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THE INFLUENCE OF THE NUCLEAR SURFACE DIFFUSENESS ON
THE TRANSITION CHARGE DENSITIES.*

T. S. KOSMAS and J. D. VERGADOS

Division of Theoretical Physics, University of loannina, GR 451 10 Ioannina, Greece.

Abstract

Proton partial occupancies of the nuclear surface orbits are used in a modified shell
model approach to study isoscalar dipole transition charge deusities and form factors
for self-conjugate nuclei. The energy-weighted sum-rules of Harakeh-Dieperink for both
the transition form factor and transition charge density are modified so as fractional
occupation probabilities of the states may be used. The partial occupancies of the surface
nlj-levels are determined by fitting to the experimental inelastic scattering data and

compared with those found previously in the study of nuclear ground state properties.

1. Introduction

The experimental data in the experiments of inelastic electron, proton and a-particle
scattering by nuclei have shown the existence of various giant multipole states in low
energies. They have been considered very important, since they are related directly to
important quantities such as the effective charge of El transitions. Among them the
isoscalar dipole resonances in self-conjugate nuclei at low energies (17,7 = 0 states)
have received a special theoretical [1-4] and experimental [5-6] interest since they can be
very helpful to clarify the excitation mechanism of these nuclei. Though electric dipole
resonances are forbidden by isospin in such nuclei (T3 = 0, AT = 0), it is now very well
known that they have been observed in some nuclei like '*0 (E, = 7.118MeV), *°Ca
(E; = 6.95MeV) and others [7-11].

Theoretically, transition charge densities are studied by using nuclear models and
sum-rule methods. Particularly the sum rules have played an important role in the

analysis of the inelastic electron and hadron scattering by nuclei. In ref. [1] Harakeh

* Presented by T. S. Kosmas
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and Dieperink obtained a sum rule for the form factor describing the isoscalar dipole
excitations caused by the hadron-nucleus scattering and which can be interpreted in
the long-wavelength limit by means of isospin admixures to the ground state or to the
17, T = 0 states [11,12].

In the mean field approximation to the nuclear many-body problem it is assumed
that shells are occupied up to the Fermi level and empty above it and this is a fairly
successful model in describing ground state charge densities and in providing the basis
for shell model calculations at low excitation energy. However, the basic assumption
of closed shells is an approximation only which is not completely supported by recent
experiments even for "core nuclei” like *°Ca. One should add dynamical corrections to
the static mean field in order to account for the nucleon-nucleon correlations which are
predicted to diffuse the Fermi surface and induce a depletion of states below the Fermi
level [13-15]. These correlations may in part be understood in terms of partial occupancy
of the surface orbits [10,14,15]. It is also given the fact that many nuclear properties do
depend on the occupancy of the valence shells. Though absolute occupation probabilities
can be determined from the spectral functions obtained from (e, ¢'p) experiments e.g. at
NIKHEF [16], sum rule methods are also used.

In ref. [15], it is given a compact analytical expression for the ground state charge
distribution with the aid of which it is constructed a general method such that fractional
occupation probabilities for the (surface) orbits can be used. Also compact analytical
expressions are obtained by using a Gaussian folding over the point nucleon distribution
expressed in terms of spherically symmetric harmonic oscillator wavefunctions. The pur-
pose of the present work is to study the transition charge density p;(r) and the form
factor Fi(q) for the 17, T = 0 states of self-conjugate nuclei by using this method. For
this aim the isoscalar dipole sum rules of Harakeh and Dieperink [1] are modified such
that fractional occupation probabilities of the states may be included. Afterwards, the
resulting sum rules are applied in order to determine the properties of the giant dipole
state of *°Ca at energy E, = 6.95MeV by assuming that the sum rule is saturated by
this single collective state.

2. The sum-rule approach

Up to now there have been mainly used three sum-rule methods for the transition
charge density of the isoscalar dipole resonances: (i) the difuseness oscillation model [7],

(i1) the scaling model [3] and (iii) the doorway dominance model [1,8]. They are all based
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on spherical ground state densities. In this section we shall present in brief the formalisir
of the third method first derived by Deal [8] and later extended by Harakeh and Dieperinl
[1] in order to take into account the center of masss corrections.

