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T h e harmonic oscillator energy level spacing for neutrons and protons in nuclei * 

G. A. Lalazissis and C. P. Panos 

Department of Theoretical Physics, Aristotle University of Thessaloniki 

54006 Thessaloniki, Greece 

Abstract 

Approximate expressions of hw for neutrons and protons separately, as functions of the 

neutron number Ν and the proton number Ζ respectively, are derived. The dependence of 

hujn{huv) on N(Z) is established using a rather recently proposed semi-phenomenological 

density distribution based on the separation energies of the last neutron or proton. The 

corresponding curves of hu show "discontinuities in the slope" at the closed shells through

out the periodic table. The difference Ηωη — hw\ is also discussed. 

1. Introduction 

The harmonic oscillator energy level spacing for nucléons Τιω^ι as function of the mass 

number A of nuclei is given by the well known formula Τιω^ — /.A-1/3, where / = 

| ( ^ 7 ) ( | ) 1 / 3 ~ 4lMeV (r 0 ~ 1.2fm) [1,2]. Various modifications of the above ex

pression have been proposed [3-6]. More recently Daskaloyannis et al. [7] studied in detail' 

the variation of Ηω^ with A for nucléons (i.e without distiguishing neutrons from protons) 

and obtained improved approximate expressions. The most important point was that those 

expressions show "discontinuities in the slope" in the curve of hupj as function of A at the 

doubly closed shells (A=16 and 40). The authors of ref. 7 removed some approximations 

made in other previous works: they considered the possibility of nuclei with valence nuclé

ons as in [8] without making any approximation in relating the number of the highest filled 

shell Κ to the mass number (see also [9]). The centre of mass and finite size corrections 

were also taken into account in the usual way. 

* Presented by C.P. Panos 
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The purpose of the present paper is to give approximate expressions for ftu>n, %ωρ for 

neutrons and protons independently, using theoretical values i2£mâ, Rp
ms for the rms 

radii of neutrons and protons respectively, determined from a recently proposed semi-

phenomenological density distribution by Gambhir and Patii [10]. This density is related 

to experiment by means of the separation energy of the last neutron (proton) while the 

detailed investigation of hwjv for nucléons of [7] was based on the Fermi density distribution 

with parameters determined by fitting to the experimental values of the rms radii. The 

calculation of %ωη was not possible with the formalism of [7] because experimental values 

of the rms radii of neutrons are not available. In addition, %ωη might be useful for an 

improved study of the difference Δ = %ωη- Τιω\ instead of Δ = Τιωχ- h.uj\, since the 

Λ hyperon in the nucleus behaves very much like a neutron, a neutron however, with 

an additional quantum number the strangeness (S=-l), which makes it a distinguishable 

particle [12,13]. It is also interesting to observe the "discontinuities in the slope" in the 

curves of Ϊϊωη, %ωρ as functions of N,Z respectively at the closed shells for nuclei with 

A > 4 0 . 

In section 2 the density distribution proposed by Gabhir and Patii is reviewed, while in 

section 3 the formalism for 1ιωη, (hup) is considered together with their expansions in 

powers of Ν, (Z). Finally, in section 4 numerical results are given and discussed. 

2. The density distribution of Gambhir and Patii 

Gambhir and Patil[10] proposed a simple semi-phenomenological density distribution for 

neutrons and protons of the form: 

M r ) = Pi

 i E = j a ΓΤΤΤΗΓ (2-1) 

where i=n or ρ (for neutrons or protons), R is a measure of the size of the nucleus and 

a, and ai are given in terms of the separation energy E{ of the last particle (neutron or 

proton) by the equations: 

a i m 
a< = T\h^ + l (2.2) 2y/2rnËt h V 2Et 

where q=0 for neutrons and q=Z-l for protons. The above pi(r) has two important 

features: 1. Its central behaviour is dictated by the fact that it has a vanishing slope 
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for r=0 which means that its power series expansion contains only terms with even powers 

of r,. 2. It shows the correct asymptotic behaviour of the density of the particles in a 

nucleus given by : 

p(r) = r 2aiexp( — ) for r -+ oo (2.3) 

We also note that in order to identify R with the half-density radius, /?,· is taken to be : 

The nuclear size R determines the half-density radius for both neutrons and protons. 

