Hartree-Fock mean-field theory (...) and a theory that includes short-
range correlations (—) (Ciofi degli Atti et al 1989). 

Figure 3. The classical trajectory of a nucléon in a nucleus. The heavy line shows 
the actual trajectory; and the light line the trajectory given by the single-particle 
mean-field model. The dotted arrows show the instantaneous nucléon velocities 
(Gottfried 1963). 
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ι ne erreci οι me snort-range correlations on the motions of the nucléons can be 
shown by considering the classical trajectories of the nucléons. Most of the time the 
nucléons move in the mean field and the trajectories are smoothly varying functions 
of position. Occasionally, however, they experience a close encounter with another 
nucléon and are sharply accelerated and deflected. The smooth parts of the trajectory 
correspond to the motion in the mean field and the abrupt changes to the short-range 
correlations with other nucléons that give rise to the high-momentum components in 
the nucléon momentum distribution. The difference between the trajectories with and 
without the short-range correlations is shown in figure 3. 

The effect of the short-range correlations on the trajectories shows the difficulty of 
determining the high-momentum components of the nucléon momentum distribution. If 
this is done by measuring the momenta of the two outgoing protons in a (p, 2p) reaction 
in which an incoming proton knocks another proton out of the nucleus, the momentum 
of the struck nucléon is determined by assuming that the reaction is essentially a two-
body collision inside the nucleus. The effect of the other nucléons is assumed to be 
small and can be allowed for by assuming that the collision takes place in a nuclear 
medium with a complex refractive index. This model of the (p, 2p) reaction is good for 
the smooth parts of the trajectories where the influence of the other nucléons is indeed 
small, and so the low-momentum part of the nucléon momentum distribution below 
the Fermi energy is well determined. However, the model breaks down in the region of 
the kinks in the trajectory because there is another nucléon present, and it is precisely 
these parts of the trajectory that correspond to the high-momentum components. Thus, 
although we know that there are high-momentum components in the nucléon momentum 
distribution, it is very difficult to determine them precisely (Gottfried, 1963). 

In order to calculate the effects of short-range nucleon-nucleon correlations in the 
nucleus, it is necessary to use theories that go beyond the mean-field theory. Such 
theories define a correlation operator that transforms the wavefunction φ(τι, Γ2,..., TA) 
of the uncorrected many-body shell-model wavefunction into that of the correlated 
system ^»(ri,r2,.. . , r a ) . There are several ways of doing this, and among them the 
simplest to visualize is that of Jastrow (see Antonov et al (1993, chapters 3 and 4)). 
This method takes into account the short-range repulsion or hard core in the nucleon-
nucleon interaction that prevents the nucléons coming closer than the hard-core radius 
rc. This is done by introducing factors /(r tj) that extinguish the wavefunction for all 
i'ij less than the core radius rc, so that 

i/>(rur2,...,rA)=N J[ /(r tJ ,)0(n,r2 , . . . ,rA) (2) 
l<i<j<A 

where φ is a Slater determinant of single-particle wavefunctions and Ν is the normal
ization constant. The correlation functions is defined to be zero for |r« — i j | < rc and 
to be 1 — exp(—/?|r,· — Tj\2) otherwise. The value of the correlation range β and of the 
other parameters are determined by minimizing the energy of the correlated system. 

The main effect of imposing the nucleon-nucleon correlations is to enhance the 
high-momentum components of the nucléon momentum distribution, as shown in fig
ure 2. By calculating the mean-field potentials that give the correlation wavefunctions 
directly, it is found that the short-range correlations have a rather small effect on the 
potentials and wavefunctions corresponding to the filled states. The short-range corre
lations mainly affect the motion of the nucléons above the Fermi energy. The difference 
between the corresponding potentials is shown in figure 4. This is important for the 
analysis of stripping reactions that populate such states. 
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Figure 4. Effective potentials for 4 0 C a showing the difference between those of 
filled states (Is, lp, Id and 2s) and those of unfilled s tates (2p and If) due to the 
short-range correlations (Antonov et al 1994). 

4 . The c luster structure of nuclei 

The emission of α-particles by nuclei was interpreted by Rutherford as evidence 
that the α-particle is to be regarded as an 'important secondary unit in the building 
up of the heavier nuclei and probably of nuclei in general' (Wilson 1983, p.576). The 
nucléons in the nucleus can thus occasionally form transient substructures that persist 
until they are broken up by an encounter with another nucléon. Of all such substructures 
or clusters the α-particle is the most favoured because of its high symmetry and binding 
energy. 

