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Dispersive Correction to the p+1 60 Optical Montel Potential 

G.Pantis 

Physics Department, University of Ioannina, GR-451 10, Ioannina, Greece 

ABSTRACT 

The optical model potential to p+ 1 6 0 scattering is derived by taking into account the 

polarization potential induced by the energy dispersion relation. The real part of the potential is 

derived by the RGM-method with the Volkov or Minnesota potential as a basis for the n-n force. 

It is shown that the polarization potential effects an adjustment of the parameters of the n-n force 

due to the constraints imposed by the energy dispersion relation. 

I. Introduction 

Theoretical investigations of the energy dependence of the optical model potential (OMP) 

in nuclear reactions have shown that if the imaginary part is not deduced by microscopic 

considerations but it is "put by hand", it has to obey constraints due to the energy dispersion 

relation (1-3). In fact this imaginary potential will induce a real polarization potential AV(E,R) 

to the real part of the OMP which will satisfy the energy dispersion relation. 

The effects of this polarization potential have been recently investigated (4) with 

considerable success in a light reaction such as the α-α system, in which the real part of the 

OMP was derived microscopicaly by the resonating group method (RGM) in a one-channel 

approximation. It was shown there that a polarization potential could be constructed throughout 

the energy range which gave a significant improvement to the α-α scattering phase-shifts up to 

60 MeV. Furthermore it was suggested that if one resorts to a single channel approximation this 

can even be done consistently if the induced polarization potential could be taken into account 

right at the beginning, i.e., at the nucleon-nucleon force. 

It is obvious that if this approach could be extented to heavier nuclei then one would hope 

to develope a semimicroscopic description of the OMP, which would correspond more closely to 

the actual interaction, but with much less efforts. In this work we shall turn our attention to 

proton-nucleus scattering and in particular to p - ^ O for which the kernel of the real non-local 

interaction is well known (5). In addition two important and experimentally determinable 

quantities which are of interest for an optical model analysis the differential cross-sections and 

the reaction cross-sections are also known. Namely for the above system there exist a self 

consistent set of measurement of these quantities (6-9) covering the energy range of 20 to 50 

MeV. 
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This energy region is of special interest since it shows deviations from the linear energy 

dependence V(E) = α + βΕ of the strength of the imaginary part of the optical potential which 

has been assumed to exist at lower energies. Therefore if one starts with a microscopic 

calculation of the real part one might be able to achieve a better fit at higher energies. 

The reaction cross-section is particularly useful in this context because it is very sensitive 

to the total absorption. In addition the angular distribution in the energy range from 20 to 50 

MeV might give information about intermediate structure in the energy dependence at such 

cross-sections. 

We shall report in this paper the first in a series of calculations on the interactions of 

medium energy protons with a heavier nuclei, i.e.. Oxygen, using the elastic scattering data 

covering the center of mass angles from 10 to 165 degrees at energies 20 to 50 MeV. Our real 

part of the OMP is derived by the RGM-method in the one-channel approximation. Since our aim 

is to test the applicability of our approach rather than to achieve an exact fit, we shall not use the 

more elaborate full RGM-kemel (5) but we shall use instead the K-kemel of ref. (10). This 

kernel is easier to handle and one can derive its local equivalent potential with much less 

difficulties. It has of course only the direct term and the knock-on exchange term of the total 

kernel thus it does not take into account contributions arising from nucleon-excange terms. 

However, this approximation is justified since it has been shown (10) that this particular term 

plays an important role in deterniining the essential behavior of the system. Furthermore at the 

energies which we are considering, we are expecting the elastic scattering to be most dominant 

and therefore the ommision of the excange terms will not alter our results significantly. 

