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Abstract
A lowest-cluster-order variational calculation of the half-diagonal two-body
density matrix p,(ry,rs,ri) and the corresponding generalized momentum distribution
n(p,Q) is performed for three representative models of nuclear matter containing
central correlations. Dynamical correlations produce significant deviations from the
results for a noninteracting Fermi gas. Calculations are in progress that include higher-
order cluster corrections as well as state-dependent correlations.

1. Introduction

In this paper, we present the results of a variational calculation of the half-diagonal
two-body density matrix p,(r;,rz,ri) for the ground state of symmetrical nuclear
matter. We choose certain simplified models of this system that incorporate state-
independent correlations, and restrict the calculation to leading, two-body cluster order.

There is increasing interest in the determination of the two-body density matrix of
finite nuclei. This interest is stimulated by the fact that proper interpretation of a range
of recent or planned experiments, in new or developing facilities, hinges on a more
quantitative understanding of the propagation of ejected nucleons and their final-state
interactions (FSI). Attention is focused on inclusive quasielastic (e,e”) scattering [1] as
well as exclusive quasielastic (e,e’N)[2] and (e,e’2N) scatterings. In these
electronuclear processes, FSI can have a significant impact at low energy transfer even
for beam energies in the multi-GeV region. Reliable extraction of the momentum
distributions, spectral functions, and transparency from the experimental data requires
an accurate accounting of final-state effects. In addition to electron scattering, FSI are
involved in proton scattering (p, 2p) [3] and pion absorption [4] experiments. As we
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progress beyond mean-field, optical-model descriptions, theoretical treatments of FSI
are found to involve, as input, the diagonal.and half-diagonal portions of the two-body
density matrix. Notable examples include the extensions of Glauber theory [5,6],
adaptation of Silver’s hard-core perturbation theory to the nuclear medium [7], and
other approaches under current discussion [8,9].

There is an additional motivation for explicit calculation of p,(r;,rz,ri) and
n(p,Q). For strongly interacting Bose systems, particularly liquid “He, recent formal
- results [10] along with older findings [11] have established the key role played by these
quantities in the @? sum rule for the density-density operator, as well as analogous sum
rules for the particle-particle and density-particle operators. It is to be expected that
pa(ry,re,r1) will likewise be an essential ingredient of the corresponding sum rules for
Fermi systems including nuclear matter. Such sum rules should provide valuable

information on the nature and importance of single-particle and collective excitations of
the nuclear medium.

The half-diagonal two-body density matrix for a system of A particles is defined
by

p2(ry,ra,r))=AA- l)j ¥ (ry,r2,13.. ) ¥(r],re,rs..) dry=dry, . 1)

(Spin and isospin indices are suppressed, and a sum over all spin/fisospin variables is

implied.) The Fourier transform of this function defines the generalized momentum
distribution

n(p.Q) = -%I pz(rl,rz,ri)c—il"(l'l —ri)c—iQ-(ri -r) drldrzdri . ?)

In expression (1), ¥ is the normalized wave function of the ground state. It is assumed
that the system has uniform density p. In the full-diagonal case (r; =rj), Eq. (1)
reduces to

pa(ry,r2,r) =p2g(ri2) . )

and, summing over p in Eq. (2), we arrive at the so-called p sum rule,
T nP.Q) = 4800 +p[ 2 ¢ 12) - 1167V dryy = ABgo + S@)-11 . )
P

where S (Q) is the static structure function.
The sequential relation in configuration space,
[ pa(rriry,r ) dr, = (A = Dpy(r1,r) )

relates p(ry,ra,r}) with the one-body density matrix p;(r;,ri). The corresponding
condition in momentum space,
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n(p,Q=0)=(A-1)n(p) (6)

relates n(p,Q) to the momentum distribution 7 (p).