The α decay of nuclei was the first nuclear process studied quantum-mechanically, 
when Gamow proposed a simple model that was able to account for the vast range of 
measured half-lives. He proposed that α-particles exist inside the nucleus, and that they 
bounce backwards and forwards between the walls. Each time they hit the potential bar
rier there is a finite chance that they will overcome it and be emitted. This probability 
can be evaluated quantum-mechanically and is extremely sensitive to the width of the 
barrier. This model has proved very successful in accounting for the relative half-lives of 
α decay and in its latest versions for the absolute values also, t o within an order of mag
nitude (Buck and Merchant 1989, Merchant et al 1989, Merchant and Buck 1989, Buck 
et al 1990, 1991a,b, 1992). Accurate calculations of the α decay half-life proved very 
difficult, essentially because the individual nucléons comprising the α-particle must be 
described by the shell model, and then a very large basis is needed to describe them as 
they move away from the decaying nucleus. This difficulty has been overcome by Varga 
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et al (1992a,b) by adding a cluster model component to the shell-model wavefunction, 
so that the total wavefunction becomes 

φ = φ (shell) + φ (cluster). (3) 

The calculation of the α decay width was carried out avoiding the approxima
tions inherent in previous work and all the parameters were fixed from independent 
experimental data. Thus the parameters of the single-particle and harmonic oscillator 
potentials were chosen to fit the experimental energies of the single-particle states and 
the binding energies of the initial and final nuclei. 

This formalism was applied to calculate the absolute decay width of 2 1 2 P o , which 
decays to 2 0 8 P b . This is a particularly favourable case, as the final nucleus has a double-
closed shell. The decay width was calculated form the R-matrix formula 

A = 2 P L ^ — 9L(*L), (4) 

where Ma is the reduced mass, Pi, the Coulomb penetration factor, a^ the channel 
radius and ÇL^L) the clustering amplitude. The result Λ = 1.45 x 10~1 5 MeV agrees 
well with the experimental value of 1.5 χ 10Γ1 5 MeV. The α-particle occupancy of the 
state is about 20 times the best shell-model estimates, and the probability of formation 
of an α-particle inside the nucleus is 0.302. 

A related aspect of α clustering in nuclei is the α-particle momentum distribution, 
and this has recently been calculated by Antonov et al (1992). Knowledge of this 
momentum distribution is important for calculations of α-particle knock-out reactions. 
Alpha clustering is to be expected on energy grounds, and it has been shown that a 
nucléon gas is likely to condense into α-particles if the density falls to a value about one 
third of that in the centre of the nucleus (Brink and Castro 1973). 

The concept of a mean field, so useful for nucléons in nuclei, can also be applied to 
unify our knowledge of α-particle bound states and elastic scattering. The real part of 
the α-particle potential can be obtained by a double folding of the nuclear and α-particle 
densities with the nucleon-nucleon interaction, giving 

va{r)= I I />(ri)/>(r2)i/(|r + r 2 - r i | ) d r i d r 2 . (5) 

A good approximation to the radial variation may be obtained by using a delta 
function for the nucleon-nucleon interaction and analytical expressions for the nuclear 
densities. For many purposes it is more convenient to use an analytic expression for the 
potential, such as the Saxon-Woods potential or the cosh potential (Buck and Merchant 
1989, Buck et al 1992): 

V[l+cosh{R/a)} 
x[ ' cosh(r/a)+cosh(R/a)' [ ' 

The energies, widths and BE(E2) transition rates for the α-particle states in 1 6 0 
were successfully analyzed using an a - 1 2 C folded potential obtained by Buck et al 
(1975); subsequently they extended the analysis to 2 0 N e , which has a pronounced α 
cluster structure Katö and Bando 1978, Chung et al 1978). More recently, there has 
been much interest in applying the model to heavier nucjei, especially to the nuclei 
analogous to 1 6 0 and 20Ne in the fp shell, namely 2 0Ca and 4 4Ti. 
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The nucleus 4 4 Ti(= 4 0 Ca + a) is a particularly favourable case, and it has been 
extensively studied (Horiuchi 1985, Michel, Reidemeister and Ohkubo 1986a,b, 1988, 
Ohkubo 1988, Wada and Horiuchi 1988, Merchant et al 1989). The earlier analyses 
were made of the cross-section of the 40Ca(6Li,d) reaction at 28 and 32 MeV (Fulbright 
et al 197) by applying the distorted-wave theory to determine the quantum numbers 
of many of the bound and unbound states of 4 4 Ti. As shown in figure 5, these states 
are quite well given by the α cluster model, using the α-particle optical potential that 
fits very well the extensive data on the elastic scattering of a-particles by 4 0 Ca (Delbar 
et al 1978). It is notable that the model predicts a Ν = 13, Κ = Ο - negative-parity 
band of α-particle states in 4 4Ti, which at that time had not been observed. The 1", 
3~ and 5" members of this band were subsequently found by Yamaya et al (1990) using 
an incident energy of 50 MeV (figure 6). This provides striking confirmation of the α 
cluster model. 