II. Formalism 

The method which we shall use here is outlined in ref (4). For clarity we shall only 

repeat here the main points. The resonating group method has been extensively used to describe 

the behaviour of nuclear systems from a microscopic viewpoint. In particular for scattering 

problems it can give accurate results even in the one channel approximation, by which a nucleon-

nucleus scattering is reduced to the scattering of a single particle from a one-body potential. This 

potential is nonlocal, therefore energy dependent, and constitutes the basis of the real part of the 

OMP. For calculations at energies at which reaction channels are open one has to add a 

phenomological imaginary potential iW(E,R) which is also energy dependent. Thus, if one 

takes the equivalent local potential of the non-local RGM, then the total potential is of the 

form: 

V(E,R) = VE L P(E,R) + iW(E,R) (1) 

where VE L P(E,R) is the equivalent local potential to the non local kernel derived by the RGM-

mcthod. In the present case the imaginary part W(E,R) is based on a Woods-Saxon form factor 
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well known in nucléon optical model potentials and contains both terms, a Woods-Saxon form for 

volume absorption and a derivative Woods-Saxon form for surface absorption. 

WŒR1 f ( E ) ,4.0g(E)exp((R-Rs)/As) „ 
W^W-(l-K:xp(R-Rv)/Av) + (i4€xp(R-Rs)/As)2 W 

where f(E) and g(E) are the energy dependent strengths. The choise is sensible since we will try 

to parametrize data from a wide range of energies and scattering angles and a detailed variation 

of form factors could complicate the problem unnecessarily. 

In our approach we first calculate the RGM-kernel and its Wigner transform for both 

nucleon-nucleon interactions : The Volkov and the Minnesota forces of ref. (10). They have the 

basic forms : 

Volkov : 

Vy =- V0 εχρ(-κφ (w-mPjJ Py + bPj - hpj) 

1 2 e 2 

- 2£ ν λ εχρ(-λτ^) (Oi+Oj) · (rrrj) χ φ - ρ ρ + ^r ( Ι + τ ^ (1+Tjz) 

V0 = 72.98 MeV κ = 0.46 fnr 2 w =m =0.4075 b=h=0.0925 a R G M = 0.32fm (3) 

Minnesota : 

1+Pf. 1-P? 
Vii=[VR + - ^ V t + ̂ V s ] ( | - 2 f P ^ 5 ) 

1 2 e 2 

• 2b ν λ εχρί-λτ^) (σ j+σ j) · (r j-r j) x(p r p j) + ^ r ( l + x i z ) ( l+t j z ) 

where with 

V R =V0R « P (-XR φ , V 0 R = 200.0 MeV, xR =1.487 fnr 2 

v t =- v 0 t e x P (-*t φ · v 0 t =178.0 MeV, ^ = 0.639 fnr 2 

v s=- v 0s e x P (->«srij). v 0s =91.85 MeV, x s = 0.465 fnr 2 (4) 
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Then by using the expressions given in ref(10) for the k-model and ref.(4) for their Wigner 

transforms we get the results : for the Volcov potential 

Direct nuclear : 

VD(R)= -VoY (4w-m+2b-2h) ^ + ^ R2 ] exp ( ^ R2 ) (5) 

Wigner Transform for the knock-on-exchange part : 

VN(q2,R2) =-V0ß (-W44m-2b+2h) [l+2a(^| +R2 + ^ p ) ] 

» ( l ^ e x p H A 2 - ^ ) 

where γ = ( ^ ) 3 / 2 , β = φ 3 / 2 » 4 A = a > 4B=a+4x 

and for the Minnesota potential 

Direct Nuclear : 

vD(R) = Ç q v o i Y i e x p ( ^ ) (6) 

q=((fu-i),-(fu-i).-(J4>) 

Wigner Transform for the knock-on-exchange part : 

vN(q2,R2)= £ QV0iVi(^i+ 5 ^ 2 ) e x p ( ^ ) 0) 

Ci=((4- |u) ,-(3- |u) ,-( l - | ) ) 

