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Abstract
The pairing correlations in a single-j nuclear shell are considered. It is proven that a
simple boson mapping in terms of q-deformed bosons exists, which reproduces correctly
both the commutation relations and the energy up to first order corrections, the parameter
q being connected to the size of the shell. An exact solution in terms of a generalized

deformed oscillator is also found.

1. Introduction

Quantum algebras (also called quantum groups), which from the mathematical point
of view are q-deformations of the universal enveloping algebras of the corresponding Lie
algebras, are recently receiving much attention in physics, especially after the introduction
of the g-deformed harmonic oscillator [1, 2]. Initially used for solving the quantum Yang
Baxter equation, quantum algebras are now finding applications in conformal field theory,
quantum gravity, quantum optics, as well as in the study of spin ché.ins. Their first
applications in rotational spectra of deformed nuclei [3, 4], superdeformed nuclei [5] and
diatomic molecules (6], as well as in vibrational spectra of diatomic molecules [7, 8], have

been briefly reviewed during the 2nd Hellenic Symposium on Nuclear Physics last year [9].

* Presented by Dennis Bonatsos
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Much progress has been made in these directions since then. Concerning deformed nuclei,
not only the energy levels, but also the probabilities of the electric quadrupole transitions
connecting them have been found to be described well by the SU,(2) symmetry [10], while
for vibrational spectra of diatomic molecules an accurate description can be obtained
through the use of a suitable generalized deformed oscillator [11-13]. The construction of
classical potentials giving the same spectrum as the g-deformed harmonic oscillator [14]
and the various versions of q-deformed anharmonic oscillators used in molecular physics
[15-17] has also been advanced.

The q-deformed bosons used in the above mentioned applications satisfy commutation
relations which differ from the standard boson commutation relations, in which they reduce
in the limit in which the deformation parameter ¢ goes to 1. On the other hand, it
is well-known in nuclear physics that correlated fermion pairs in a single-j shell [18] or
several non-degenerate j-shells [19-21] satisfy commutation relations which resemble boson
commutation relations including corrections due to the presence of the Pauli principle. This
fact has been the cause for the development of boson mapping techniques (for a recent
review see (21] and references therein), by which the description of systems of fermions
in terms of bosons is achieved. In recent years boson mappings have attracted additional
attention in nuclear physics as a necessary tool in providing a theoretical justification for
the success of the phenomenological Interacting Boson Model and its various extentions
(see [22, 23] for recent overviews), in which low lying collective states of medium and heavy
mass nuclei are described in terms of bosons.

From the above observations it is clear that both g-bosons and correlated fermion
pairs satisfy commutation relations which resemble the sta.nda.tt.i boson commutation re-
lations but they deviate from them, due to the q-deformation in the former case and to
the Pauli principle in the latter. A question is thus created: Are g-bosons suitable for
the approximate description of correlated fermion pairs? In particular, is it possible to
construct a boson mapping in which correlated fermion pairs are mapped onto g-bosons,
in a way that the q-boson operators approximately satisfy the same commutation relations
as the correlated fermion pair operators? In this talk we show for the simple case of SU(2)

that such a mapping is possible. In section 2 we shall give an approximate solution to
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the problem, while in section 3 an exact solution will be constructed. Finally in section 4
discussion of the present results and plans for future work will be given.

2. Approximate description of the pairing correlations in a single-j shell in
terms of q-deformed bosons

Let us consider the single-j shell model [18-21]. One can define fermion pair and
multipole operators as

1 '
Ay =—= 7 Z(Jme [IM)a},at (1)

mm’

Bim= Z(JmJ - m/[JM)(=1) "™ a}njm, (2)
with the following definitions
A = [ASu]*, Biy =[Bim]*. (3)

In the above a};, (ajm) are fermion creation (annihilation) operators and (jmjm'|JM)
are the usual Clebsch-Gordan coefficients.

The pair and multipole operators given above satisfy the commutation relations of
the SO(2(2j+1)) algebra. In the present talk we will restrict ourselves to fermion ﬁairs
coupled to angular momentum zero. The relevant commutation relations take the form

Ne o Nr

PR A=A A=, (@

[AO, AE)F] =1-
where N is the number of fermions, 20 = 25 + 1 is the size of the shell, and

By = Np/V2Q. ' (5)

With the identifications

Jp =VQAY, J_=VQ4, o= : (6)
eq. (4) takes the form of the usual SU(2) commutation relations

(o J_] =200, [odul = T4, [Jo,J=]= —J-. (7)
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The simplest pairing Hamiltonian one can consider has the form ([24] and references

therein)

= —GQA{ Aq. (8)

The Casimir operator of SU(2) can be written as

Q Nrp Q
+ (1 -y =2 9
{AO,A0}+2(1 Q) 2+1, 9)
while the pairing energy takes the form
2
E N Np Nr (10)

e~ 2 wm T

Our aim is to check if there is a boson mapping for the operators A, Ap and Np in
terms of q-deformed bosons, having the following properties:

i) The mapping is simpler than the usual Holstein-Primakoff mapping [21], i.e. to
each fermion pair operator A7, Ao corresponds a bare g-boson operator and not a boson
operator accompanied by a square root (the Pauli reduction factor).

ii) The commutation relations (4) are satisfied up to a certain order.

ii) The pairing energies of eq. (10) are reproduced up to the same order.