Figure 5. A comparison of the calculated energies of the bands with principal 
quantum numbers N=12 to N=16 the α cluster states in 4 4 Ti generated by a 
finite-range folded potential with the experimental data, where the right-hand 
energy scale refers to the a-f40Ca system (Merchant et al 1989). 
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of a cluster states in 44Ti: ( ), α-particle separation energy. The negative 
parity states observed by Yamaya et al are clearly shown. The 10.86 MeV state 
is a candidate for the head of the higher nodal band of N=14 or 15 (Yamaya et 

al 1990). 

The absolute «-particle probabilities obtained in this work were however very 
low, ranging from 0.04 for the ground state to even lower values for the excited states. 
Such low values raised a serious question about the validity of the alpha-cluster model. 
This was further investigated by Yamaya et al (1993), who found that the spectroscopic 
factors are very sensitive to the values of the α-particle wave functions in the region of 
the nuclear surface. The previous analysis used a wave function obtained from a Saxon-
Woods potential which was not obtained from α-particle elastic scattering, whereas 
later analyses such as that of Michel et al (1986a, 1988) used the more realistic squared 
Saxon-Woods potential which gives smaller values of the wave function in the surface 
region, and hence larger spectroscopic factors between 0.1 and 0.2 for the Κ = 0 + and 
k = 0~ bands. 

Many light nuclei have a pronounced alpha-particle structure, and many aspects 
of their behaviour can be understood by considering them to consist of one or more 
alpha-particles interacting with each other and with the surrounding nucléons. 
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A particularly interesting class of alpha-particle states is provided by the alpha-

chain states. These are usually excited states of a linear chain of alpha-particles. Such 

states are more stable than might be thought, because, in the case of 2 4 M g for example, 

the energy of an oscillator quantum is about 24 MeV in a direction perpendicular to 

the chain but only about 4 MeV in the direction of the chain. It thus requires about 

20 MeV to bend the chain. 

Further information on the alpha-particle structure of nuclei may be obtained from 

analyses of t h e (ρ, a ) reaction. The most likely reaction mechanisms are triton pickup 

and alpha-particle knockout, and many studies of the differential cross-sections and 

analysing powers of (p, a) reactions to discrete final states have shown that the triton 

pickup process is the more likely. More recently, the (p, a) reaction to the continuum 

has been studied by Olaniyi et al (1995) using the pre-equilibrium theory of Feshbach, 

Kerman and Koonin. Following Bonetti et al (1989) it was assumed that the incident 

proton collides with a pre-formed alpha-particle in the target nucleus and knocks it 

out, the proton being captured into an orbit in the residual nucleus. The transition 

matrix is expressed in terms of the wavefunctions of the initial and final states and the 

proton-alpha particle effective interaction, and is multiplied by the probability of finding 

the alpha-particle in the target nucleus. Double differential cross-sections for the (p, a) 

reaction at 30 and 44.3 MeV on several nuclei were analysed using the subtraction 

method, and some results are shown in figure 7. The angle-integrated cross-sections 

show a strong peak at lower energies attributable to compound nucleus emission, and 

this was evaluated using the Hauser-Feshbach theory. The total cross-section is well 

described by the sum of compound nucleus and MSD processes, as shown in figure 8. 

At these energies, the contribution of two-step processes is quite small, but at higher 

energies the two and three-step processes become increasingly important, especially 

at the lower outgoing energies. Further analyses have been made of the 5 9 C o ( p , a) 

reaction at 120 MeV, including these higher-order processes. To do this, the computer 

program was modified to include the (p,p')(p',a) and (p,n){n,oc) two-step processes 

and the four (p,N)(N ' ,N')(N' ,a) three-step processes. All these processes contribute 

incoherently and, as they each include just one nucleon-alpha interaction and one alpha-

particle pre-formation factor, they are all multiplied by the same normalisation factor. 

The calculations fit the data quite well, except for the backward angles at low ejectile 

energies, due to the omission of higher order processes. The (ρ, ρ')(ίΛ a) and (p,n)(n, a) 

two-step processes dominate at the higher ejectile energies and have similar angular 

distributions, and the three-step processes become more important as the ejectile energy 

decreases. As expected, the angular distributions become less forward-peaked as the 

number of steps increases. 

