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T H E I N F L U E N C E O F T H E N U C L E A R S U R F A C E D I F F U S E N E S S ON 

T H E T R A N S I T I O N CHARGE DENSITIES.* 

T. S. KOSMAS and J. D. VERGADOS 

Division of Theoretical Physics, University of Ioannina, GR 451 10 Ioannina, Greece. 

Abstract 

Proton partial occupancies of the nuclear surface orbits are used in a modified shell 

model approach to study isoscalar dipole transition charge densities and form factors 

for self-conjugate nuclei. The energy-weighted sum-rules of Harakeh-Dieperink for both 

the transition form factor and transition charge density are modified so as fractional 

occupation probabilities of the states may be used. The partial occupancies of the surface 

n/j-levels are determined by fitting to the experimental inelastic scattering data and 

compared with those found previously in the study of nuclear ground state properties. 

1. Introduction 

The experimental data in the experiments of inelastic electron, proton and α-particle 

scattering by nuclei have shown the existence of various giant multipole states in low 

energies. They have been considered very important, since they are related directly to 

important quantities such as the effective charge of El transitions. Among them the 

isoscalar dipole resonances in self-conjugate nuclei at low energies (1~,T = 0 states) 

have received a special theoretical [1-4] and experimental [5-6] interest since they can be 

very helpful to clarify the excitation mechanism of these nuclei. Though electric dipole 

resonances are forbidden by isospin in such nuclei (T3 = 0, Δ Τ = 0), it is now very well 

known that they have been observed in some nuclei like 1 6 0 (Ex — 7.118MeV), A0Ca 

{Ex = e.95MeV) and others [7-11]. 

Theoretically, transition charge densities are studied by using nuclear models and 

sum-rule methods. Particularly the sum rules have played an important role in the 

analysis of the inelastic electron and hadron scattering by nuclei. In ref. [1] Harakeh 

* Presented by T. S. Kosmas 
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and Dieperink obtained a sum rule for the form factor describing the isoscalar dipole 

excitations caused by the hadron-nucleus scattering and which can be interpreted in 

the long-wavelength limit by means of isospin admixures to the ground state or to the 

1 - , T = 0 states [11,12]. 

In the mean field approximation to the nuclear many-body problem it is assumed 

tha t shells are occupied up to the Fermi level a n d empty above it and this is a fairly 

successful model in describing ground state charge densities and in providing the basis 

for shell model calculations at low excitation energy. However, the basic assumption 

of closed shells is an approximation only which is not completely supported by recent 

experiments even for "core nuclei" like A0Ca. O n e should add dynamical corrections to 

the s tat ic mean field in order to account for the nucleon-nucleon correlations which are 

predicted to diffuse the Fermi surface and induce a depletion of states below the Fermi 

level [13-15]. These correlations may in part be unders tood in terms of part ia l occupancy 

of t h e surface orbits [10,14,15]. It is also given t h e fact that many nuclear properties do 

depend on the occupancy of the valence shells. T h o u g h absolute occupation probabilities 

can be determined from the spectral functions obta ined from (e, e'p) experiments e.g. at 

N I K H E F [16], sum rule methods are also used. 

In ref. [15], it is given a compact analytical expression for the ground state charge 

distr ibution with the aid of which it is constructed a general method such tha t fractional 

occupation probabilities for the (surface) orbits can be used. Also compact analytical 

expressions are obtained by using a Gaussian folding over the point nucléon distribution 

expressed in terms of spherically symmetric harmonic oscillator wavefunctions. The pur­

pose of the present work is to study the transit ion charge density p\(r) and the form 

factor Fi(q) for the 1~,T = 0 states of self-conjugate nuclei by using this method. For 

this aim the isoscalar dipole sum rules of Harakeh and Dieperink [1] are modified such 

tha t fractional occupation probabilities of the s ta tes may be included. Afterwards, the 

resulting sum rules are applied in order to determine the properties of the giant dipole 

s ta te of 40Ca at energy Ex = 6.95M"eV by assuming that the sum rule is saturated by 

this single collective state. 

2 . T h e s u m - r u l e a p p r o a c h 

Up to now there have been mainly used three sum-rule methods for the transition 

charge density of the isoscalar dipole resonances: (i) the difuseness oscillation model [7], 

(ii) the scaling model [3] and (iii) the doorway dominance model [1,8]. They are all based 
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on spherical ground state densities. In this section we shall present in brief the formalisrr 

of the third method first derived by Deal [8] and later extended by Harakeh and Dieperinl 

[1] in order to take into account the center of masss corrections. 

2.1 DIPOLE TRANSITION CHARGE DENSITY SUM-RULE 

It is well known that the transition of a nucleus from the ground state to an excited 

state is accompanied by a change in the charge density which is dependend on the struc­

ture of the excited state and is described by the nondiagonal matrix element of the charge 

density operator /5(r). The diagonal matrix element give the ground state charge density. 