The one-body density matrix p; (r;,r}) and the momentum distribution n (p) have
been studied extensively in the case of nuclear matter [12-15] and finite nuclei [16].
Three simple prescriptions for estimating the half-diagonal density matrix of quantum
- fluids are available in the literature [17]. Recently, thorough microscopic analyses of
the two-body density matrices of strongly-interacting Bose [18] and Fermi {19] systems
have been undertaken within the variational approach and approximate calculations
performed for liquid *He and liquid 3 He using hypernetted-chain (HNC) techniques. A
preliminary report on evaluation of py(ry,ry,r}) in liquid 4He within the path-integral
Monte Carlo method has been given [20] and further computations involving stochastic
procedures are in progress {21]. However, to the best of our knowledge there is as yet
no quantitative treatment of py(ry,ry,r1) and n(p,Q) in nuclear problems.

Our calculation for p,(ry,rp,r]) in nuclear matter may give a crude picture of the
corresponding quantity in medium-to-heavy nuclei. A better description may be
obtained with an appropriate local-density approximation, as has been proposed for the
momentum distribution of finite nuclei in Ref. [22].

The microscopic evaluation of p,(ry,rz,r1) and n(p,Q) can be pursued in terms of
different theoretical approaches to the ground state of nuclear matter: stochastic,
perturbative, and variational. The variational treatment can be supplemented, as
necessary, with corrections determined within correlated-basis-functions (CBF) theory.
Following the variational approach [23], we have carried out a low-order calculation as
described in Sec. 2. Numerical results are displayed and discussed in Sec. 3, and some
prospects for improvements upon the present calculation are indicated in Sec. 4.

2. Lowest-Order Variational Calculation

Our calculation is based on the microscopic analysis of the haif-diagonal two-body
density p,(r,,r;,r}) developed for Fermi fluids by Ristig and Clark [19] within the
variational CBF theory [24]. The Ristig-Clark analysis is patterned after a more
elaborate study [18] of the Bose two-body density matrix and exploits techniques and
results developed some years ago [25] for the one-body density matrix and momentum
distribution of a quantum fluid. For the uniform Fermi system, the ground-state wave
function is approximated by a trial wave function of Jastrow-Slater form

A
‘I’=N‘1_I_I_f(r;j)<b . ' @
i<j

Here, @ is a Slater determinant of A plane-wave orbitals filling the Fermi sea up to a
wave number kg related to the density by p = vk} /612, where v is the single-particle
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level degeneracy, f (r;;) is the Jastrow two-body correlation function, and N is a
normalization constant. Considerations begin with the generalized momentum
distribution n(p,Q) corresponding to pz(rl,rz,r'f) through Eq. (2). This quantity may
be decomposed as follows

n(p,Q) =3qo(4 - n(p) + (1 -3qo)<¥IN . DI ¥> , ®

where the first term, henceforth denoted n,(p,Q) contains no statistical nor dynamical
effects other than those contained in the momentum distribution n(p), and the
remainder involves the expectation value of a non-self-adjoint operator N(p,Q). In
terms of the usual particle creation and destruction operators a{ and ay and density
operators pg, we have

2N(.Q) = paa}qap +a}qepPQ ~ 3y ~ Bh-Qlp0 - ®

spin labels being implicit in the roman characters. The indicated expectation value is
expanded in a factorized-Iwamoto-Yamada (FIY) cluster expansion [26]. The
individual terms in this expansion may be classified according to the number of orbital
labels involved; as is customary, we will speak of ‘‘two-body,’’ ‘‘three-body,’’ ..., ‘‘n-
body” cluster approximations when terms with more than two, more than three, ...,
more than n orbital indices are neglected. Evaluation is simplified by taking the
thermodynamic limit, i.c., A — co with p held constant, thus restricting the treatment to
a uniform infinite system. In this manner we arrive at a cluster series of the form

n(P,Q = n,(p.Q) + (1-8go)n2)(P. Q + 13 (P QD +...] . (10)

(We note that the similar expansion in Eq. (12) of Ref. [19] should be corrected by
replacing the first term on the right, appearing as nr(p,q), by n,(p,q) as defined in
Eq. (4) of that paper.) Itis found that the generalized momentum distribution #(p,Q) is
a reducible quantity, in the sense of containing factorizable contributions; however,
structural relations can be given that express it in terms of sums of irreducible Ursell-
Mayer diagrams [19].

