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Dispersive Correction to the p+160 Optical Montel Potential

G.Pantis
Physics Department, University of Ioannina, GR-451 10, Ioannina, Greece

ABSTRACT

The optical model potential to p+160 scattering is derived by taking into account the
polarization potential induced by the energy dispersion relation. The real part of the potential is
derived by the RGM-method with the Volkov or Minnesota potential as a basis for the n-n force.
It is shown that the polarization potential effects an adjustment of the parameters of the n-n force
due to the constraints imposed by the energy dispersion relation.

I. Introduction

Theoretical investigations of the energy dependence of the optical model potential (OMP)
in nuclear reactions have shown that if the imaginary part is not deduced by microscopic
considerations but it is "put by hand”, it has to obey constraints due to the energy dispersion
relation (1-3). In fact this imaginary potential will induce a real polarization potential AV(E,R)
to the real part of the OMP which will satisfy the energy dispersion relation.

The effects of this polarization potential have been recently investigated (4) with
considerable success in a light reaction such as the a-a system, in which the real part of the
OMP was derived microscopicaly by the resonating group method (RGM) in a one-channel
approximation. It was shown there that a polarization potential could be constructed throughout
the energy range which gave a significant improvement to the a-a scattering phase-shifts up to
60 MeV. Furthermore it was suggested that if one resorts to a single channel approximation this
can even be done consistently if the induced polarization potential could be taken into account
right at the beginning, i.e., at the nucleon-nucleon force.

It is obvious that if this approach could be extented to heavier nuclei then one would hope
to develope a semimicroscopic description of the OMP, which would correspond more closely to
the actual interaction, but with much less efforts. In this work we shall turn our attention to
proton-nucleus scattering and in particular to p-160 for which the kernel of the real non-local
interaction is well known (5). In addition two important and experimentally determinable
quantities which are of interest for an optical model analysis the differential cross-sections and
the reaction cross-sections are also known. Namely for the above system there exist a self

consistent set of measurement of these quantities (6-9) covering the energy range of 20 to 50
MeV.
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This energy region is of special interest since it shows deviations from the linear energy
dependence V(E) = o + BE of the strength of the imaginary part of the optical potential which
has been assumed to exist at lower energies. Therefore if one starts with a microscopic
calculation of the real part one might be able to achieve a better fit at higher energies.

. The reaction cross-section is particularly useful in this context because it is very sensitive
to the total absorption. In addition the angular distribution in the energy range from 20 to 50
MeV might give information about intermediate structure in the energy dependence at such
cross-sections.

We shall report in this paper the first in a series of calculations on the interactions of
medium energy protons with a heavier nuclei, i.e., Oxygen, using the elastic scattering data
covering the center of mass angles from 10 to 165 degrees at energies 20 to 50 MeV. Our real
part of the OMP is derived by the RGM-method in the one-channel approximation. Since our aim
is to test the applicability of our approach rather than to achieve an exact fit, we shall not use the
more elaborate full RGM-kernel (5) but we shall use instead the K-kernel of ref. (10). This
kemel is easier to handle and one can derive its local equivalent potential with much less
difficulties. It has of course only the direct term and the knock-on exchange term of the total
kernel thus it does not take into account contributions arising from nucleon-excange terms.
However, this approximation is justified since it has been shown (10) that this particular term
plays an important role in determining the essential behavior of the system. Furthermore at the
energies which we are considering, we are expecting the elastic scattering to be most dominant
and therefore the ommision of the excange terms will not alter our results significantly.

II. Formalism

The method which we shall use here is outlined in ref (4). For clarity we shall only
repeat here the main points. The resonating group method has been extensively used to describe
the behaviour of nuclear systems from a microscopic viewpoint. In particular for scattering
problems it can give accurate results even in the one channel approximation, by which a nucleon-
nucleus scattering is reduced to the scattering of a single particle from a one-body potential. This
potential is nonlocal, therefore energy dependent, and constitutes the basis of the real part of the
OMP. For calculations at energies at which reaction channels are open one has to add a
phenomological imaginary potential iW(E,R) which is also energy dependent. Thus, if one

takes the equivalent local potential of the non-local RGM, then the total potential is of the
form:

V(ER) = VELP(ER) +iW(ER) )

where VELP(E.R) is the equivalent local potential to the non local kernel derived by the RGM-
mcthod. In the present case the imaginary part W(ER) is based on a Woods-Saxon form factor
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well known in nucleon optical model potentials and contains both terms, a Woods-Saxon form for

volume absorption and a derivative Woods-Saxon form for surface absorption.