For isoscalar dipole resonances the transition charge density in the sum rule approach is 

derived with the isoscalar dipole transition operator 

Ρ<1}(*) = £ > ? - * • , · ]!?(*.•) (1) 
i = l 

where η is determined by the translational invariance condition 

J
lOO 

' p{1)(r)r3dr =0 (2) 

ο 

This gives η = | < r 2 > with < r2 > being the mean square radius of the nucleus in 

question. The operator P^ results from the general isoscalar multipole spin independent 

transition operator 0^x\q) = ]Ci=i ^λ(?Γϊ)5 / ' λ(π) in the limit of low momentum transfer 

q —• 0. Then the first terms in the expansion of O^ survive and are proportional to 

the electric spin independent transition operators E\ = Σ»=ι r i X ^ r A ( n ) · m the case of 

λ = 1, however, the leading order transition operator is due to the second term in the 

expansion in qr, but the center of mass (cm.) motion, proportional to the first term, has 

to be treated as Harakeh-Dieperink [1] pointed out. Then the transition charge density 

for an isoscalar dipole state is given by 

where ^o(r) is the ground state charge distribution and R = 1.07.Λ1/3, is the half density 

radius of the Fermi mass distribution. The quantity e, significant only for A < 20, is 

given by 
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where EQ and E2 are the monopole and quadrupole resonances, respectively, with energies 

E0 « e O . A - ^ M e V and E2 « 63.A~^3MeV. The magnidute of ß1 in eq. (3) [1] is 

fixed by the requirement of the dipole state to exhaust the static isoscalar dipole energy 

weighted sum rule (EWSR) obtained in the limit q —• 0 which is given by 

mi = ^ - ( l l < r 4 > - f <r 2> 2 - l (k<r 2>) (5) 

In eqs. (3) and (5) < r m >, m=2,4, represent the mean charge radii of order 2 and 4, 

respectively (see below). 

2.2 DIPOLE TRANSITION FORM FACTOR SUM-RULE 

The Fourier transform of eq. (3) leads to the cm. adjusted sum rule in q space i.e. 

to the dipole transition form factor 

F^ = énKìÌ + 5Ì + l<r2>i + '^)FM (6) 

where Fei(q) is the elastic form factor. 

2.3 INDEPENDENT PARTICLE SHELL MODEL SUM-RULES 

The ground state properties po(r) and Fei(q) needed in eqs. (3) and (6), can receive 

compact analytical forms [15] for harmonic oscillator wavefunctions in closed (sub)shell 

nuclei, even in the case when nucléon finite size and cm. motion are taken into account. 

In this section we will use these expressions in order to obtain tractable analytical forms 

for the isoscalar dipole sum rules of eqs. (3) and (6). 

For point-proton we have written [15] the distribution po(r) as 

»o(r) = ^ e - « « ' n ( £ , 2 ) (7) 

where Π(χ, Ζ) is a polynomial of even powers in χ with simple coefficients (b is the h.o. 

parameter). The corresponding elastic form factor is obtained by a similar expression as 

W ) = | e - ( f è ) V 4 * ( i M ) (8) 

with Φ(χ, Ζ) being also an even polynomial in χ similar to Π(χ, Ζ) but defFering in the 

values of the coefficients [15]. The mean radii < r m > obtained by using eq. (7) can be 

cast in the form 

< rm > = δ2 ^ (9) 
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where the sums 52 and S4 for some closed (sub)shell nuclei up to Z=50 are the integer 

and seminteger numbers given in table 1. By using eqs. (7)-(9) the transition dipole 

charge distribution of eq. (3) can be written as 

Pi(r) = — 
ßie- 1 S2(Z) 

— e X + ^ ( - 6 + 4eV + 10[l+3 g 

( 3-4eV- |^+4^ + ^ } n ( x , Z ) , (χ = φ) _,—+4e' -i-+e'X — 
3 Ζ J άχ άχ 

where e' = e/b2. Similarly, for the dipole form factor of eq. (6) we obtain 

Aòe-x 2 / 4 (3 a 1052(Z) - 15Z 

d . <P 

2yftRZ U v 2'x ' 6Z 

[(«' - 3)χ2 + 3χ + 2] ~- + 3χ^1}φ(χ, Ζ), (χ = Ç6) 
<*xJ 

Z(JV) 

2 

6 

8 

14 

16 

20 

28 

32 

38 

40 

50 

Upper j-level 

Os 1/2 

0p3/2 

OPl/2 

0^5/2 

1^1/2 

0^3/2 

O/7/2 

lP3/2 

O/5/2 

l P l / 2 

0^9/2 

52(2) 

3 

13 

18 

39 

46 

60 

96 

114 

141 

150 

205 

S4(Z) 

7.5 

42.5 

60.0 

154.5 

192.0 

255.0 

453.0 

572.0 

720.5 

780.0 

1137.5 

(10) 

( H ) 

Table 1. The sums Sm(Z), m=2.4 giving the moments < r m > by means of eq.(9). 
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In obtaining eqs. (10) and (11) we have assumed that the occupation probabilities 

of the states are unity for states below the Fermi level and zero above it. In the next 

section we will modify these equations such that the more realistic fractional occupation 

probabilities for some (mainly surface) levels may be used. In this way we include to 

some extent configuration mixing and surface correlations in the sum rule description of 

eqs. (10) and (11). 