In our numerical evaluation we approximate n(p,Q) to leading cluster order in the
expansion (10), neglecting terms beyond n(y) inside the square bracket and replacing
n(p) in the leading term, n,(p,Q), by the two-body cluster approximation
(An(p)); + (An(p)), defined in Ref. [25]. This approximation to n(p,Q) is denoted
no(p,Q). The addend n(y) consists of a sum of seven two-body cluster terms,

7
nayP.Q =Y n@.Q , an
i=1

represented in their turn by the Ursell-Mayer diagrams displayed in Fig. 1. (For an
explanation of the relevant diagrammatic conventions, see the Appendix of Ref. [19].)
The corresponding contributions to the two-body cluster component pag(ry,r2,r1) of
pa(ry,ra,ry) are:  (12-1)  I(kpri)C(ri2),  (12-2)  L(kprqp)4(ry), (12-3)
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[ (kpr11)8(r12)8(r 12), (12-4) =l (kgr ) (kgr72)/v, (12-5)
~Lkpr12)Cr vl (kprya)/v,  (12-6) =l (kprip)l (kpri2)8(ri2)/v,  and  (12-7)
~l (kpr 12)8(r 1)l (kpry2)C(ry2)/v, where [(x)=3x"3(sinx-xcosx) is the Slater
exchange function and {(r) = f (r) — 1 is the dynamical correlation bond.

2

-+

1 1
[2
1 b 1 1
Figure 1. Diagrammatic representation of the cluster contributions n{} (»,Q)¢ =1.....7)
to the generalized momentum distribution function. See Ref. [19].

N2)(P.Q) =

1 1

It has been verified that the terms nE‘Q) (p,Q) reproduce the lowest-order parts of
the addends of the highly summed structural expression derived by Ristig and Clark.
This expression, Eq. (42) in Ref. [19], collects the contributions to various scattering
processes in the medium. (We note incidentally that a square bracket is missing from
the end of the first line of Eq. (42).) On inspection it is seen that the terms n{}} and n{%)
appearing in Fig. 1 are derived from terms of Eq. (42) that describe the scattering of a
nucleon from an orbital of momentum p to another orbital of momentum p —Q with the
intervention of a phonon to conserve momentum, and the time-reversed counterpart of
this process. The terms n{3) with i =4,...7 are derived from terms of Eq. (42) that
describe the scattering of kinematically (i.e. Pauli-) correlated nucleons, which,
however, can populate states above the Fermi sea due to the presence of dynamical
correlations. Of course, the contribution n{% coincides, for Q # 0, with the generalized
momentum distribution nz(p,Q) of the ideal Fermi gas. Finally, the term n{% is the

leading portion of the addend n®” that acts in Eq. (42) as a correction to the simpler
scattering processes.

It is readily checked that the approximation n,, as defined above preserves the
following properties of the exact generalized momentum distribution: (i) it is invariant

under time reversal, (ii) it satisfies the p sum rule of Eq. (4), and (iii) it obeys the Q sum
rule

> n(PP.Q=0. (13)
Q
In verifying (4), one must of course substitute the two-body cluster approximation

go(r) = f2(r)[1 —12(kgr)/V] to the radial distribution function, i.., to the diagonal
part of the two-body density. However, the approximation n;, violates the condition



-93-

(6) and thus the sequential relation (5).