5. Col lect ive Excitat ions 

Some nuclei are deformed in their ground states and can be excited into rotational 

motion, retaining their shapes. Others are spherical in their ground states and can be 

excited into vibrational motion. At high excitation energies rotational nuclei can change 

from oblate (pancake) to prolate (cigar), and some show the extreme deformation known 

as super deformation, a prolate deformation with a ratio of major to minor axis of two 

(Hodgson 1987). 
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These overall shapes of rotating nuclei are mainly governed by classical forces, and 
it is found that the curves of energy as a function of angular velocity for different shapes 
cross each other. At low angular velocities, oblate shapes are energetically favoured, like 
the Earth, while at high angular velocities a prolate shape is favoured. Unlike classical 
bodies, however, excited nuclei exist in discrete states, and the correlated motions of 
the individual nucléons determine their detailed structure. 

In contrast to single-particle excitations, the nucléons move collectively in such 
excitations. The excited states form rotational or vibrational bands and de-excitation 
usually takes place by gamma emission by successive transitions down a band. Collective 
nuclei often have many bands based on states of different structure, and transitions can 
take place, usually with more difficulty from one band to another. 

A rotational band may be identified using the quantum-mechanical expression for 
the energy of a rotator: 

Ej = ^J{J+l) (7) 

where I is the moment of inertia and J the total angular momentum quantum number. 
A rotator with ground state 0 + has a series of states forming a band with J = 0 , 2 , 4 , . . . 
and energies given by equation (7). The values of J increase by two because all states 
must have the same parity π = (—)J. The moment I of inertia can be determined 
from equation (7) and is usually found to. be about a third or half the classical rigid-
body value, indicating that the nucléons in the spherical core do not participate in the 
rotation. 

Heavy nuclei in the regions away from the magic numbers can be excited to highly 
excited states by heavy-ion reactions. An off-centre collision between nuclei, for example 
4 0 Ca on 112Sn, is the only way to give high angular momentum to the compound system 
without immediately breaking it up. Studies of the 7-rays emitted from such highly 
excited nuclei have revealed complicated structures of bands and, about ten years ago, 
Twin et al (1983) found evidence for bands with very high moments of inertia. Analysis 
of such a superdeformed band in 1 5 2Dy indicated a prolate shape with an axis ratio of 
2 to 1. Such superdeformed shapes are in accord with theoretical calculations and have 
been found in several other nuclei. The moment of inertia is very constant along,the 
superdeformed band, indicating a very rigid shape. 

Many detailed studies of nuclear structure are being made by Bonatsos and his 
colleagues (Bonatsos 1988) using the interacting boson model, and this provides a way 
of integrating the single-particle and collective features. Their most recent study shows 
that the Δ7 = 4 bifurcation observed in superdeformed bands also occurs in the rota
tional bands of diatomic molecules (Bonatsos et α/, 1995). 

Low-lying collective states may be identified and studied using the cross-sections of 
inelastic scattering reactions. At higher energies there are broad multi pole resonances in 
the continuum region. The contribution of such collective excitations to the continuum 
in neutron inelastic scattering has recently been studied by Marcinkowski et al (1995ab, 
1996). To do this, the cross-sections of (p, n) reactions on several nuclei from 9 to 
27 MeV were analysed using the Feshbach-Kerman-Koonin theory. Since the collective 
contributions to this reaction are small, this establishes the value of the effective nucleon-
nucleon interaction strength. 

Using the same parameters as the (p, n) analysis, the corresponding (71,71') cross-
sections were calculated, and there was a shortfall compared with the data, indicating 
the presence of collective contributions to the continuum. This was confirmed by cal
culating the collective contributions using the experimental values of the energies and 
strengths of the low-lying collective states, and including the contributions of the giant 
multipole resonances, if any, using the energy-weighted sum rule. The results of this 
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Figure 9. Multistep calculations of the 9 3 Nb (n, n') cross-section at 14.1 and 
20 MeV showing the contribution of the collective excitations in the continuum 
(Marcinkowski et α/, 1995). 
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Figure 10. The energy spectrum of neutrons inelastically scattered by 5 8 Ni at 
14.1 MeV (Takahashi et al , 1992) compared with MSC, MSD and collective 
cross-sections (Demetriou et al, 1996). 
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calculation, when added to the other contributions, are in good accord with the data, as 
shown in figure 9. In this way a consistent analysis of (p,n) and (n, n') reactions can be 
made that includes all the contributing processes. Further studies of the contributions 
of collective excitations (Demetriou et al, 1996) showed that they are able to account 
for the resonance structure of the (n ,n ' ) energy spectra (see figure 10). This structure 
was also reproduced by Lenske et al (1994), using a microscopic model. 

6. Conclusion 

This brief survey of a few areas of current research in nuclear physics shows 
the value of nuclear models, particularly those that can be visualised using classical 
concepts. Notable features of recent work are the increased precision of the experimental 
measurements and the sophistication of new theories. This is enabling us to inter
relate our nuclear models, and to attain a unified view of nuclear structure and nuclear 
reactions. 
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