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Abstract 

The pairing correlations in a single-j nuclear shell are considered. It is proven that a 

simple boson mapping in terms of q-defonned bosons exists, which reproduces correctly 

both the commutation relations and the energy up to first order corrections, the parameter 

q being connected to the size of the shell. An exact solution in terms of a generalized 

deformed oscillator is also found. 

1. Introduction 

Quantum algebras (also called quantum groups), which from the mathematical point 

of view are q-deformations of the universal enveloping algebras of the corresponding Lie 

algebras, are recently receiving much attention in physics, especially after the introduction 

of the q-deformed harmonic oscillator [1, 2]. Initially used for solving the quantum Yang 

Baxter equation, quantum algebras are now finding applications in conformai field theory, 

quantum gravity, quantum optics, as well as in the study of spin chains. Their first 

applications in rotational spectra of deformed nuclei [3, 4], superdeformed nuclei [5] and 

diatomic molecules [6], as well as in vibrational spectra of diatomic molecules [7, 8], have 

been briefly reviewed during the 2nd Hellenic Symposium on Nuclear Physics last year [9]. 

* Presented by Dennis Bonatsos 
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Much progress has been made in these directions since then. Concerning deformed nuclei, 

not only the energy levels, but also the probabilities of the electric quadrupole transitions 

connecting them have been found to be described well by the SUg(2) symmetry [10], while 

for vibrational spectra of diatomic molecules an accurate description can be obtained 

through the use of a suitable generalized deformed oscillator [11-13]. The construction of 

classical potentials giving the same spectrum as the q-deformed harmonic oscillator [14] 

and the various versions of q-deformed anharmonic oscillators used in molecular physics 

[15-17] has also been advanced. 

The q-deformed bosons used in the above mentioned applications satisfy commutation 

relations which differ from the standard boson commutation relations, in which they reduce 

in the limit in which the deformation parameter q goes to 1. On the other hand, it 

is well-known in nuclear physics that correlated fermion pairs in a single-j shell [18] or 

several non-degenerate j-shells [19-21] satisfy commutation relations which resemble boson 

commutation relations including corrections due to the presence of the Pauli principle. This 

fact has been the cause for the development of boson mapping techniques (for a recent 

review see [21] and references therein), by which the description of systems of fermions 

in terms of bosons is achieved. In recent years boson mappings have attracted additional 

attention in nuclear physics as a necessary tool in providing a theoretical justification for 

the success of the phenomenological Interacting Boson Model and its various extentions 

(see [22, 23] for recent overviews), in which low lying collective states of medium and heavy 

mass nuclei are described in terms of bosons. 

From the above observations it is clear that both q-bosons and correlated fermion 

pairs satisfy commutation relations which resemble the standard boson commutation re

lations but they deviate from them, due to the q-deformation in the former case and to 

the Pauli principle in the latter. A question is thus created: Are q-bosons suitable for 

the approximate description of correlated fermion pairs? In particular, is it possible to 

construct a boson mapping in which correlated fermion pairs are mapped onto q-bosons, 

in a way that the q-boson operators approximately satisfy the same commutation relations 

as the correlated fermion pair operators? In this talk we show for the simple case of SU(2) 

that such a mapping is possible. In section 2 we shall give an approximate solution to 
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the problem, while in section 3 an exact solution will be constructed. Finally in section 4 

discussion of the present results and plans for future work will be given. 

2. Approximate description of the pairing correlations in a single-j shell in 

t e r m s of q-deformed bosons 

Let us consider the single-j shell model [18-21]. One can define fermion pair and 

multipole operators as 

Λ Ϊ Μ = 4 Σ (Jmjm'\JM)ajmafmt, (1) 
^ mm' 

BjM = -τ±= J2(jmj - m'\JM)(-iy-m'afmajm,, (2) 
V2J + 1 Ü 

with the following definitions 

4 J M = [A}M]+ , B+M = [BJM)+. (3) 

In the above a+ (a j m) are fermion creation (annihilation) operators and (jmjm'\JM) 

are the usual Clebsch-Gordan coefficients. 