_ f(E) 4.08(E) exp((R-Rs)/As)
WER) = (1+exp®RvyAv) * (1+exp(R-Rs)/As)2

where f(E) and g(E) are the energy dependent strengths. The choise is sensible since we will try
to parametrize data from a wide range of energies and scattering angles and a detailed variation

of form factors could complicate the problem unnecessarily.

In our approach we first calculate the RGM-kernel and its Wigner transform for both

nucleon-nucleon interactions : The Volkov and the Minnesota forces of ref. (10). They have the

basic forms :
Volkov :

T
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Then by using the expressions given in ref(10) for the k-model and ref.(4) for their Wigner
transforms we get the results : for the Volcov potential
Direct nuclear :

VDR)= -Vy (4w-m+2b-20) [t + W R2 ] exp (m %R2) ®)

Wigner Transform for the knock-on-exchange part :

. 2
VN(GZR2) =V o (-w+4m-2b+2h) [1+2a(55 +R? ]
«(E)3n 2 &

()Y exp(442- 75

where y= (a +K)3/2 B-(—):V2 4A=a, 4B=a+x

and for the Minnesota potential
Direct Nuclear :

_aR2
VDR) = X G Vo 1 exp(35,0) ©
1

C=(Gu-1n.-Gun,-E43)

Wigner Transform for the knock-on-exchange part :

2
3 2 R2
a+nj
VN2 R2) = 21 CiVoi ¥i (G * (g2 ) exp(—‘—aﬂi) )
1=

c=(@-3u)-3-2u,-a-dy)

Then for each of the angular distributions given below in fig.(1) we try to get the best
possible fit by varying the geometric parameters and the energy dependence of the imaginary
part. In this way one gets a wide range of geometric parameters Rv(Rs) and Av(As) which
confirm our earlier predictions that they are also energy dependent (11). Since in order to be
able to derive the energy dispersion relation and the polarization potential these parameters
must be taken energy independent one has to make an appropriate choise, such that a

rcasonable fit for all scattering angles throughout the energy range is possible. With the
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geometric parameters so defined one then derives the energy dependence of the imaginary
strength and via eq.(19) of ref.(4)

_P (@EMRENE
I':thrcsh

the strenght of polarization potential VPOl (E), where P stands for principal value. The
polarization potential VPOl (ER) is then derived from eq.(2) and it is added to the real part of

the OMP, which now satisfies the energy despersion relation. The full OMP potential therefore
is

Vomp (ER) = V(ER) + VPOLE R) ®

Since the addition of VPO! (E,R) will alter the goodness of the fit, one now has to get down to
the nucleon nucleon force and restore the same goodness of the fit by

dLﬂTmm'—a—

Fig 1: Dilferential cross section angular distributions for the elastic scattering of protons by 160 at 234, 2455,
273, 30.1, 34.1, 36.8, 39.7, 43.1, and 46.1 MeV. The smooth curves are drawn to guide the eye and have no
significance. They have been taken from ref. ®).

varying its parameters. This process could be repeated selfconsistently untill convergency is
achieved. We shall note here that the introduction of an external energy dependence to the real
part of the potential via the addition of the polarization potential will in fact necessitate a
further modification of the imaginary strength. The best way to account for this selfconsistently
is to terminate this minimization procedure by a simultaneous minimization of the parameters of
the nucleon-nucleon force and imaginary strengths. We shall note further that for the results
reported here this procedure was repeated only twice since the introduction of the polarization

potential introduced only slight variations of the parameters of the nucleon-nucleon force in order
to restore the same quality of fits.
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111. Results and Discussion

For the p-160 system we use the angular distributions reported in refs.(6-9) for the
energies 23.4, 24.5, 27.3, 30.1, 34.1, 36.8, 39.7, 42.1, 43.1, 46.1 and 52.5. MeV. For the
analysis of our data we used the least-squares method as a goodness-of-fit estimator to derive
the best set of potential parameters. Our computer code contained an automatic search routine

for up to nine parameters with the view to minimize the function

ocxp ath 1 dojf¥P-gith
A= X (W) ( 7 10
totals Agy

where the subscripts t and i stand for total and angular distribution quantities, Ac are their
uncertainties and Wy are weight factors.