2.1 DIPOLE TRANSITION CHARGE DENSITY SUM-RULE

It is well known that the transition of a nucleus from the ground state to an excited
state is accompanied by a change in the charge density which is dependend on the struc-
ture of the excited state and is described by the nondiagonal matrix element of the charge
density operator j(r). The diagonal matrix element give the ground state charge density.
For isoscalar dipole resonances the transition charge density in the sum rule approach is
derived with the isoscalar dipole transition operator

A
PO(#) =Y [} —ri ] Y () (1)

i=1

where 7 is determined by the translational invariance condition
o0
/ PV (r)yridr =0 (2)
0

This gives n = 3 < r? > with < r? > being the mean square radius of the nucleus in
question. The operator P(!) results from the general isoscalar multipole spin independent
transition operator O‘*)(q) = Z:;l ialgri)Y*(#;) in the limit of low momentum transfer
¢ — 0. Then the first terms in the expansion of O survive and are proportional to
the electric spin independent transition operators Ey = Z?:x rAY2(#;). In the case of
A = 1, however, the leading order transition operator is due to the second term in the
expansion in gr, but the center of mass (c.m.) motion, proportional to the first term, has
to be treated as Harakeh-Dieperink [1] pointed out. Then the transition charge density
for an isoscalar dipole state is given by

2

— Bl L) d 5 2 d d d
p(r) = R\/g{l}r —+10r - <r >dr+e(rdr2+4dr)]p0(r) (3)

i

where po(r) is the ground state charge distribution and R = 1.074'/3, is the half density

radius of the Fermi mass distribution. The quantity e, significant only for A < 20, is

given by
B2 4 5
¢ = 3ma (Z’; + FO) =
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where Ej and E; are the monopole and quadrupole resonances, respectively, with energies
Eo ~ 80.A7'3MeV and E, =~ 63.A7'/*MeV. The magnidute of 3, in eq. (3) [1] is
fixed by the requirement of the dipole state to exhaust the static isoscalar dipole energy
weighted sum rule (EWSR) obtained in the limit ¢ — 0 which is given by

_ K*A
© 32mm

25 5 ;
m (11 <rt> —~ < r? >% —10e< r? >) (5)

In egs. (3) and (5) < r™ >, m=24, represent the mean charge radii of order 2 and 4,

respectively (see below).

2.2 DIPOLE TRANSITION FORM FACTOR SUM-RULE
The Fourier transform of eq. (3) leads to the c.m. adjusted sum rule in q space i.e.
to the dipole transition form factor

Bi [,,d1d _d

5 d
Fl(Q)=m3 c—lEEd—q+5 +3<T >q+€q dq) Fo(q) (6)

where Fi(q) is the elastic form factor.

2.3 INDEPENDENT PARTICLE SHELL MODEL SUM-RULES

The ground state properties po(r) and Fei(g) needed in egs. (3) and (6), can receive
compact analytical forms [15] for harmonic oscillator wavefunctions in closed (sub)shell
nuclei, even in the case when nucleon finite size and c.m. motion are taken into account.
In this section we will use these expressions in order to obtain tractable analytical forms
for the isoscalar dipole sum rules of egs. (3) and (6).

For point-proton we have written [15] the distribution po(r) as

1 2 r 4
- =(r/b)
po(r) = =7z e (3, 2) (7)

where II(x, Z) is a polynomial of even powers in x with simple coefficients (b is the h.o.

parameter). The corresponding elastic form factor is obtained by a similar expression as

Fu(g®) = -“” ' ®(qb, Z) (8)

with ®(x, Z) being also an even polynomial in x similar to II(x, Z) but deffering in the
values of the coefficients [15]. The mean radii < r™ > obtained by using eq. (7) can be
cast in the form

S
m. _ p2Im
<r™> Z 9)
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where the sums 53 and Sy for some closed (sub)shell nuclei up to Z=>50 are the integer

and seminteger numbers given in table 1. By using eqs. (7)-(9) the transition dipole

charge distribution of eq. (3) can be written as

-x* , 15(2)
Pl()"—\fé%b2R{(—6+4e)x3+10[1+§ 22)—6]X+
; 5 S,(Z ] d ;P
[3-aep? - 22 vae] T+ x5 002, (=)

where ¢ = ¢/b?. Similarly, for the dipole form factor of eq. (6) we obtain

Brbe=x/4 {g s €, 1085(2)-15Z

B9 = -5 75z 13¥ ~ 32X 62
(¢ —3)x2+3x+2]%+3xdixz}‘1>(x,z), (x = gb)
Z (N) |Upper j-level | S2(Z) |S4(Z)
2 0s1/2 3 7.5
6 Ops /2 13 42.5
8 0p1/2 18 60.0
14 0ds /2 39 154.5
16 1sy/2 46 192.0
20 0ds 2 60 255.0
28 0f2/2 96 453.0
32 1ps/2 114 572.0
38 0fs/2 141 720.5
40 1p1/2 150 | 780.0
50 0992 205  [1137.5

Table 1. The sums S,,(Z), m=2.4 giving the moments < 7™ > by means of eq.(9).