The pair and multipole operators given above satisfy the commutation relations of 

the SO(2(2j+l)) algebra. In the present talk we will restrict ourselves to fermion pairs 

coupled to angular momentum zero. The relevant commutation relations take the form 

[A0,A+] = 1 - ^ , [ ^ , Λ + ] = Α+, [^Ao] = -Ao, (4) 

where JV> is the number of fermions, 2Ω = 2j + 1 is the size of the shell, and 

Bo = NF/V2ti. (5) 

With the identifications 

J + = VfìA+, 7_ = ν/ΩΑ0, Jo = NF~ , (6) 

eq. (4) takes the form of the usual SU(2) commutation relations 

[ J + , J _ ] = 2 J 0 , [Jo,J+] = J+, [Jo, «/-] = - J ~ (7) 
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The simplest pairing Hamiltonian one can consider has the form ([24] and references 

therein) 

H = -GfìA+Ao. (8) 

The Casimir operator of SU(2) can be written as 

Μ Ϊ , Λ „ } + | ( 1 - ^ ) 2 = | + 1, (9) 

while the pairing energy takes the form 

E NF N2

F NF + iL. (10) 
(-Gil) 2 4Ω 2Ω 

Our aim is to check if there is a boson mapping for the operators A J , A0 and iV> in 

terms of q-deformed bosons, having the following properties: 

i) The mapping is simpler than the usual Holstein-PrimakofF mapping [21], i.e. to 

each fermion pair operator Ajj", Ao corresponds a bare q-boson operator and not a boson 

operator accompanied by a square root (the Pauli reduction factor). 

ii) The commutation relations (4) are satisfied up to a certain order. 

ii) The pairing energies of eq. (10) are reproduced up to the same order. 

In recent work q-numbers are defined as 

[χ] = Ç = £ . (Π) 
q-q 

where q can be real (q = e r , where r real) or a phase (q = e , r , with τ real). The q-deformed 

harmonic oscillator [1, 2] is denned in terms of the creation and annihilation operators a+ 

and a and the number operator N, which satisfy the commutation relations 

[Ν, a + ] = a + , [N, a] = -a, aa+ - q^a+a = q±N'. (12) 

An immediate consequence of (12) is that 

a+a = [N], aa+ = [N + 1]. (13) 

The Hamiltonian of the q-deformed harmonic oscillator is 

Η = γ(αα++α+α), (14) 
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and its eigenvalues are 

£ ( η ) = γ ( Μ + [η + 1]). (15) 

For q being a phase, the commutator of a and a+ takes the form 

(2N+1)T 

[a,a+] = lN + l)-[N} = C°S

rJ . (16) 

In physical situations r is expected to be small (i.e. of the order of 0.01), as in the 

cases of refs. [3-9]. Therefore in eq. (16) one can take Taylor expansions of the functions 

appearing there and thus find an expansion of the form 

[α,α+] = 1-'ζ-(Ν2+Ν) + ^(Ν* + 2Ν3-Ν)-.... . (17) 

We remark that the first order corrections contain not only a term proportional to iV, but 

in addition a term proportional to N2, which is larger than N. Thus one cannot make the 

simple mapping 

Ao-*a, At->a+, NF-*2N, (18) 

because then one cannot get the commutation relation (4) correctly up to the first order of 

the corrections. The same problem appears in the case that q is real as well. In addition, 

by making the simple mapping of eq. (18) the pairing Hamiltonian can be written as 

Η 

-GO, 
= a+a = [N]. (19) 