Then for each of the angular distributions given below in fig.(l) we try to get the best 

possible fit by varying the geometric parameters and the energy dependence of the imaginary 

part. In this way one gets a wide range of geometric parameters Rv(Rs) and Av(As) which 

confirm our earlier predictions that they are also energy dependent (11). Since in order to be 

able to derive the energy dispersion relation and the polarization potential these parameters 

must be taken energy independent one has to make an appropriate choise, such that a 

reasonable fit for all scattering angles throughout the energy range is possible. With the 
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geometric parameters so defined one then derives the energy dependence of the imaginary 

strength and via eq.(19) of ref.(4) 

V P 0 l ( E ) = £ f (f(E')+g(E'))dE' 

^thresh 
(8) 

the strenght of polarization potential VPo1 (E), where Ρ stands for principal value. The 

polarization potential VP01 (E,R) is then derived from eq.(2) and it is added to the real part of 

the OMP, which now satisfies the energy despersion relation. The full OMP potential therefore 

is 

vOMP ( E * ) = V(E,R) + VPol(E,R) 

Since the addition of VPo1 (E.R) wiU alter the goodness of the fit, one now has to get down to 
the nucléon nucléon force and restore the same goodness of the fit by 

(9) 

τη-x'' J ^ ^ t i * 1 c r o s s section angular distributions for the elastic scattering of protons by 1 6 0 at 23.4, 24.5, 
273, 30.1, 34.1, 36.8, 39.7, 43.1, and 46.1 MeV. The smooth curves are drawn to guide the eye and have no' 
significance. They have been taken from ref. (8). 

varying its parameters. This process could be repeated selfconsistently untili convergency is 

achieved. We shall note here that the introduction of an external energy dependence to the real 

part of the potential via the addition of the polarization potential will in fact necessitate a 

further modification of the imaginary strength. The best way to account for this selfconsistently 

is to terminate this minimization procedure by a simultaneous minimization of the parameters of 

the nucleon-nucleon force and imaginary strengths. We shall note further that for the results 

reported here this procedure was repeated only twice since the introduction of the polarization 

potential introduced only slight variations of the parameters of the nucleon-nucleon force in order 

to restore the same quality of fits. 
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III. Results and Discussion 

For the p - 1 6 0 system we use the angular distributions reported in refs.(6-9) for the 

energies 23.4, 24.5, 27.3, 30.1, 34.1, 36.8, 39.7, 42.1, 43.1, 46.1 and 52.5. MeV. For the 

analysis of our data we used the least-squares method as a goodness-of-fit estimator to derive 

the best set of potential parameters. Our computer code contained an automatic search routine 

for up to nine parameters with the view to minimize the function 

totals τ l 

where the subscripts t and i stand for total and angular distribution quantities, Δσ are their 

uncertainties and Wk are weight factors. 
do 

Initially, attemts were made to get good fits to both ^ and Oto t for all of the above 

energies simultaneously by varying all nine parameters. However such a general fit resulted in 

unphysical values for the geometric parameters and or the potential strengths. Another 

intriguing difficulty was that when the varied parameters exceeded the number three, the 

searches converged on several distinct local minima depending on the starting values. Thus it 

was found necessary to experiment in a discriminating alternation of fixing and varying grouped 

parameters in order to get optimum values within physically reasonable grounds. 

As a general comment we can say that it was difficult to get convergency by a 

simultaneous variation of potential strengths and associated radii and that convergency was 

easier achieved by specifying different radii for the different potentials. In addition preliminary 

calculations have shown that the introduction of the spin-orbit potential of ref.(10) was causing 

convergency problems and in agreement with ref.(10) it was ommited altogether. 