(10)

(11)
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In obtaining eqs. (10) and (11) we have assumed that the occupation probabilities
of the states are unity for states below the Fermi level and zero above it. In the next
section we will modify these equations such that the more realistic fractional occupation
probabilities for some (mainly surface) levels may be used. In this way we include to
some extent configuration mixing and surface correlations in the sum rule description of
egs. (10) and (11).

4. Isoscalar dipole transition sum rules with partial occupancy

By including partial occupation probabilities in egs. (5), (10) and (11), the quantities
Fei(q), po(r) and < r™ > change significantly [10,15] and this causes a change in Fi(q)
and p(r) as wcil. In order to study this influence we insert in egs. (10) and (11)
expressions for F,i(q), po(r) and S,,(Z) which take into account the diffuseness of the
surface of the nucleus under study. We mention that the dipole vibrations, in contrast
to the multipole states with | > 2, encombass almost all the nucleus and they can be
affected by the surface diffuseness [10].

The insertion of partial occupation probabilities in the ground state charge distri-

bution po(r) starts by writing the average ground state density p(r) even when there are
not closed (sub)shells as

1 ;
p(r) = o (2;)_(21 +1)antj | Ruij(r) [ (12)
nf J

where an;; are the proton occupation probabilities for the orbit characterized by the
quantum numbers n,l,j. The sum in eq. (12) runs over all the the single particle states.
For the "core orbits” below the Fermi level of the nucleus, an;j = 1, i.e. they are equal
to the simple shell model predictions, but for the ”active surface orbits”, 0 < an;; < 1.
For a spherically symetric nucleus using harmonic oscillator wavefunctions and as-
suming partial occupancy for some surface nlj-levels, eq. (12) can be written as

e_(r/b)2 » Nlpu:e "
or2,a) = =3, Za), (X Z,a) = § Ax™ (19

where Nypace = (2n 4+ )maz, the maximum oscillator quanta of the chosen model space
and

1 P Nl
> m2nl(2j +1)C
f,\ = Anlj ‘Y;}U’ ‘Yr’}lj = :;11 (14)
(n,0)j, A3l N(n+1+32)
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(T'(z) is the gamma function). The coefficients X ;},j are simple rational numbers (C},
are defined in ref. {15]). Note that for a,;; = 1,0, i.e for independent particle shell mode
(IPSM) occupances, fx of eq. (14) reduce to those of eq. (3c) of ref. [15].

As an example, we consider partial occupancy for four surface nlj-levels, i.e. thre

parametric occupation probabilities for p(r, Z, a;). Then II(x, Z, a1, a,,a;3) is written as

H(X, Z, 01,‘12,03) = H(Xaz2)al + O(x, Z1) (a2 — Ofl)+

!
with Z, < Z; < Z. < Z' < Z", for the adjacent Z-closed levels (Z. < Z < Z'). The
occupation probabilities for the four surface levels are: a; = 1— a3, a; = 1 — ag, below
the Fermi level and a3 = (Z — Z.)/(Z' — Z1) + a3, a4 for the levels above it, respectively
The parameters a; are not independent and one of them, e.g. a4, is determined from the
constraint, .Z(n,,)j (27 + 1)anij = Z, which they obey. Similar expressions to that o
eq. (14) hold also for ®(x, a;), giving the elastic form factor ( Fe(gq,a;)) and S,u(Z,a;
giving the mean radial moments (< r™ >).