In the case of small r, one can again take Taylor expansions of the trigonometric (hyper

bolic) functions appearing in the definition of the q-numbers for q being a phase (real) and 

thus obtain the following expansion 

[N] = N±~(N -N3)+^—(7N -ION3 +3N5)±-^—-{31N-49N3+21N5-ZN7) + ..., 
6 360 15120 

(20) 

where the upper (lower) sign corresponds to q being a phase (real). We remark that 

while the first order corrections in eq. (10) are proportional to NF and NF, here the first 

order corrections are proportional to Ν and N3. Thus neither the pairing energies can be 

reproduced correctly by this mapping. 
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However, a different version of the q-harmonic oscillator can be obtained by defining 

(see [24] and references therein) the operators 6, b+ through the equations 

a = qll2bq-Nl\ a+ = qV2q-N'2b+. (21) 

Eq. (12) then gives 

[JV,&+]=6+, [N,b] = -b, bb+-q2b+b = l. (22) 

By using the symbol Q = q2 and introducing the Q-number 

WQ-fff. ™ 

we find the analog of the eq. (13) 

b+b = [N)Q, bb+ = [JV + 1] Q . (24) 

The Hamiltonian of the corresponding deformed harmonic oscillator has the form 

H = ^ ( 6 & + + 6+6), (25) 

the eigenvalues of which are 

£(n) = Y([n]Q + [n + l]g). (26) 

It should be noticed at this point that the definition of q-number given in eq. (23) was 

historically the first to be introduced in the framework of q-analysis. For convenience from 

now on we will call the numbers of eq. (23) the Q-numbers, while the numbers of eq. (11) 

we will call the q-numbers. 

From the above relations, it is clear that the following commutation relation holds 

[ M + ] = [JV + l ] Q - [ t f ] Q = Q N . (27) 

Defining Q = e this can be written as 

rp2 ΛΓ2 7>3 A7-3 

[b,b^] = l + TN + ~ + i-f- + .... (28) 
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We remark that the first order correction is proportional to N. Thus, by making the boson 

mapping 

A Ì - Ò + , A o - 6 , NF->2N, (29) 

one can satisfy eq. (4) up to the first order of the corrections by determining Τ = —2/Ω. 

We should now check if the pairing energies (eq. (10)) can be found correctly up to the 

same order of approximation when this mapping is employed. The pairing Hamiltonian m 

this case takes the form 

H = 5 + 6 = [JV]Q. (30) 
-GQ 

Defining Q = eT it is instructive to construct the expansion of the Q-number of eq. 

(23) in powers of T. Assuming that Τ is small and taking Taylor expansions in eq. (23) 

one finally has 

[N]Q = N + | ( i V 2 - N) + ^ ( 2 i V 3 - 3JV2 + 1 ) + ^(N4 - 2JV3 + N2) + . . . (31) 
Ζ \Z ZA 

Using the value of the deformation parameter Τ = -2/Ω, determined above from the 

requirement that the commutation relations are satisfied up to first order corrections, the 

pairing energies become 

E A r N2-N 2iV3-3iV2 + l N4-2N3+N2 , , Ο Ο Λ 

-GO. Ω 3 Ω 2 3 Ω 3 

The first two terms in the rhs of eq. (32), which correspond to the leading term plus the 

first order corrections, are exactly equal to the pairing energies of eq. (10), since NF —*• 2iV. 

We therefore conclude that through the boson mapping of eq. (29) one can both satisfy 

the fermion pair commutation relations of eq. (4) and reproduce the pairing energies of 

eq. (10) up to the first order corrections. 

3. Exact description of the pairing correlations in a single-j shell in terms 

of a generalized deformed oscillator 

In the previous section we found that an approximate description of the pairing cor

relations in a single-j shell can be given in terms of Q-deformed bosons. In this section an 

exact description will be given, using a generalized deformed oscillator. 
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Instead of using deformed bosons satisfying eq. (12) or eq. (22), one can use bosons 

satisfying the commutation relation [11, 25] 

/ ( α α + ) - / ( α + α ) = 1, (33) 

where f(x) is a real analytic function defined on the real positive axis. In the case of the 

usual harmonic oscillator one has f(x) = x, which leads to the usual boson commutation 

relation [a, a + ] = 1. 