4, Isoscalar dipole transition sum rules with partial occupancy 

By including partial occupation probabilities in eqs. (5), (10) and (11), the quantities 

Fei(q), po(r) and < r m > change significantly [10,15] and this causes a change in -Fi(ç) 

and pi(r) as well. In order to study this influence we insert in eqs. (10) and (11) 

expressions for Fei(q), po(r) and Sm(Z) which take into account the diffuseness of the 

surface of the nucleus under study. We mention that the dipole vibrations, in contrast 

to the multipole states with / > 2, encombass almost all the nucleus and they can be 

affected by the surface diffuseness [10]. 

The insertion of partial occupation probabilities in the ground state charge distri­

bution po(r) starts by writing the average ground state density p(r) even when there are 

not closed (sub)shells as 

*r) = h Σ (2> + *> e-'i I Rnij(r) |2 (12) 
π (n,l)j 

where an\j are the proton occupation probabilities for the orbit characterized by the 

quantum numbers n,lj. The sum in eq. (12) runs over all the the single particle states. 

For the "core orbits" below the Fermi level of the nucleus, an\j = 1, i.e. they are equal 

to the simple shell model predictions, but for the "active surface orbits", 0 < an\j < 1. 

For a spherically symétrie nucleus using harmonic oscillator wavefunctions and as­

suming partial occupancy for some surface nlj-levels, eq. (12) can be written as 

_ ( r / 6 ) 2 Ν · ρ - « 

Ρ ( ^ α . · ) = - ^ n ( f e ' Z ' a ' ) ' Π(χ,Ζ,α,) = ] Γ fxx2\ (13) 
λ=ο 

where Napace = (2n + / ) m a x , the maximum oscillator quanta of the chosen model space 

and 

/λ - ^ *nljXnlj, Xn,j " ^ Γ , , , Π ( 1 4 ) 
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(Γ(χ) is t h e gamma function). T h e coefficients X^ij a r e simple rat ional numbers (C£ 

are defined in ref. [15]). Note that for a n / ; = 1,0, i.e for independent particle shell mode 

(IPSM) occupances, f\ of eq. (14) reduce to those of eq. (3c) of ref. [15]. 

As an example, we consider partial occupancy for four surface n/j-levels, i.e. thre< 

parametr ic occupation probabilities for p(r, Ζ, α,{). Then Π(χ, Ζ, αχ, α 2 , α 3 ) is written ai 

Π ( χ , Ζ , α ι , α 2 , α 3 ) = Π ( χ , Ζ 2 ) < * ι + Π ( χ , Ζ ι ) ( α 2 - α ι ) + 

Γ Ζ' -Ζ 

IZ'-Zr 

îZ-Zr 
Π ( χ , Ζ 0 ) — — - - α 2 - α 3 + Π ( χ , Ζ ' ) — — 1 + α 3 - α 4 + Π ( χ , Ζ " ) α 4 (14 

IZ'-Zr. 

with Ζ2 < Ζχ < Zc < Ζ' < Ζ " , for the adjacent Z-closed levels (Zc < Ζ < Ζ'). Th< 

occupation probabilities for the four surface levels are: αχ = 1 — αχ, α 2 = 1 — α 2 , belov 

the Fermi level and a 3 = (Z — ZC)/(Z' — Ζχ) + a 3 , a 4 for the levels above it, respectively 

T h e parameters a, are not independent and one of them, e.g. α 4 , is determined from the 

constraint, -$^/ n Λ, (2j + l)anij — Ζ, which they obey. Similar expressions to that o: 

eq. (14) hold also for Φ ( χ , α , ) , giving the elastic form factor (Fei(q,ai)) and Sm(Z,ai 

giving the mean radial moments ( < r m > ). 

T h e equations which describe px(r) and Fx(q) in terms of fractional occupat io ! 

probabilities of the ground state orbits, are now easily obtained in t h e sum-rule method. 