3. Results and Discussion

Numerical results for n(p,Q) were obtained in the lowest cluster approximation
no(P,Q) (i.e., two-body order) for three models of the ground state of symmetrical
nuclear matter. These models are specified by three different correlation functions
* f(r), all referring to densities near the saturation density of nuclear matter. One of the
models is drawn from the variational Monte Carlo study of Ceperley et al. [27] and thus
is given the designation MC. At p =0.182 fm™ (kg = 1.392 fm™!), this model provides
the correlation function

MC f(r)=expl—C1e 21 ="y ir] . (14)

The parameters C;, C,, and C3, taken from Ref.[27], were determined by
minimization of the ground-state energy expectation value of symmetrical nuclear
matter with respect to the Jastrow trial function implied by (7) with (14). The assumed
interaction is the v, ‘“‘homework potential’’ [26,28]. This state-independent potential
consists of the central part of the Reid soft-core interaction in the 35,-3D; channel,
considered to act in all partial waves. It has been used in numerous calculations (see,
for example, Refs. [28-31]) and has a repulsive core that is relatively stiff compared to
those of some putatively realistic nucleon-nucleon forces. The other two models
examined here, which we denote G1 and G2, are specified in terms of a Gaussian
deviation of the Jastrow function f (r) from unity:

G1, G2 f(r)=1-exp[-B?r?] . 15)

These models are not derived from any known nucleon-nucleon interactions, but would
naturally correspond to potentials with soft repulsive cores. They have the advantage
that the integrals involved in the approximation n,, may be evaluated analytically.
Model Gl refers to a density p =0.1589 fm™> (kr =1.33 fm™). The parameter value
B=1.1fm™ chosen for G1 was determined [22] by fitting a low-order calculation of
the momentum distribution n(p) of nuclear matter at this density to the result of a
correlated-basis-functions calculation [32] of n(p) for a realistic two-nucleon
interaction. Model G2, specified by B=1478fm™, refers to p=0.182fm™
(kp = 1.392 fm™). It has been used in a set of variational calculations of n(p) intended
to test various methods for numerical evaluation of the relevant correlated expectation
value [29]. (These methods include the so-called LOC (lowest-order conserving),
LOIC (lowest-order irreducible cluster), FHNC (Fermi-hypernetted chain), and MC
(Monte Carlo) procedures.)

The use of three representative models allows us to study the effects of different
aspects of the state-independent geometrical correlations on the two-body density. The
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correlation functions f (r) of the three models are compared in Fig.2. Although
qualitatively similar, they nevertheless show significant differences in behavior in the
core region as well as at medium separations. A widely used measure of the overall
strength of the dynamical correlations — which may be regarded as an estimate of their
effectiveness in depleting the Fermi sea - is the wound parameter
Kair = Pf [f (r)-1]2dr. (t may be noted that the logarithm of the residue at the
quasiparticle pole, as predicted by variational theory [25], is proportional to —kg4;.) The
. values of the wound parameter for models MC, G1, and G2 are respectively
Kair =0.297, 0.237, and 0.111, indicating that these models span a range from relatively
strong to relatively weak correlations.

1.20

1.00 -l

0.80

f(r)

0.60

0.40

0.20

0.00 T T

2.00 4.00 6.00 8.00
r (fm)
Figure 2. The correlation functions f (r) of the three models MC, G1, and G2 (see text).

Some of the results of our numerical study are presented in Figs. 3-11. The ranges
p € [0,3kr] and Q € (0,5kr] have been considered for the magnitudes of the momenta
involved. Attention is restricted to Q # 0. We first discuss the results for model MC in
the case that p and Q are parallel. The approximation n,,(p,Q) to the generalized
momentum distribution #(p,Q) is shown in Figs. 3 and 4, while Figs. 5, 6, and 7 display
the respective individual terms n{$} (which is just the ideal Fermi gas result), n{}}, and
n@. For the perfect Fermi gas, n(p,Q) (= n{§) for Q #0) is simply —1 for p <kp and
0 < Q <p+kg, and zero otherwise. In Figs. 3 and 4 the full n,4,(p,@p/p) =n2)(p.Q)
is seen to increase monotonically with Q for Q <p+kr, starting from substantial
negative values at small Q. At Q =p +kp, this function exhibits an abrupt rise toward
zero. When the momentum variable Q is in the range 0 < Q <p +kr, the terms n{},
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n, and n{% make the contributions to n.,(p,Qp/p) of largest magnitude; the terms
n, n{§), and nf}} are somewhat less important; and n{}} has little consequence. The
deviation of n,,(p,Qp/p) from zero in the region Q > p +kr is entirely due to the
presence of dynamical correlations. Among the contributing terms, u@), n@), and n?z))
are comparable, while nfg is again of small magnitude. Dynamical correlations are
also responsible for the departure of the estimated n(p,Q) from zero at values of p
beyond kz. In this regime, and Q satisfying |p —kp| <Q <p +k, it is n{}} and next
_ n§) that give the leading contributions, followed by n{3} and n{}}. These last two terms
also contribute in the region Q > p +4r. The various orderings we have indicated are
generally understandable in terms of the number of correlation lines (the wavy lines
representing { factors) involved in the corresponding diagrams, as well as the respective
factors in p and inverse degeneracy v =1/4.