Initjally, attemts were made to get good fits to both % and oy for all of the above

energies simultaneously by varying all nine parameters. However such a general fit resulted in
unphysical values for the geometric parameters and or the potential strengths. Another
intriguing difficulty was that when the varied parameters exceeded the number three, the
searches converged on several distinct local minima depending on the starting values. Thus it
was found necessary to experiment in a discriminating alternation of fixing and varying grouped
parameters in order to get optimum values within physically reasonable grounds.

As a general comment we can say that it was difficult to get convergency by a
simultaneous variation of potential strengths and associated radii and that convergency was
easier achieved by specifying different radii for the different potentials. In addition preliminary
calculations have shown that the introduction of the spin-orbit potential of ref.(10) was causing
convergency problems and in agreement with ref.(10) it was ommited alltogether.

For each one, of the above energies we contacted searches of two general kinds, i.e., one
with the Volkov and one with the Minnesota potential, as the nucleon-nudleon force, in our RGM
non-local kernel. The first case produced erratic resuits for some sets of starting values but
nevertheless it had always converged to a satisfactory fashion to A<30. This was achieved
however only by allowing the potential strengths to increase about 100 MeV which would seem
to be unacceptably high. It was further noticed that the difficulties were arising by the
requirement of fixed Rs(Rv) and for all energies, as a constraint imposed by the dispersion
relation in order to have only the potential strengths depend on the energy. This in conjuction
with the fact that searches converged on several local minima (usually at least with one
unacceptable final parameter) depending on the starting values, brought the realisation that there
was no remedy against it other than to accept higher values of A but in any case at least a factor
of five better than those reported in ref.(8) for the l-independent potential search.
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A complete set of parameters for the whole energy range together with the minimum A
is given in table (1) for the Volkov and in table (2) for the Minnesota potential. Since the surface
and absorption strengths for the Volkov potential are unphysically high we decided to continue
our calculations using only the Minnesota force. The strength for the surface and volume
absorptions and the corresponding polarization potential as a function of

Table 1.Imaginary potential strengths W, and Wj, geometric parameters R and A and minimization values A for
the different energies. The numbers (1) and (2) refer to the different sets for the geometric parameters. The

Volkov potential of eq (3) is taken as the basis for the n-n force. A is the minimization values of the I-independent
potential of ref. (8) for the same energies.

(1) Ry -Rg=1.37[m, A, = A; = 0569 fm (2) Ry = 13701 fm, A, =0.568 fm
R, = 13846 fm, A,=0577fm
ECM (MeV) | W) (MeV) | We(IXMeV) | A1) WyZXMeY) | WeRXMeV) | A(2) A
234 21743 35.294 27.08 27396 33.898 26.03 136.48
245 22.184 33.485 24.21 18.76 3292 24.09 474.35
213 88.465 24.627 39.19 87.604 3. 36.12 316.25
30.1 71.759 34.99 43.06 76.773 37249 4125 394.84
4.1 86.73 38.315 30.84 66.419 37448 3031 2475
36.8 86.73 66.39 44,01 83.05 59.45 4330 91.08
39.7 84.668 15023 184.71 104.911 9546 125.14 46.35
4.1 98.66 75.33 534 106.112 99.63 40.12 8754
43.1 107.35 113.93 56.34 107.35 113.93 50.88 3459
46.1 110.09 128.65 5957 110.09 128.68 48.46 3325
525 90.28 71.15 58.68 101.32 10537 4751 368.44

energy are given in fig.(2). Some polarization potentials as a function of R for various energies
are given in fig.(3). We have set the threshold energy Epresh = 6.06 MeV which is the first

excited state of -160. For energies above 60 MeV in eq.(8) we have used the same prescription
as in ref.(4). Namely

W(E) = W(Eq) exp(-a(E-E)) E>Eg = 60 MeV

Variations of the parameter a between 0.2 and 0.5 did not change our polarization potential
more than 1% and we have set this parameter to a=0.5. For some of the energies the best fits
where achieved for either volume (f.e.30.1MeV) or surface absorption (f.e. 34.1 MeV) but
adequate fits for all levels were possible only with a mixture of volume and surface absorption.
With the polarization potentials derived in this way, we have constructed the total final
potential of eq.(6) and tried to get the best possible fit by varying the parameters of the nucleon-
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nucleon force. Excellent fits were possible if one was to accept such parameters for the nucleon-

nucleon force which would produce unreasonable values for the binding energy of the deuteron.