The idea of the generalized deformed oscillator has been described in detail in [11, 

12]. The energy operator is 

while its eigenvalues are 

H=^(aa++a+a)1 (34) 

£ n = | ( F ( n + l ) + F(n)), (35) 

where F = / _ 1 is the structure function determining the properties of the oscillator. 

We now apply this procedure in the case of the pairing in a single-j shell mentioned 

before. The boson number is half the fermion number, i.e. Ν = iV>/2. Then eq. (10) can 

be written as 

E =N-^- + l (36) 

Taking into account refe [11, 12] and eq. (36) one has 

a + 0 = f ( J V ) = J V _ Ç + £ . (37) 

In addition one has 

a a + = F ( i V + l ) = iV + l - ^ ^ + ^ i . (38) 

What we have constructed is a boson mapping for the operators Ao, AQ, NF-

Ao-*a , AZ->a+, NF-+2N. (39) 

From eq. (37) it is clear that this mapping gives the correct pairing energy. In addition 

one has 
27V 

[a,a+] = F(N + 1) - F(N) - 1 - -g - , (40) 
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in agreement to eq. (4). Thus the correct commutation relations are also obeyed. 

An exact hermitian boson mapping for the SU(2) algebra is known to have the form 

[18-21] 

AÌ = a°+V^~¥' A° = \P%a0ì ^ = 2no' (4i) 

where a j (a0) are boson creation (annihilation) operators carrying angular momentum 

zero and no is the number of these bosons. In this mapping the Pauli principle effects 

are carried by the square roots accompanying the ordinary boson operators, while in the 

mapping of eq. (39) the Pauli principle effects are "built in" the deformed bosons. 

The generalized oscillator obtained here has energy spectrum 

1 1 iV2 

EN = ^(F(N)+F(N + l)) = N + - - — , (42) 

which is the spectrum of an anharmonic oscillator. 

It is worth mentioning at this point that the energy spectrum of the generalized 

oscillator corresponding to the pairing correlations (eq. (42)) can be rewritten as 

2 / 1 Ω + 1 / χ τ 1* 1 / Λ Γ l.2\ /xoN 

On the other hand, it is known that for the modified Pöschl-Teller potential 

V(x) = Dtanh2(x/R), (44) 

the energy spectrum is given by [12] 

It is thus clear that the energy spectrum of the generalized oscillator studied here can be 

obtained from the modified Pöschl-Teller potential for special values of the potential depth 

D. 

In conclusion, we have constructed a generalized deformed oscillator which satisfies 

the same commutation relations as fermion pair and multipole operators of zero angular 

momentum in a single-j shell, and, in addition, reproduces the pairing energy of this 

shell exactly. We have thus demonstrated that an exact hermitian boson mapping of a 
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system of angulax-momentum-zero fermion pairs in terms of bare deformed bosons can be 

constructed, while in the usual case the ordinary bosons are accompanied by square roots 

due to the Pauli principle effects. The oscillator corresponding to the pairing problem has 

a spectrum which can be reproduced up to first order perturbation theory by a harmonic 

oscillator with an i 4 anharmonicity [16]. The construction of a generalized deformed 

oscillator corresponding to any anharmonic oscillator has also been achieved [16]. 

4. Discussion 

The results obtained in this letter indicate that deformed bosons might be a convenient 

tool for describing systems of fermion pairs under certain conditions. The generalization 

of the results obtained here to fermion pairs of nonzero angular momentum, which will 

allow for a fuller treatment of the single-j shell in terms of deformed bosons, is under 

investigation. Another interesting direction is the construction of exactly soluble models 

having quantum algebraic symmetries. The construction of a q-generalization of the full 

IBM [22-23] has not been carried out yet. However, a two-dimensional toy model, bearing 

the main characteristics of IBM and having an SU,(3) symmetry, has been studied in detail 

[26]. 
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