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Abstract 

A quantum cluster approach for light mixed microclusters, composed of 

neutral alkali atoms and considered as atomic fermion clusters, is introduced. 

1. Introduction 

Microclusters consist of two atoms up to several thousands of isolated 

atoms of any chemical element (or mixture of elements). Their properties 

substantially differ from those of the same element in bulk, in such a way 

that one can consider microclusters as a new state of matter beyond solids, 

liquids, gases and plasma, i.e., as a fifth state of matter. 

Besides the academic community, industries intensively work on 

microclusters due to many expected applications, e.g., in catalysis, in surface 

covering, in studies of the stage between two phases, etc. The field of clusters 

is indeed interdisciplinary and its researchers come from chemistry, 

crystallography, solid state, atomic, nuclear, plasma, surface physics, etc. 

Experimental methods applied for the production of microclusters 

include supersonic expansion of vapors of the specific element, bombardment 

of a metal surface by ions, use of liquid metal sources, etc. The theoretical 
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models in the field of clusters come from chemistry (usually considering 

electron orbital interactions for given atomic positions each time), from solid 

state and atomic physics (i.e., different jellium models of free electrons 

resulting from derealization of valence electrons of the constituent atoms), 

and from nuclear physics (where atoms or their ions are taken as atomic 

fermions or atomic bosons depending on the odd or even number of their 

electrons, respectively). 

In general, the study of microclusters tends to create a new branch of 

physics — a branch of few and many but not too many particles, of which 

atomic and nuclear physics and the physics of microclusters will be a part. 

2. Clusters of mixed neutral alkali atoms 

It is considered that under proper experimental conditions (i.e., small 

number of particles, low temperature, etc.) derealization of the valence 

electrons does not occur and thus the constituent atoms remain neutral. Under 

these conditions the jellium model, which presupposes derealization of the 

valence electrons, is not applicable and the alkali atoms (possessing one 

valent electron per atom) behave like atomic fermions [1,2]. 

It has been found that clusters of mixed neutral alkali atoms (e.g., 

N a n K m ) very much resemble the atomic nucleus [3] (e.g., of η protons and of 

m neutrons) and thus their theoretical treatment can take place in a model 

analogous to nuclear shell model [1,2]. The results of this model become closer 

to reality if the central potential considered is not common for all particles 

(as usually assumed in nuclear physics), but common only for the particles of 

a particular shell. Thus, magic numbers and other properties of this kind of 
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clusters result as properties of atomic fermions in a shell-dependent, strongly 

non-local potential [4,6]. 

The purpose of the present paper is to show that the concept of 

fermionic behavior for neutral alkali atoms is of general validity, e.g. even 

for clusters with few atoms, i.e., for the cases where we do not have enough 

atoms to form shells. Mixed alkali dimers are taken as examples to 

demonstrate the model. 

The approach applied, at present, is semiclassical. Quantum mechanics is 

introduced through the uncertainty principle and the relative orbiting of the 

constituents, but the Schrödinger equation is not used. 

3. Two-atomic-f ermion model 

In the model the atoms at the ground state and the low energy excited 

states are represented by hard spheres (permitting no overlapping among each 

other), which are considered opaque, i.e., hiding any interior structure. Thus, 

while the atoms, assumed as atomic fermions, are considered confined in the 

whole cluster volume according to the uncertainty principle, in addition, they 

have a certain probability of exhibiting collective behavior of their spheres. 

The study proceeds by examining the properties of all characteristic 

modes of motion of the quantum cluster. These modes for the dimer are 

shown in Fig. 1 (a)-(c). Specifically, in this figure the two atoms are confined 

in the volume shown (broken line) and, in addition, they have a certain 

probability of exhibiting collective rotation, i.e. around their common center 

of mass in mode (a), of the sphere 1 around sphere 2 in mode (b) and vice 

versa in mode (c). In all modes the atom spheres are considered in contact and 

the volume of the atom confinement is defined as the spherical envelope of 
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the space specified by their possible collective rotation (broken line). The 

radii of these envelopes are: mode (a) Ra = (q + r2)/2 + q, mode (b) Rfc = 

(rl + r2) + r l a n d niode (c) Rc = (q + r2) + t2-

(a) (b) 

Fig. 1 Modes of collective rotation of neutral alkali dimers. 

4. Calculations and discussion 

In the present paper we deal with four observables of a mixed alkali 

dimer, namely, spin, binding energy (B.E.), d-state admixture (x) to the 

predominant s-state of the dimer ground state, and r.m.s. charge radius. 