In the method of Gambhir and Patii the unknown parameters are pn, pp and R. Two of 

these are determined from the normalization: 

4π / pn{r)r2dr — Ν 

(2.5) 

47Γ / pJr)r2dr — Ζ J Pp(r) 

while pn is taken to be the same for all nuclei, namely: pn % 0.09/f τη3, which gives the 

observed rms radius for the charge density in 2 0 8 P 6 . This approximation was removed in 

a next paper [11] but the results showed that pn=constant is a good approximation. 

The integrals in (2.5) as well as the integrations for the rms radius have to be calculated 

numerically. However, the following analytic expressions were found: 

• JPi{rydr^^pi{1 + xi) (2.6) 

<r2 >&R2(0.6 + lAx2) (2.7) 

where 
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The results of Gambhir and Patii and our detailed calculations showed that the above 

approximations are very satisfactory. 

3. Formal i sm foi ^ of neu t rons and protons 

The average harmonic oscillator shell model square radius for nucléons may be written [7] 

as follows: 
— 5 h 4 Σ ρ

Α

= 1 ( ρ + 1/2)Ατ(ρ) + ( Α ' + | ) η 
< r 2 >A'+„ = — χ — — — (3.1) 

πιΝω *Σρ=ιΝ(ρ) + η 

where Κ is the number of the highest filled shell, η the number of valence nucléons and Κ 

is determined by the solution of the equation: 

κ κ 
*ΣΝ{ρ) + η = 2j2(p2 +ρ) + η = Α (3.2) 

ρ=1 ρ=1 

It is found that Κ satisfies the equation : 

\K{K + \){K + 2) + η = A (3.3) 

and the corresponding third order equation can be solved exactly to find Κ as function of 

A (relation (4) of [7]). 

Using expression (3.1) we obtain for Ϊιω^ of nucléons : 

hUN = Î^Â[{K + l)iA+ïn)+ln~2][<r2 > -(< rJ > + < rl >)]_1 (3-4) 

where (< r£ > + < r£ >)=0.659 / m 2 is due to proton and neutron finite size effects and 

the constant term -2 in the nominator comes from the correction due to the centre of mass 

motion. 

The relation of Ηω^ with A was established [7] by means of a (phenomenological) Fermi 

density distribution: 

*) = ΤΓΊΞΙ (3-5) 
1 + e « 

which leads to 
3, 2 7π 2α 2 

5 ( c 2 + - 3 
< r 2 > = - ( c 2 + — — ) (3.6) 
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The parameters of the Fermi distribution p0 , a were determined in [7] by fitting to values 

of hujpj reproducing the experimental values of the charge rms radii of nuclei: < r2 >Jh 

or directly to < r2 >Jh . The value of the central density p0 was taken to be independent 

of the mass number A. 

In the present paper we use theoretical values R™3 and Rr

p

m9 derived from the density 

distribution of Gabhir and Patii, separately for neutrons and protons instead of using 

experimental < r 2 >Jh as in [7]. The corresponding expressions for %ωη, Τχωρ (harmonic 

oscillator energy level spacing for neutrons and protons respectively) are: 

3, h2 JKn+\){N + \nn) + \nn-i$] 
hUn = -( r r ) 

4 mnN <rn> 

h 3 h2 [(A-p + l)(Z + in p ) + f n p - f ] 

(3.7) 

The above expressions are derived if we consider the harmonic oscillator states of Ν neu

trons (or Ζ protons) in the nucleus of mass number A=N+Z and a straightforward modifi

cation of expression (3.4). Kn (Kp) is the number of the highest filled shell of the neutrons 

(protons) and nn (np) is the number of the valence neutrons (protons). We also note that 