For each one, of the above energies we contacted searches of two general kinds, i.e., one 

with the Volkov and one with the Minnesota potential, as the nucleon-nucleon force, in our RGM 

non-local kernel. The first case produced erratic results for some sets of starting values but 

nevertheless it had always converged to a satisfactory fashion to Δ<30. This was achieved 

however only by allowing the potential strengths to increase about 100 MeV which would seem 

to be unacceptably high. It was further noticed that the difficulties were arising by the 

requirement of fixed Rs(Rv) and for all energies, as a constraint imposed by the dispersion 

relation in order to have only the potential strengths depend on the energy. This in conjuction 

with the fact that searches converged on several local minima (usually at least with one 

unacceptable final parameter) depending on the starting values, brought the realisation that there 

was no remedy against it other than to accept higher values of Δ but in any case at least a factor 

of five better than those reported in ref.(8) for the 1-independent potential search. 
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A complete set of parameters for the whole energy range together with the minimum Δ 

is given in table (1) for the Volkov and in table (2) for the Minnesota potential. Since the surface 

and absorption strengths for the Volkov potential are unphysically high we decided to continue 

our calculations using only the Minnesota force. The strength for the surface and volume 

absorptions and the corresponding polarization potential as a function of 

Tabic l.Imaginary potential strengths Wv and W,, geometric parameters R and A and minimization values Δ for 

the different energies. The numbers (1) and (2) refer to the different sets for the geometric parameters. The 

Volkov potential of eq (3) is taken as the basis for the n-n force Δ is the minimization values of the !-independent 

potential of rei. (8) for the same energies. 

( l ) R v - R $ = 1 . 3 7 f m , A v = A,= 

ECM (MeVI 

23.4 

24.5 

27.3 

30.1 

34.1 

36.8 

39.7 

42.1 

43.1 

46.1 

52.5 

WvUHMeV) 

27.743 

22.184 

88.465 

71.759 

86.73 

86.73 

84.668 

98.66 

107.35 

11009 

90.28 

»0569fm 

Ws(lXMeV) 

35294 

33.485 

24.627 

34.99 

38.315 

66.39 

50.23 

75.33 

113.93 

128.65 

71.15 

Arn 

27.08 

24.21 

39.19 

43.06 

30.84 

44.01 

184.71 

53.4 

56.34 

5 9 3 7 

58.68 

(2) Ry= 1.370lfm, A , = 

R, = 13846 fm, A, 

WvOXMeV) 

27.396 

18.76 

87.604 

76.773 

66.419 

83.05 

104.911 

106.112 

10735 

11009 

101.32 

WçCXMeV) 

33.898 

3232 

23.771 

37249 

37.448 

59.45 

95.46 

99.63 

11333 
128.68 
10537 

0368 fm 
= 0377fm 

Δ(2) 

26.03 

24.09 

36.12 

4125 

30.81 

4330 

125.14 

40.12 

50.88 

48.46 

4731 

Δ 

136.48 

47435 

31625 

394.84 

2473 

91.08 

4635 

8734 

3439 

3325 

368.44 

energy are given in fig.(2). Some polarization potentials as a function of R for various energies 

are given in fig.(3). We have set the threshold energy E ^ ^ = 6.06 MeV which is the first 

excited state of " 1 6 0 . For energies above 60 MeV in eq.(8) we have used the same prescription 

asinref.(4). Namely 

W(E) = W(E0) exp(-a(E-E0)) E>E 0 = 60 MeV 

Variations of the parameter α between 0.2 and 0.5 did not change our polarization potential 

more than 1% and we have set this parameter to a=0.5. For some of the energies the best fits 

where achieved for either volume (f.e.30.1MeV) or surface absorption (f.e. 34.1 MeV) but 

adequate fits for all levels were possible only with a mixture of volume and surface absorption. 

With the polarization potentials derived in this way, we have constructed the total final 

potential of eq.(6) and tried to get the best possible fit by varying the parameters of the nucléon-
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nucleon force. Exœllent fits were possible if one was to accept such parameters for the nucleon-

nucleon force which would produce unreasonable values for the binding energy of the deuteron. 

Table 2. The same as Table 1 but for the Minnesota potential of eq (4). 

Ecm(MeV) 

23.4. 