Table 2. The same as Table 1 but for the Minnesota potential of eq (4).

Ry = 1.3701fm, Ay =0568 fm
R = 1.384 fm, Ag = 0577 fm
Ecm(MeV) | Wy(MeV) | Ws(MeV) lA(z) _1a
234. 6.36 7.105 49.36 136.48
24.5 4415 4.145 38.15 474.35
213 4.156 3241 40.12 316.25
30.1 7.303 2.022 37.69 394.84
34.1 24.496 11.648 41.96 2475
36.8 39.769 30292 3192 91.08
39.7 19.543 18493 1266 . 4635
42.1 8.07 7.32 39.62 37.54
43.1 4.136 5.398 3627 34.59
46.1 4.345 5.735 36.41 8325
52.5 4.156 4.78 34.53 368.44

To avoid such a problem we have set an upper limit of +1% of variation of the strengths by
keeping the oscillator parameters and the radii unchanged. This, in the worst case could have a
variation of 0.2 MeV for the binding energy of the deuteron. The searches were repeated for
different values of the excange mixture parameter u. The values so obtained are reported in
table 3. They not only restore the initial goodness of the fits, but in some cases they also
produce a considerable improvement. Furthermore, given the uncertainties in our data they
seem quite satisfactory. The main exception was the 37.9 MeV for which the quality of the fit to
the angular distribution was relatively poor, where most of the A came from a few points at
large angles.

As far as the energy dependence is concerned, a monotonic energy variation is only seen
at the lower energy region, i.e. below 30 MeV. Above this energy our results show a departure
from such a smooth energy variation. In fact around 37 MeV they show some structure which

suggests, effects comming from compound states or single particle resonances or possible
doorway states from four-quastiparticles in F17,
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Table 3. Final minimization values, A(f), potential strengths and nucleon-nucleon parameters.

VR = 200.62 MeV, Vo = 178232 MeV
u=0918, Vg = 91.712 MeV
EcmMevy | WyMev) | wsMen) | ag |a
234. 2.518 4.405 24.17 136.48
245 |23 4.039 27.65 474.35
273 2.068 3.469 3721 31625
30.1 2244 3.824 34.37 394.84
34.1 2452 4445 38.11 2475
36.8 3.419 8.693 4084 91.08
39.7 4.656 18.065 127.32 46.35
42.1 3.256 9.531 39.15 37.54
43.1 2.718 9.494 40.17 34.59
46.1 2.824 7.367 35.01 3325
52.5 2.603 6.152 34.03 368.44

A word of caution is also relevant here. Our extracted values are by no means unique.
The minimization procedure showed that convergency was strongly dependent on the starting
values and that the same quality of the fits, A, could be achieved by different parameters.
4o
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Fig. 2: Final imaginary strengths Wy, Wg and polarization poten'liitl strengths WVPOL and WSPOL as a
function of energy.

To discriminate between the various different local minima, we have applied the following
restrictions : For all energies, we have started each varied parameter at the same initial
values. Then after convergency was achieved we have repeated the minimization procedure

with starting values below and above the convergency values. Only those physical acceptable
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Fig. 3: Polarization potentials VPO as a function of R at different energies.

The present study yielded also confirmatory evidence for the need of energy dependence
of the geometric parameters (radius and difuseness) of the imaginary potential. In addition they
have been found significantly smaller than those usually reported in OMP calculations with

Woods-Saxon forms.

Another undesirable feature our calculations have shown was that the required value of
the exchange mixture parameter u was somewhat different for different energies the best
compromise been the value u=0.918 which was quite closed to u=0.924 reported in ref. (10).
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