Kn (Kp) satisfy the equations: 

l-Kn{Kn + l)(Kn + 2) + nn = Ν 

-KP(KP + l)(A'p + 2) + np = Ζ 

(3.8) 

which can be solved in analogy with (3.3) to give Kn or Kp as functions of Ν or Ζ respec

tively. In expressions (3.7) the terms ~ and ^f are due to the centre of mass correction 

and introduce an A dependence. It turns out, however, that this dependence is small and 

has some effect only for very small A while for larger A (A > 16) one can practically put 

A — A — l · 

The harmonic oscillator energy level spacings hu)n, Τιωρ can be estimated by substituting 

to the denominators of expressions (3.7) the calculated values of < r 2 > and < r 2 > from 

expression (2.7). However, this procedure does not permit a rather systematic study of 

these quantities and it is not easy for practical use. Therefore, in order to have an estimate 
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of the average trend of the variation of %ωη ançl Τιωρ with the neutron (N) and proton (Z) 

numbers respectively, as well as a direct way of estimating these quantities, we proceed 

as follows: The determination of Ηω for neutrons and protons separately is performed by 

using as an input an expression for < r 2 > and < r2 > of the form : 

< r\ >= Cln + C2nN
2'3 

(3.9) 

<r2

p>=Clp + C2pZ
2^ 

where the constants C\n,C2n,C\p,C2p are determined by fitting the theoretical values of 

R™3, Rp

ms derived from the density of Gambhir and Patii. In [7] Άω^ was determined 

from experimental values of < r2 >Jh for nucléons and the determination of Τιωη was not 

possible because experimental values for Rr™a are not available. We may also note that 

our choice for the functional dependence of < r 2 > and < r2 > on Ν and Ζ respectively, 

can be partly justified as follows : for neutrons one can combine relation (15) of [10], 

namely R ~ 1.316ÌV1/3 with expression (2.7) giving a leading term of TV2/3 for < r2
n >, 

while for protons expression (22) of [11] (R ~ 1.239Z1/3) combined with (2.7) gives again 

a leading term Z 2 / 3 for < r2 >. One cannot do better than this because x, depends on 

the separation energies and its parametrization is difficult. 

4. Numerical results and discussion 

The calculations of Gabhir and Patii were carried out for a set of 13 nuclei. Their predic

tions are shown in table 1 of [10]. We repeated the calculation for a larger set of nuclei 

to cover the periodic table uniformly as much as possible. In table 1 we tabulate our 

calculated values of the half-density radius R, and the neutron and proton rms radii {R?™a 

and Rp
ms respectively). One could compare our calculated values for J?£ms,JÇms with 

the corresponding values derived from Hartree-Fock calculations (see for example [14]) 

which, however, were carried out for specific nuclei. In addition in the same table we 

also present values of ?ιωη, Ηωρ calculated from (3.7) putting directly < r 2 > 1 / 2 = i 2 ^ m i , 

< r\ >^2=Rr

p

ma . 

Next we fitted expressions (3.9) for < r2 >, < r2 > to the theoretical values of R™a, Rrma 

of table 1 to determine the coefficients Ci„,C 2 n , Cip,C2p. Their values are : Ci„=1.6012, 
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9 

C2„=1.3164, Cip=0.44446, C2p=l.6ll6. 

Nucleus 

xio 

\\Mg 

ìlSi 
40Cn 20«-'« 

%Ti 

llCr 

%Ni 

%\Zn 

9 0 7r 
4 0 Z r 

\\Nh 

10jAg 

ll*oSn 

»jTe 

^iVrf 

' » A u 

2 0 6 T 1 ; 
81 λ * 

208 pL 
8 2 ^ ° 

Ä™* (fm) 

2.74 

3.02 

3.13 

3.54 

3.58 

3.69 

3.85 

3.99 

4.36 

4.47 

4.66 

4.63 

4.79 

4.99 

5.54 

5.55 

5.57 

Rr
n
ma (fm) 

2.64 

2.89 

3.00 

3.32 

3.67 

3.73 

3.79 

3.93 

4.36 

4.54 

4.74 

4.80 

4.98 

5.09 

5.73 

5.92 

5.88 

R(fai) 