2. a2 2. 57

""n(p9 Q)

Figure 3. The lowest-order generalized momentum distribution ny o (p,Q) as a function of p
and Q for p parallel to Q and Q#0, calculated with the MC correlation function of Ref. [27].
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Figure 4. A different view of the data of Figure 3.
2.0
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= 1.8 &
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Figure 5. The term n§} as a function of p and Q for p parallel to Q (p =0.182 fm™),

2.9
e

o
:‘% / LBQQ&'Q
N N 1—1

=

\ 1, 2.8 3.8 4.8 siae
- Q/kp

Figure 6. The term n{}} as a function of p and Q for p parallel to Q, obtained with the MC
correlation function of ref. [27] (p = 0.182 fm™3).
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Figure 8. The lowest-order generalized momentum distribution ny o (p,Q) as a function of
the angle 8, between p and Q obtained at several Q values (Q#0) for p = kr with the MC
correlation function of ref. [27] (p =0.182 fm™). (The numerical results are plotted as
small triangles; the curves have been drawn merely to guide the eye.)

Information on the dependence of our estimate of n(p,Q) on the angle 8pQ
between p and Q is furnished by Fig. 8 for the case p = kr at selected values of Q. For
all four choices of Q, we find that n ,(p,Q) is at or very close to its minimum value
when Bpq is zero, i.e., when p and Q are parallel. For Q < 2kr this quantity is seen to
increase at small angles and then flatten out at large 6,q. Similar behavior has been
observed at other values of p.
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0.00
0.00 1.00 2.00 3.00 4.00

Q/kp
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Figure 9. The lowest-order generalized momentum distribution n1o(p,Q) as a function of Q
(Q+#0) for p equal 0, for the three models MC, G1, and G2.

—n(p,Q)

2.90 4
. —
1.90 P=KF .
0.90 4
]
—O.Iojmmmmmmﬂ
000 1.00 2.00 300 400 500  6.00

Q/kp

Figure 10. The lowest-order generalized momentum distribution n;0(p,Q) as a function of
Q (Q#0) for p equal kr and p parallel o Q, for the three models MC, G1, and G2.
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The dependence of the results on the choice of correlation function is illustrated in
Figs. 9-11, for Bpq =0 and three characteristic values of p, namely 0, kg, and 2kg.
Qualitatively, the predictions of MC, G1, and G2 models are similar, although
substantial differences do arise at small or intermediate Q values. A more quantitative
observation, holding as a general statement with minor qualifications, is that in the
regions where significant disagreements between the three models are seen, the
magnitude of 7., (p,Q) increases with the size of the wound parameter X4;. As is to be
_ expected, the deviation of n,,(p,Q) from the generalized momentum distribution of the
ideal Fermi gas is also generally larger for larger X4y, as is the violation of the
sequential relation. The predictions of the three models appear to merge for large
values of Q (i.e. for Q > p +kp).

SARARAES RN AR RN E R RSN R RN N RRAR R RS LR RRARRS|
0.00 1.00 200 300 400 500 6.00
Q/kg

Figure 11. As in Figure 10, but for p = 2kg.