24.5 

27.3 

30.1 

34.1 

36.8 

39.7 

42.1 

43.1 

46.1 

52.5 

Rv = 1.3701fm, Av = 0.568 fm 

Rs = 1.384 fm, A s = 0.577 fm 

Wv(MeV) Ws(MeV) Δ(2) Δ 

6.36 7.105 49.36 136.48 

4.415 4.145 38.15 474.35 

4.156 3.241 40.12 316.25 

7.303 2.022 37.69 394.84 

24.496 11.648 41.96 247.5 

39.769 30.292 31.92 91.08 

19.543 18.493 12.66 46.35 

8.07 7.32 39.62 37.54 

4.136 5.398 36.27 34.59 

4.345 5.735 36.41 83.25 

4.156 4.78 34.53 368.44 

To avoid such a problem we have set an upper limit of ±1% of variation of the strengths by 

keeping the oscillator parameters and the radii unchanged. This, in the worst case could have a 

variation of 0.2 MeV for the binding energy of the deuteron. The searches were repeated for 

different values of the excange mixture parameter u. The values so obtained are reported in 

table 3. They not only restore the initial goodness of the fits, but in some cases they also 

produce a considerable improvement. Furthermore, given the uncertainties in our data they 

seem quite satisfactory. The main exception was the 37.9 MeV for which the quality of the fit to 

the angular distribution was relatively poor, where most of the Δ came from a few points at 

large angles. 

As far as the energy dependence is concerned, a monotonie energy variation is only seen 

at the lower energy region, i.e. below 30 MeV. Above this energy our results show a departure 

from such a smooth energy variation. In fact around 37 MeV they show some structure which 

suggests, effects comming from compound states or single particle resonances or possible 

doorway states from four-quastipanicles in F 1 7 . 
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Table 3. Final minimization values, Δ(0, potential strengths and nudeon-nucleon parameters. 

Ecm(MeV) 

23.4. 

24.5 

27.3 

30.1 

34.1 

36.8 

39.7 

42.1 

43.1 

46.1 

52.5 

V0R = 

u 

Wv(MeV) 

2.518 

2.334 

2.068 

2.244 

2.452 

3.419 

4.656 

3.256 

2.718 

2.824 

2.603 

200.62 MeV, 

= 0.918, V o s 

Ws(MeV) 

4.405 

4.039 

3.469 

3.824 

4.445 

8.693 

18.065 

9.531 

9.494 

7.367 

6.152 

Vo t = 178.232 MeV 

= 91.712 MeV 

Δ(Π Δ 

24.17 136.48 

27.65 474.35 

37.21 316.25 

34.37 394.84 

38.11 247.5 

40.84 91.08 

127.32 46.35 

39.15 37.54 

40.17 34.59 

35.01 33.25 

34.03 368.44 

A word of caution is also relevant here. Our extracted values are by no means unique. 

The minimization procedure showed that convergency was strongly dependent on the starting 

values and that the same quality of the fits, Δ, could be achieved by different parameters. 
*o 30 W ΪΟ (*«* 

*>E. 

Fig. 2: Final imaginary strengths Wy, Ws and polarization potential strengths WVPOL and WSPOL as a 
function of energy. 

To discriminate between the various different local minima, we have applied the following 

restrictions : For all energies, we have started each varied parameter at the same initial 

values. Then after convergency was achieved we have repeated the minimization procedure 

with starting values below and above the convergency values. Only those physical acceptable 
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values were accepted which would converge to the same values and would produce the same 

quality of fit. 

1 ·*> 

ζ . 

Î • . * 

*\ • · - i 

φ^ί->Γ 

Fig. 3: Polarization potentials VPOL as a function of R at different energies. 

The present study yielded also confirmatory evidence for the need of energy dependence 

of the geometric parameters (radius and difuseness) of the imaginary potential. In addition they 

have been found significantly smaller than those usually reported in OMP calculations with 

Woods-Saxon forms. 

Another undesirable feature our calculations have shown was that the required value of 

the exchange mixture parameter u was somewhat different for different energies the best 

compromise been the value u=0.918 which was quite closed to u=0.924 reported in ref. (10). 
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