2.49 

2.93 

3.11 

3.53 

3.83 

3.95 

4.05 

4.24 

4.88 

4.88 

5.21 

5.34 

5.55 

5.78 

6.54 

6.62 

6.67 

hwp (MeV) 

11.92 

12.09 

11.80 

10.09 

10.05 

10.03 

9.78 

9.06 

8.38 

7.84 

7.98 

8.12 

7.49 

7.44 

6.38 

6.42 

6.56 

Τιωη (MeV) 

12.72 

12.83 

12.50 

11.07 

10.20 

10.13 

9.92 

9.64 

8.86 

8.36 

8.14 

7.96 

7.68 

7.62 

6.76 

6.48 

6.61 

X a b l e 1 . The values of the rms radii x ? ^ m i , Λ ™ ' , and the half-density radius R calculated from 

expressions (2.6), (2.7). The values of huJnì TlUp from (3.7) using the neutron and proton radii of 

this table are also displayed. 

Then < r\ >. < r1 > are substituted to expressions (3.7) and Τιωη, hwp are calculated 



- 8 3 -

numerically for various values of Ν and Z. The dependence of Ηωη, %ωρ on Ν and Ζ 

respectivelly , according to the results obtained in this paper is shown in figures 1 and 2 

(solid lines). 

ω 

3 

14 

1 1 

0 40 ^ τ 80 120 

F i g u r e 1 The harmonic oscillator spacing IVjJn as a function of N. The solid line 

corresponds to expression (3.7) using relation (3.9), while t h e dashed one to expression (4.3) 

We observe in both curves "discontinuities in the slope" at closed shells (without taking 

into account the spin-orbit term). This feature was also observed in [7] in the case of 

nucléons for the closed shells only at A=16 and 40. In the present work we are able to 

observe the discontinuities in the slope at closed shells for both neutrons and protons across 

the whole periodic table. 
15 

> 
0) 

10 
o. 
3 

20 40 60 80 
Γ IgUre 2 The harmonic oscillator spacing hu>p as a function of Z. The solid line 

corresponds to expression (3.7) using relation (3.Θ), while t h e dashed one to expression (4.3) 
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It is also noted that calculations for %ωη are possible because the density of Gambhir and 

Patii yields theoretical values for i?£ m s . 

Expressions (3.7) for hu)n, hup with < τ\ >, < rj; > from (3.9) can be expanded in powers 

of Ν or Ζ respectively. The following expansions are obtained: 

hUn = 3ÌÌÌÌL - Ι-ΛΓ- 1 / 3 ^ + AniV-2/3 + fc2iv-4/3 + A'3iv-5/3 +...] (4.1) 

4 m n C2„ 

where 

». = φ·" - p-
à U2n 

i , . r i / . ( ^ - _ ^ ) _ ( | ) . / » ^ _ ^ (4.2) 

A similar expression holds for Äo;p obtained by substituting Ν with Ζ and the subscript η 

with p. The leading term of the expansions is TV-1/3 or Z - 1 / 3 as expected by the well-

known asymptotic formula holding for nucléons: 41A - 1 /3 (if we set A = 2N or A = 2Z). 

Keeping the first two terms in equation (4.1) we find: 

Ηωη = 34.17V-1/3 - 36.07V-1 

(4.3) 

Τιωρ = 2 7 . 9 Z " 1 / 3 - 3 . 2 Z _ 1 

It is seen in expressions (4.1) and (4.2) that the first two terms of the expansions do not 

depend on the number of the valence nucléons (nn,np). In figures 1 and 2 are also shown 

the curves (dashed lines) which correspond to expressions (4.3). 

At this point it is also interesting to estimate the difference A=hu}n-hu)\. The Λ hyperon is 

the lightest strange baryon, it is neutral and one could simulate it with a distinct neutron. 

Therefore it seems more consistent to compare Ηω\ with Τνωη and not just with hu^ for 

a nucléon as in [15,16]. Though a reliable determination of Δ is not easy, our estimates 

indicate that this difference is less than 3 MeV (for A > IG) and therefore the values of the 

oscillator spacing of the Λ might not. differ very much from those for a neutron. We note 
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also that in [15,16] the difference Α=Ηω^-%ω\ was estimated to be less than 2.5 MeV for 

A > 1 6 . 

