

HNPS Advances in Nuclear Physics

Vol 3 (1992)

HNPS1992

Experimental Investigation of ^{137}Cs aging in soil

P. A. Assimakopoulos, K. G. Ioannides, D. T. Karamanis, A. A. Pakou, K. C. Stamoulis, A. Vayanakis, E. Veltsos

doi: [10.12681/hnps.2391](https://doi.org/10.12681/hnps.2391)

To cite this article:

Assimakopoulos, P. A., Ioannides, K. G., Karamanis, D. T., Pakou, A. A., Stamoulis, K. C., Vayanakis, A., & Veltsos, E. (2019). Experimental Investigation of ^{137}Cs aging in soil. *HNPS Advances in Nuclear Physics*, 3, 231–233.
<https://doi.org/10.12681/hnps.2391>

EXPERIMENTAL INVESTIGATION OF ^{137}Cs AGING IN SOIL

P.A.Assimakopoulos, K.G.Ioannides, D.T.Karamanis, A.A.Pakou
and K.C.Stamoulis
Nuclear Physics Laboratory, The University of Ioannina
45110 Ioannina
Greece

A.Vayonakis and E.Velios
Department of Physics, The University of Ioannina, 45110 Ioannina, Greece

INTRODUCTION

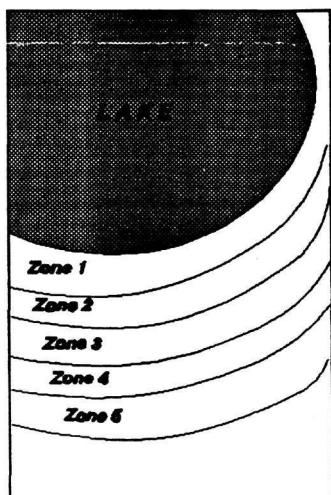


Figure 1. Zones at the shore of a lake representing roughly an annual period of recession of waters during a continued draught.

annual recession of water. In the absence of water and the other factors of the ecosystem of the lake which do not allow ^{137}Cs to be trapped in complex salts, radiocesium now is probably fixed in complex salts and becomes less available for uptake by plants.

Thus we expect a decreasing value of the transfer factor as we get away from the lake shore. The transfer factor is defined as the ratio of radiocesium concentration Bq/Kgr dry matter in vegetation samples to the corresponding concentration in soil samples.

MATERIALS AND METHODS

To check the hypothesis we selected two lakes Minor Prespa at the borders of northern Greece with Yugoslavia and Albania and lake Amvrakia at western Greece. Undisturbed areas which have been exposed since 1986 were selected near the lakes. They were divided in five zones for the Minor Prespa and four zones for the lake Amvrakia, as shown in Fig.1, each one representing roughly an annual period of recession of waters. Samples of soil and vegetation were collected from each zone and were dried until steady weight. Then they were ground to coarse powder and measured in 400ml plastic containers. Measurements were conducted in the Nuclear Physics lab of the University of Ioannina using Ge shielded detector and standard electronics.

RESULTS

Results of radioactivity concentration measurements in all samples are contained in tables 2 and 3. The last column in each table contains in addition the value of the transfer factor for each zone, expressed in percentage units. The results for the transfer factor contained in Tables 2 and 3 are plotted in the graph of Figure 2.

The transfer factor for the first and the second zone of lake Minor Prespa is about 50%; it falls by a factor of 5 to 10%, and remains constant in the remaining zones. A similar behaviour is obtain in the Figure 2 for the lake Amvrakia. For the first zone along the lake shore the transfer factor is about 30% and then falls abruptly by a factor of 3 to 12%, where again remains constant in the remaining zones.

DISCUSSION

The presence of this high transfer factor for the first two zones here might be due to the fact that each zone does not represent an exact annual recession of waters. Also the difference between the transfer factor for the first zones of the two lakes, might be due to the different physicochemical properties of soils. In Tab. 1 is shown that in lake Minor Prespa the soil is sandy in contrast to the lake Amvrakia where the soil is silt-sandy.

The results presented are in accordance to other authors (Alexakhin, *et al.*, 1990) and tend to support the hypothesis of the radiocesium aging mechanism in soil. The phenomenon may be interpreted by means of the chemical behaviour of radiocesium in the soil. It may be assumed that in the initial fallout ^{137}Cs is in ionic form or in the form of simple chemical compounds. However with the passage of time it becomes trapped in complex, less soluble, compounds and thus becomes less available for uptake by plants. This is in agreement with previous results (Squire, *et al.*, 1966; Cline, *et al.*, 1972) where it was found that radiocesium is gradually trapped in artificially contaminated clay soils.

REFERENCES

Alexakhin, R.M.; Sanzharova, N.I.; Kuznetsov, V.K.; Anisimov, B.S.; Aksyonova, S.P. ^{137}Cs migration in agricultural ecosystems of Belorussian Polesje. Thes. Rep. 1st International Conference "Biological and Radioecological Aspects of Subsequence of Chernobyl NPP's Accident", Zeleny Mys (Kiev), 10-18 Sep. 1990 Moscow, 1990-P.262.

Cline, J.F.; Richard, W.H. Radioactive strontium and cesium in cultivated and abandoned field plots. *Health Phys.* 23:317-324;1972.

Squire, H.M.; Middleton, L.J. Behaviour of ^{137}Cs in soils and pastures. A long term experiment. *Radiation Botany*, 6:413-423;1966.

Table 1. Mechanical analysis for soil of the lakes Amvrakia and Minor Prespa.

Area	Clay (%)	Silt (%)	Sand (%)
Lake Amvrakia	4	51	45
Lake Minor Prespa	2	3	95

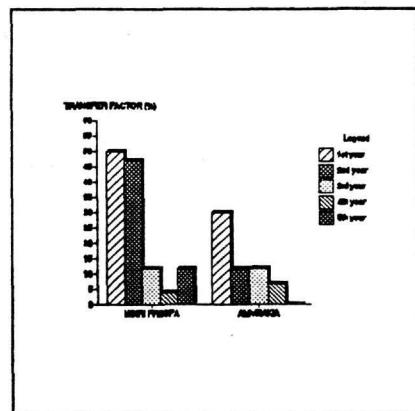


Figure 2. Plot of the transfer factors for the lake Minor Prespa and for the lake Amvrakia.

Table 2. Radioactivity concentration measurements performed on samples of surface soil and vegetation of lake Minor Prespa.

Zone	Concentration (Bq/Kg)		Transfer factor (%)
	Vegetation	Soil	
1	42.1 ± 2.0	84.8 ± 5.1	50 ± 4
2	49.8 ± 6.0	106.9 ± 6.9	47 ± 6
3	20.1 ± 4.8	172.5 ± 10.1	12 ± 3
4	2.0 ± 0.6	51.8 ± 3.7	4 ± 1
5	18.9 ± 4.0	155.1 ± 9.0	12 ± 3

Table 3. Radioactivity concentration measurements performed on samples of surface soil and vegetation of lake Amvrakia.

Zone	Concentration(Bq/Kg)		Transfer factor (%)
	Vegetation	Soil	
1	19.0 ± 1.3	62.4 ± 1.8	30 ± 2
2	8.4 ± 1.1	72.2 ± 2.3	12 ± 2
3	8.6 ± 0.9	69.5 ± 2.4	12 ± 2
4	4.7 ± 0.6	67.6 ± 2.4	7 ± 1