In recent work q-numbers are defined as

@ —qF
[z] = g (11)
where ¢ can be real (¢ = e, where 7 real) or a phase (¢ = e'”, with 7 real). The g-deformed
harmonic oscillator (1, 2] is defined in terms of the creation and annihilation operators a*

and a and the number operator N, which satisfy the commutation relations
[N,a*]=a*, [N,a]=—a, aa* —gFla*a = =, (12)
An immediate consequence of (12) is that
ata=[N], aat =[N+1]. (13)
The Hamiltonian of the q-deformed harmonic voscillator is

H= —h;i(aa"' +ata), (14)
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and its eigenvalues are

E(n) = "7‘”([74 +n+1). (15)

For q being a phase, the commutator of @ and a* takes the form

(2N+1)r

=1 (16)
2

COSE

[a,a"] =[N +1] - [N] =

In physical situations 7 is expected to be small (i.e. of the order of 0.01), as in the
cases of refs. [3-9]. Therefore in eq. (16) one can take Taylor expansions of the functions

appearing there and thus find an expansion of the form
T T o 3
[a,a+]=1——2—(N2+N)+2—4(N +2N° —=N)—.... . (17)

We remark that the first order corrections contain not only a term proportional to N, but
in addition a term proportional to N2, which i§ larger than N. Thus one cannot make the
simple mapping

Ag —a, Af —at, Np—-2N, (18)

because then one cannot get the commutation relation (4) correctly up to the first order of
the corrections. The same problem appears in the case that ¢ is real as well. In addition,
by making the simple mapping of eq. (18) the pairing Hamiltonian can be written as

=8

&g = ata = [N]. (19)

In the case of small 7, one can again take Taylor expansions of the trigonometric (hyper-
bolic) functions appearing in the definition of the q-numbers for ¢ being a phase (real) and
thus obtain the following expansion

6
15120

i

0 (31N —49N3 4 21N°*—3N")+...,

(20)

(TN —10N3+3N°%) %

(V] =Nﬂ:T6—2(N—N3)+

where the upper (lower) sign corresponds to g being a phase (real). We remark that
while the first order corrections in eq. (10) are proportional to NZ and N, here the first
order corrections are proportional to N and N*. Thus neither the pairing energies can be

reproduced correctly by this mapping.
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However, a different version of the q-harmonic oscillator can be obtained by defining

(see [24] and references therein) the operators b, b* through the equations
a=q2g~N2, gt = plg NIt
Eq. (12) then gives
[N,6¥] =b%, [N,b=-b, bbt—g*tb=1
By using the symbol Q = ¢* and introducing the Q-number

MQ=%:;

we find the analog of the eq. (13)
btb =[N]g, b =[N +1]q.
The Hamiltonian of the corresponding deformed harmonic oscillator has the form
H= h—;—(bb+ + b%b),
the eigenvalues of which are

B(n) = "(fnla + [ +1lo)

(21)

(22)

(23)

(24)

(25)

(26)

It should be noticed at this point that the definition of q-number given in eq. (23) was

historically the first to be introduced in the framework of g-analysis. For convenience from

now on we will call the numbers of eq. (23) the Q-numbers, whilé the numbers of eq. (11)

we will call the q-numbers.

From the above relations, it is clear that the following commutation relation holds

[b,5*] = [N +1]g - [N]g =Q".

Defining @ = €T this can be written as

T?N?  T3N®
5 7%

[b,b*] =1+ TN + +.os

(27)

(28)
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We remark that the first order correction is proportional to N. Thus, by making the boson

mapping
Af - bt, Ag— b, Np—2N, (29)

one can satisfy eq. (4) up to the first order of the corrections by determining T = -2/

We should now check if the pairing energies (eq. (10)) can be found correctly up to the
same order of approximation when this mapping is employed. The pairing Hamiltonian in
this case takes the form a

N . 30
—GQ_b+b [Nlq- (30)

Defining Q = eT it is instructive to construct the expansion of the Q-number of eq.
(23) in powers of T. Assuming that T is small and taking Taylor expansions in eq. (23)
one finally has

2 T3
[Nlg=N + %(N’ -N)+ %(2N3 -3N?+1)+ -ZZ(N4 —2N* +NH)+... (31)

Using the value of the deformation parameter T = ~2/§}, determined above from the
requirement that the commutation relations are satisfied up to first order corrections, the

pairing energies become

E N2-N 2N®-3N24+1 N*—2N°4N?
=N + - +

— - 32
-GQ Q 302 303 (32)

The first two terms in the rhs of eq. (32), which correspond to the leading term plus the
first order corrections, are exactly equal to the pairing energies of eq. (10), since Np — 2N.
We therefore conclude that through the boson mapping of eq. '(29) one can both satisfy
the fermion pair commutation relations of eq. (4) and reproduce the pairing energies of
eq. (10) up to the first order corrections.