Nucleus 

16*o 

HMg 

\\Si 

32 Ο 
1 6 ° 

t°oCa 

UNÌ 

HZn 

9 0 7r 
4 0 Ζ Γ 

HÈSn 

ΨβΒα 

2llPb 

hwn 

13.01 

12.69 

12.24 

11.77 

10.86 

10.06 

9.47 

8.69 

8.03 

7.49 

6.56 

hu)p 

12.98 

12.15 

11.56 

10.99 

9.98 

9.23 

9.02 

8.03 

7.60 

7.32 

6.43 

expr.(7) of [7] 

13.06 

12.85 

12.43 

11.97 

11.09 

10.42 

10.02 

9.18 

8.63 

8.06 

7.19 

expr.(33) of [17] 

11.11 

9.75 

9.27 

8.88 

8.26 

7.32 

7.02 

6.34 

5.87 

5.51 

4.81 

exprs.(3),(12) of [15] 

11.15 

10.09 

9.59 

9.14 

8.36 

7.10 

6.68 

5.74 

5.08 

4.59 

3.67 

T a b l e 2 . T h e v a l u e s in M e v o f hu)n, %LJp and huijy for a n u m b e r o f nuc le i . T h e v a l u e s o f Tl(jJ\ 

c o r r e s p o n d t o h y p e r n u c l e i w i t h t h e s a m e A and Ζ a s t h e nucle i o f t h i s t a b l e (for d e t a i l s s e e t e x t ) . 

In table 2 we present for a number of nuclei values for Ηωη, hup calculated according to the 

present approach (expr. (3.7) using (3.9)) and hu^ (column 4) calculated from ref.7 where 

a Fermi distribution was employed (expr (7)). In column 5 we show results for hu\ using 

expression (33) of [17], which is based on the idea of using a sort of " best approximation in 

the mean of the Λ-nucleus potential by the harmonic oscillator one ", where a dependence 

of hu>\ = iA~1'3 appears. In column 6 we show values for hw\ determined by expressions 

(3) and (12) of [15], which lead to a dependence Άω\ = L4~ 2/ 3. We recall that the problem 

of the A dependence of Ηω^ has attracted interest long ago [15-20] and it has been a matter 

of controversy [19,20,24]. Recently Dover [25] discussed the A dependence of hu>N and Ηωχ 
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a n d connected it with the possibility for a indistinguishable Λ within a nucleus (partial 

quark deconfinement due to s quark) . 

We should keep in mind, however, that in [7] Δ was estimated using Ηω^ (for nucléons) 

with parameters determined by fitting the rms radii of nuclei while in the present paper Ηωη 

is calculated by employing a density distribution with parameters coming from separation 

energies of t h e last neutron or proton. In both cases Ηω\ (which correspond to hypernuclei 

with the same mass number A a n d atomic number Z, as the nuclei in column 1 of table 2) 

is found by fitting to single particle ground state energies. 

We also n o t e that the experimental lowest spacing for a neutron or proton in 0 1 6 is roughly 

twice t h a t for the Λ and the situation is similar for Ca40 (see also ref. 26). Nethertheless 

it seems t h a t there are experimental uncertainties in the determination of these spacings, 

which do not make easy a quantitative comparison between the lowest energy spacing for 

a Λ and a nucléon. 

In conclusion, we note that in the present paper approximate expressions for Ηωη(Ν), 

hujp(Z) separately, are derived which may be used in practice. Such expressions are pro

posed for t h e first t ime (to our knowledge) apart from ref. 27 where, however, t h e simplified 

Moszkowski's procedure was followed (i.e. using a uniform density distribution without 

taking in to account valence nucléons) and no numerical results were reported. Also expres

sions of the form %ωη(Α) = 3 5 A - 1 / 3 , Ηωρ(Α) = 3 1 A - 1 / 3 (suitable for rather heavy nuclei) 

were derived in [28] in the framework of the liquid-drop model by least-squares fitting to 

nuclear ground-state binding energies. 
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