For the MC model, we have compared our results with Silver’s
approximation [17b] to the generalized momentum distribution, given by
n(P.Q=n(P)[S(Q)—1]. As inputs to this simple expression we use the momentum
distribution n(p) and static structure function S (Q) from a FHNC calculation for the
MC correlation function at the relevant density. The Silver estimate yields substantially
smaller values of |n(p,Q)| than the leading cluster approximation to this quantity, in
the ‘‘Fermi-gas’’ region of nonvanishing @(kr —p)O(kr— |p-Q1).
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4. Conclusions

In summary, we have reported selected results from a study of the half-diagonal
two-body density matrix p,(ry,rp,r1) in symmetrical nuclear matter. The results have
been framed in terms of the Fourier transform n(p,Q) of py(ry,ry,ry), the so-called
generalized momentum distribution [18,19]. Our study is based on a Jastrow ansatz for
the ground-state wave function, and we have discussed various aspects of the numerical
findings for three versions of the state-independent Jastrow two-body correlation
" function f (r), at densities near the experimental equilibrium density of the system.
Although the results show interesting and possibly significant structural features, this
effort constitutes only the first attempt at quantitative calculation of n(p,Q) for infinite
nuclear matter and thus will be subject to many refinements.

Several considerations suggest that higher-order cluster cormrections may play a
more important role in the treatment of n(p,Q) than has been found to be the case for
the analogous one-body quantity, the momentum distribution n(p) [29]. In particular,
we may point to (i) the large deviations of the predictions for n(p,Q) at Q # 0 from the
result for the noninteracting Fermi gas, (ii) the failure of the sequential relation, which
can assume serious magnitude, and (iii) the sensitivity of these deviations and violations
to the size of the wound parameter ky;. It is of course anticipated that cluster
convergence will be worse, the larger the value of k4;r; however, in the present context
it appears that the generally larger quantity lpj'C(r)drl =|p f [f (r)—1]dr| may serve
as a more appropriate ‘‘smallness parameter’’ for measuring the rapidity of cluster
convergence. We are currently investigating three alternatives to improvement of the
present evaluation of n(p,Q). In the first, we form a simple approximation (called
LOC, in analogy to the so-called lowest-order conserving approximation to the
momentum distribution [29]) by retaining the leading nontrivial cluster terms beyond
no(P,Q) that are needed to ensure satisfaction of the sequential relation (or
equivalently, condition (6)). The other two procedures are based on the structural
relation for n(p,Q) derived by Ristig and Clark [19] (their Eq. (42)). These procedures
involve summation of selected cluster diagrams from all orders of the expansion (10).
The simpler approach keeps only the leading cluster contributions to the irreducible
quantities in terms of which n(p,Q) is expressed (called the LOIC approximation, after
the lowest-order irreducible cluster prescription of Ref. [29]). Preliminary results from
this approach are in accord with the expectation that it will display better convergence
properties than the straightforward cluster expansion considered herein. In a more
elaborate treatment we plan a full FHNC/O calculation of n(p,Q), which will provide a
firm basis for assessing the efficacy of the more naive approximations.

Although FHNC evaluation is clearly the *‘method of choice’” from the standpoint
of accurate determination of the generaiized momentum distribution n(p,Q) for a
Jastrow wave function, the formulation and testing of simple analytic or semi-analytic
approximations remains a desirable goal, since it may be possible to adapt them easily
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to the presence of state-dependent correlations and for phenomenological analyses of
FSI in finite nuclei. A similar strategy has proven successful in the case of the ordinary
momentum distribution [22].

We have discussed above some extensions of the present work that are designed to
improve convergence and achieve a quantitatively reliable description of the two-body
density matrix, insofar as state-independent correlations play the dominant role.
However, it is doubtless the case that a truly realistic description of p,(ry,r;,r7) and
* n(p,Q) over the full range of the spatial and momentum variables will require the
introduction of state-dependent (spin-,-isospin-,-and angle-dependent) correlations into
the trial ground-state wave function of nuclear-mauer[34,35]. As an important step in
this direction, the formalism™ developed~by Ristig-and Clark [18,19] should be
generalized to deal with correlation=operatomsmappropriate to a nucleon-nucleon
interaction of v type [26,35].
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