For A > 20 they are 

/ ~ Ν ßit"x ( R 3 , inn Λ S2(Z,q,) 
p , ( r ' Z , a , ) = " 7 § Ï H ^ Ι -βχ + 1 0 ( 1 + ~Ίζ-)χ + 

and 

ρ, „ . gij_e-£^ r3 3 SS2(Z,aQ 5 
F,(g,Z,a,) = - 2 v Ç i î z ( j x + 5 — 5 + 

j j 2 

( - 3 χ 2 + 3χ + 2 ) — + 3 χ — j } Φ(χ, Ζ, α,) , (χ = qb) (17) 

«Χ αχ J 

In the next section we will apply eqs. (16) and (17) in order to s tudy the effect of the 

diffused nuclear surface on pi(r) and Fx(q) for the nucleus 40Ca (for others see ref. [17]). 

5. R e s u l t s and d iscuss ion 

As we have stressed before, the transition density of eqs. (10) a n d (16) is obtained 

from a sum-rule approach and for this reason is justified only for excitations that exaust 
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a great percentage of the energy-weighted sum-rule. However, the use of sum rules in the 

description of s tates which constitute only small p a r t s of the energy-weighted sum-rule, 

is fairly successful [1-3]. In the present work we s t u d y the transit ion charge density p\{r) 

and the form factor F\{q) for the 1~,T = 0 s ta te of the self-conjugate nucleus 40Ca at 

Ex — 6 .95MeV, by assuming tha t a fraction f of t h e isoscalar energy-weighted sum rule 

is s a tu ra t ed by this single collective s tate . We also assumed that the surface nucléons 

for 40Ca are spread on four subshells: I s χ, Ods, Of ζ and I D S with fractional occupation 
2 2 2 2 

probabilities α ϊ , α2, a$ and 04, respectively. 

1CT1 

IO"2 

IO"3 

'S- 10-4 

^ 1 0 -

1 0 -

10-7 

10"e 

0 1 2 3 4 

q ( f m - i ) 
Fig. 1. Transit ion form factor Fi(q) for the 1~ s ta te of 40Ca. Solid line: IPSM 

calculations and dashed line: present method with par t ia l occupation probabilities (αχ = 

.70, a2 = .60, 03 = .088, 04 = .150). Experimental d a t a come from ref. [6]. 

T h e values for α.{ are determined by fitting eq. (17), see fig. 1, into t h e experimental 

dipole charge form factor d a t a [6]. They correspond t o a depletion of « 7 % of the nuclear 

Fermi sea for A0Ca. T h e fit to the d a t a is satisfactory with a port ion / « 18% of 

the isoscalar dipole E W S R exausted by the l - s t a t e at 6.95MeV for 40Ca. Deal [8] 

calculated for this s tate a model independent upper a n d lower limit of t h e fraction f to be 

6% < / < 14%. Other a u t h o r s [4] found / = 20%. O u r percentage is in good agreement 

with these limits. 

In table 2 the results for t h e static energy weighted sum rule rn\ and t h e correspond-
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ing coupling parameter ß\ of the IPSM and by using partial occupation probabilities, 

are presented. The h.o. parameter is fixed in the present method by the condition that 

< r2 > 1 ' 2 is equal to t h e experimental value [15]. 

Model 

IPSM 

Present 

£.(MeV) 

6.95 

6.95 

< r2 > Ï ( /m) 

3.438 

3.478 

< r4 >4 (/m) 

3.751 

3.804 

m^frr^MeV) 

65695 

70267 

ßl 

.1945 

.1881 

Table 2. Specific parameters resulting for 40Ca in the IPSM and present work. 

In fig. 2 the dipole charge distribution resulting from eq. (16) wi th the values of α,{ 

given iin fig. 1 is also shown 

Ο 8 1 2 3 4 5 

r ( fm ) 
Fig. 2. Transition charge density for the El (0 —• 1~) transition in 40Ca nucleus. See 

explanations of fig. 1. 

From figs. (1) a n d (2) we see that, the use of partial occupancy for the surface 

states, changes significantly the dipole charge distribution for r < 3 / m and the dipole 

form factor for large m o m e n t u m transfer q > 2 / m - 1 and that this change improves the 

reproducibility of the experimental data . This fact supports the argument of the existence 

of a diffused Fermi surface for the "core nucleus" 40Ca result consistent with that found 

for the corresponding g r o u n d state properties in this nucleus [10,14,15]. 
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6. Conclus ions 

In this work we have constructed tractable analytic expressions for isoscalar dipole 

energy weighted sume-rules based on the Harakeh-Dieperink method and the harmonic 

oscillator shell model with part ial occupancy (anij) of t h e states. For 40Ca have deter­

mined anij by fitting to the form factor of l - state a n d compared t h e m with those found 

recently by fitting to the experimental elastic form factor data. We conclude t h a t the 

surface of 40Ca appears to be diffused a n d that a more or less unique determination of 

the occupation probabilities from ground s tate and excited s tate properties exists. 

One of us (T.S.K) acknowledges useful correspondence with Prof. LS. Gulkarov. 
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