3. Exact description of the pairing correlations in a single-j shell in terms
of a generalized deformed oscillator

In the previous section we found that an approximate description of the pairing cor-
relations in a single-j shell can be given in terms of Q-deformed bosons. In this section an

exact description will be given, using a generalized deformed oscillator.
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Instead of using deformed bosons satisfying eq. (12) or eq. (22), one can use bosons

satisfying the commutation relation (11, 25]
f(aa*) — f(ata) =1, (33)

where f(z) is a real analytic function defined on the real positive axis. In the case of the
usual harmonic oscillator one has f(z) = z, which leads to the usual boson commutation
relation [a,a*] = 1.

The idea of the generalized deformed oscillator has been described in detail in [11,

12]. The energy operator is
H= -‘g—(aa"' +ata), (34)

while its eigenvalues are
B = S (F(n+1)+ F(n)), (35)

where F = f~! is the structure function determining the properties of the oscillator.
We now apply this procedure in the case of the pairing in a single-j shell mentioned
before. The boson number is half the fermion number, i.e. N = Ng/2. Then eq. (10) can

be written as

E N? N
—— =N—-—+—. 36
ea- V"o ta (39)
Taking into account refs [11, 12] and eq. (36) one has
N2 N
+. — e i e
ata=F(N)=N ato (37)

In addition one has
( + ) + .

; aat =F(N+1)=N+1- & 3 (38)
What we have constructed is a boson mapping for the operators 4y, A, Np:
Ay —a, Af —»a*, Np—2N. (39)

From eq. (37) it is clear that this mapping gives the correct pairing energy. In addition

one has

fa,a*] = F(N +1) = F(N) = 1 - 2, (40)
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in agreement to eq. (4). Thus the correct commutation relations are also obeyed.

An exact hermitian boson mapping for the SU(2) algebra is known to have the form

[18-21]
A =af\[1-22, Ao =\[1-Ta, Np=2n, (41)

where af (ao) are boson creation (annihilation) operators carrying angular momentum
zero and ng is the number of these bosons. In this mapping the Pauli principle effects
are carried by the square roots accompanying the ordinary boson operators, while in the
mapping of eq. (39) the Pauli principle effects are “built in” the deformed bosons.

The generalized oscillator obtained here has energy spectrum

1 1 N?
Ey=(FN)+F(N+1)=N+3- o, (42)
which is the spectrum of an anharmonic oscillator.

It is worth mentioning at this point that the energy spectrum of the generalized

oscillator corresponding to the pairing correlations (eq. (42)) can be rewritten as

EN=2< 1 Q+1

a -

1 1 1
§ TV ) -V ) )

On the other hand, it is known that for the modified Péschl-Teller potential
V(z) = D tanh®(z/R), (44)

the energy spectrum is given by [12]

Ev= (1Y femprrm o1 v+ hy-tave Ly (45)
N=mr\TgTavem 2/ 779 2’ )

It is thus clear that the energy spectrum of the generalized oscillator studied here can be
obtained from the modified Poschl-Teller potential for special values of the potential depth
D.

In conclusion, we have constructed a generalized deformed oscillator which satisfies
the same commutation relations as fermion pair and multipole operators of zero angular
momentum in a single-j shell, and, in addition, reproduces the pairing energy of this

shell exactly. We have thus demonstrated that an exact hermitian boson mapping of a
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system of angular-momentum-zero fermion pairs in terms of bare deformed bosons can be
constructed, while in the usual case the ordinary bosons are accompanied by square roots
due to the Pauli principle effects. The oscillator corresponding to the pairing problem has
a spectrum which can be reproduced up to first order perturbation theory by a harmonic
oscillator with an z* anharmonicity [16]. The construction of a generalized deformed
oscillator corresponding to any anharmonic oscillator has also been achieved [16].
4. Discussion

The results obtained in this letter indicate that deformed bosons might be a convenient
tool for describing systems of fermion pairs under certain conditions. The generalization
of the results obtained here to fermion pairs of nonzero angular momentum, which will
allow for a fuller treatment of the single-j shell in terms of deformed bosons, is under
investigation. Another interesting direction is the construction of exactly soluble models
having quantum algebraic symmetries. The construction of a g-generalization of the full
IBM [22-23] has not been carried out yet. However, a two-dimensional toy model, bearing
the main characteristics of IBM and having an SU,(3) symmetry, has been studied in detail
(26].
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