The equations which describe p;(r) and Fi(g) in terms of fractional occupatior

probabilities of the ground state orbits, are now easily obtained in the sum-rule method.
For A > 20 they are

o (N v 013] + H(X, Z’) [ + a3 — a.;] + H(X, Z")a4 (14

N BeX 3 52(Z, ai)
pi(rZ,a) =~ { 6 100+ ZEE 4
5 So(Z,a;)\ d r
2 _L22\e i)y o . = -
(3 -3 2 S Za),  (x=7) (16)
and y
N _BbeX 3, 5 5(Za) 5
Fl(‘]szaat) = 2\/7‘;RZ {4X 3 Z 2
(=32 +3x+2) % 43 dz}q)( Z,a), (=gl (17)
—JaX <) 5 9 y 4,04 ), N=
X X dx de2 X X=9

In the next section we will apply egs. (16) and (17) in order to study the effect of the
diffused nuclear surface on p;(r) and F(q) for the nucleus **Ca (for others see ref. [17]).

5. Results and discussion
As we have stressed before, the transition density of eqs. (10) and (16) is obtained

from a sum-rule approach and for this reason is justified only for excitations that exaust
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a great percentage of the energy-weighted sum-rule. However, the use of sum rules in the
description of states which constitute only small parts of the energy-weighted sum-rule,
is fairly successful [1-3]. In the present work we study the transition charge density p;(r)
and the form factor Fy(¢) for the 17, T = 0 state of the self-conjugate nucleus **Ca at
E, = 6.95MeV, by assuming that a fraction f of the isoscalar energy-weighted sum rule
is saturated by this single collective state. We also assumed that the surfuce nucleons
for #°Ca are spread on four subshells: 13%, Od%, Of% and lp% with fractional occupation

probabilities a;, a2, a3 and a4, respectively.

107 ¢

1072
10'3_F o ® e

I +
107 F f\‘ }

Fl(q)

107°F |
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10}

10-° oo ! " 1 0 1 b
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Fig. 1. Transition form factor Fy(q) for the 1~ state of *°Ca. Solid line: IPSM

calculations and dashed line: present method with partial occupation probabilities (a; =

.70, a; = .60, a3 = .088, a4 = .150). Experimental data come from ref. [6].

The values for a; are determined by fitting eq. (17), see fig. 1, into the experimental
dipole charge form factor data [6]. They correspond to a depletion of ~7% of the nuclear
Fermi sea for *°Ca. The fit to the data is satisfactory with a portion f =~ 18% of
the isoscalar dipole EWSR exausted by the 17 state at 6.95MeV for *°Ca. Deal (8]
calculated for this state a model independent upper and lower limit of the fraction f to be

6% < f < 14%. Other authors [4] found f = 20%. Our percentage is in good agreement
with these limits.

In table 2 the results for the static energy weighted sum rule m, and the correspond-
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ing coupling parameter §; of the IPSM and by using partial occupation probabilities,

are presented. The h.o. parameter is fixed in the present method by the condition that

< r?2 >1/2 is equal to the experimental value [15].

Model |E;(MeV)|<r? >t (fm) |<rt >3 (fm) |mi(e2fm®MeV) | B
IPSM | 6.95 3.438 3.751 65695 1945
Present | 6.95 3.478 3.804 70267 1881

Table 2. Specific parameters resulting for *°Ca in the IPSM and present work.

In fig. 2 the dipole charge distribution resulting from eq. (16) with the values of q;

given iin fig. 1 is also shown

0.60
l"l') L.
£ O050F
e L 7 R
~ ’ \
© 040} \
T 030
o 3 I,’
- 020 - /
X L g
~ o1of/
T o000
a -o10}
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o] 1 2 3 4 5 6 7 8
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Fig. 2. Transition charge density for the E1 (0 — 1) transition in *°Ca nucleus. See

explanations of fig. 1.

From figs. (1) and (2) we see that, the use of partial occupancy for the surface
states, changes significantly the dipole charge distribution for r < 3fm and the dipole
form factor for large momentum transfer ¢ > 2fm ™! and that this change improves the

reproducibility of the experimental data. This fact supports the argument of the existence

of a diffused Fermi surface for the "core nucleus” 4°Ca result consistent with that found

for the corresponding ground state properties in this nucleus [10,14,15].
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6. Conclusions
In this work we have constructed tractable analytic expressions for isoscalar dipole
energy weighted sume-rules based on the Harakeh-Dieperink method and the harmonic
oscillator shell model with partial occupancy (an;) of the states. For **Ca have deter-
mined a,,; by fitting to the form factor of 1~ state and compared them with those found
recently by fitting to the experimental elastic form factor data. We conclude that the
surface of °Ca appears to be diffused and that a more or less unique determination of

the occupation probabilities from ground state and excited state properties exists.

One of us (T.S.K) acknowledges useful correspondence with Prof. 1.S. Gulkarov.
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