Since each neutral alkali atom possesses spin 1/2, the two neutral atoms 

in the mixed alkali dimer couple their spins to a total (dimer) spin J equal 

either to 0 or 1. Given that the various alkali atoms differ substantially both 

in size and mass, they are distinguishable. Therefore the Pauli principle is 

applicable separately to each kind. Thus, the quantum states are occupied by 

each component independently. The combination which reflects the ground 

state properties is determined by the least energy of the two fermion system. 

In the particular case of a mixed alkali dimer, each alkali atom in the ground 

state can be in one of the states \ntmfm^ >=|100±y > and consequently the 

energetically favored spin combination leads to a total spin J=l, which might 
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be the most probable value of the total spin of the dimer. However, an 

experimental verification is called for. 

The effective potential between the two atoms is taken to be of the form 

"-4-4-
r r 

It is noted that this is a simplification, since for a detailed investigation 

additional effects should be considered [7]. 

The part of kinetic energy due to the confinement of the two atoms in 

volume of radius Rmax i s totally attributed to the s-state of the dimer and is 

written 

h2 

Ts>( =-)*2, (2) 
2mRl

s 

where R s = (τ\ + Γ2)+η. The sizes of the atom spheres τ\ and r2 may come 

from [8]. 

Provided that the two alkali atoms differ in size, the relative motion is 

meaningful. The part of kinetic energy due to relative motion of the two 

atoms is totally attributed to the d-state of the dimer and is written 

Td=h2i(i + l)/2m<R%>, (3) 

where < R.J >1/2 is the classical orbit of the sphere number 2 given by the 

relation: 

< R d > , / 2 = [(ri + r 2 ) 2 + < r 2

2 > ] 1 / 2 . (4) 
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Thus, the total kinetic energy for the dimer can be expressed as follows 

Τ = (l-x)Ts+(x)Td , (5) 

where χ is the d to s-state admixture. 

The binding energy (B.E.) for the dimer is written 

B.E. = V-T. (6) 

For the charge root mean square radius of the dimer we obtain 

2 1/2 2 1/2 / t Λ 2 1/2 , N 

<r >ch =<r >s (l-x)+<r >d (x) 

= Λ/06[(η+Α-2) + / · 2 ](1-χ)+[(η+Α· 2 ) 2 + </· 2

2 >] 1 / 2 (χ), 
(7) 

where < r >lJ2 is estimated by assuming a uniform charge distribution in the 

volume of Fig. 1(c). 

Finally, the magnetic moment of the dimer μ is given by the expression 

μ = (μι+μ,)--(μι+μΊ--)(χ), (8) 
2 ' 2 

where μχ = μ2 = v'/7(/? + 2), η being the number of the unpaired electrons. That 

is for alkali n=l. Thus expression (8) becomes in this case: 

μ = 2 ν 3 - 3 ( ν 3 - - ) ( . γ ) (9) 
4 
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5. Concluding remarks 

Unfortunately, due to lack of information about the parameters A and Β 

of potential (1), it is not possible at present to obtain numerical results for the 

observables of the dimer. It is interesting, however, that the present very 

simplified quantum cluster approach (even though the present model is 

perhaps less elegant than other existing approaches [9-13]) leads to very good 

results of all observables of the deuteron, which is the nuclear analogue of 

the atomic dimer [14]. 

The advantage of the present work is that finite and not point particles, 

together with their relative motion, are employed. All numerical values 

depend on these finite sizes. The different size between sphere 1 and sphere 2 

is supported by the literature [8] and helps us to conceptualize the nature of 

the d-state of the dimer. It is due to this difference that a relative motion 

between the two atom spheres is meaningful in the dimer. Due to this relative 

motion, the volume of confinement of the two particles increases (Fig. 1) and 

the related kinetic energy decreases (8). 

The present paper underlines the necessity of investigating the 

experimental conditions (method of production, critical size and temperature, 

etc.) under which alkali atoms remain neutral (no derealization of their 

valence electrons) and thus behave like atomic fermions, a fact responsible 

for many novel properties bringing atomic cluster physics parallel to nuclear 

physics. The fact that this approach gives encouraging results for the deuteron 

[14] makes it promising for the case of the atomic clusters, where in this paper 

the mixed alkali dimers are taken as an example. 
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Finally, the present paper underlines the idea that new as yet unobserved 

properties of alkali microclusters should be investigated. Perhaps the most 

important of them are the orbiting properties of atoms implying a series of 

properties due to orbital angular momentum, i.e. definite spin properties, 

independent particle and collective modes of excitation of individual species, 

etc. For an experimental verification of such properties, nuclear methods 

should be employed. 
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