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A systematic study of the effect of short range correlations on the occupation

numbers of the shell model orbits in light nuclei *

G. A. Lalazissis, S. E. Massen and C. P. Panos

Department of Theoretical Physics, Aristotle University of Thessaloniki
54006 Thessaloniki, Greece

Abstract

The role of short-range correlations on the depletion of the Fermi sea is studied in light
nuclei. The short range correlations are considered in an approximate treatment allowing a
systematic study of nuclei in the region 4 < A < 40. The “natural orbital” representation
is used for the determination of the occupation probabilities of the shell model orbits of
the ground state wave function. The depletion of the nuclear Fermi sea appears to be, on
the average, about 32%.

1. Introduction

Investigations concerning the limits of validity of the mean field approximation have at-

tracted much interest last years{l]. In this approach all the single-particle states with
energy larger than the Fermi energy are completely empty while the other ones are fully

occupied and form the Fermi sea. However, reality is far from this simple picture and the

nucleon-nucleon interactions give rise to a depletion of the Fermi sea.

In an early theoretical study it was argued (2], that the depletion may be as large as

30%. Later, electron scattering experiments supported this idea [3,4]. More recently high

resolution (e,e'p) experiments have shown significant deviations from the mean field pic-

ture[1,5,6]. For mass A > 12 systems a systematic reduction of spectroscopic strength is

observed amounting to 40-50% of the full-shell value expected in the mean field approxima-

tion to the many-body wave function. This causes a substantial depletion of the quantum
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states, especially those near the Fermi surface [1] and clearly demonstrates that the single
particle orbits are partially occupied due to nucleon-nucleon correlations [5]. It is noted,
however, that in such experiments only a part of the spectroscopic strength is measured
and therefore it is expected that the occupancy of the single particle orbits is larger (e.g.
a value of about 80% is reported for the occupation probability of 35;/; in lead [7], while
an analysis of (e,e'p) data yields a spectroscopic strength of about 50% [8,9]).

The depletion of occupied states can be attributed to two processes. Firstly, there is a
coupling of the Hartree-Fock ground state to low-lying collective modes. Secondly, short-
range correlations due to hard collisions between nucleons at relative distances smaller
than about 0.5 fm may result in a scattering of the nucleons into states of higher energy
up to 1 GeV. Calculations for nuclear matter including these short-range correlations have
shown [10,11] that the depletion of the otherwise filled orbits is 10-20%.

The “natural orbital” representation [12] offers a unique possibility in keeping the simplicity
and visuality of the single-particle description, while at the same time the effects of short-
range and tensor correlations (which already have been examined in more sophisticated
beyond mean field theories) are taken into account in an effective way, that is, expressing

the ground-state wave function in terms of the occupation probabilities of single particle
orbits.

The “natural orbital” approach has already been applied in the past for nuclear structure
studies [13-15]. Recently this approach was employed [16] within a varionational Jastrow-

type correlation method to study quantum liquid drops such as Fermi liquid *He and Bose
liquid *He.

Jaminon et al. [17-20] paid special attention to the “natural orbital” method. In their
approach the radial part of the single particle Woods-Saxon wave functions was identified
with the natural orbitals, for states below the Fermi level, while those above the Fermi
level were constructed by setting a particular cut-off procedure and suitable boundary
conditions. The parameters of the Woods-Saxon potential were determined to fit the
energy-level scheme of the self-consistent Hartree-Fock calculations. The occupation num-
bers were those of a RPA calculation for 2°®Pb [21] and of nuclear matter calculations
where the effects of short-range and tensor correlations were considered [4]. Such an ap-
proach permits the study of both density and momentum distribution in lead. For the
depletion of the Fermi sea various possibilities were considered corresponding to different

sets of occupation numbers. It was concluded that by comparing their results with the



empirical values of the momentum distribution the set of the occupation numbers which
leads to 11.6% depletion is the most reliable among those considered. Their results are
also in semi-quantitative keeping with those of several microscopic calculations performed
in light nuclei.

In a series of papers [22-24] correlated charge form-factors F¢i(g) and densities of s-p and
s-d shell nuclei were calculated by using correlated wave functions of the relative motion
and the factor cluster expansion of Ristig et al. [25]. The parameters of the method
were calculated by fitting the theoretical values of F¢4(q) to the experimental ones for the
corresponding nuclei.

The aim of the present paper is to study the effect of short-range correlations on the
depletion of the nuclear Fermi sea for nuclei in the region 4 < A < 40. The “natural
orbital” representation is employed by imposing the condition the correlated proton density
distribution (derived from the work mentioned in the previous paragraph) to be equal to
that constructed by natural orbitals.

The paper is organized as follows: In sect. 2 we present the method and the relevant
formalism for the short-range correlations. In sect. 3 we describe our method and give
the corresponding expressions for the occupation probabilities. In sect. 4 we present and

discuss the results of our calculations. Finally, sect. 5 summarises our conclusions.

2. The correlated charge form-factors and densities of s-p and s-d shell nuclei

A general expression for the charge form-factor, Fis(q), of light closed shell nuclei was
derived [22] using the factor cluster expansion of Ristig et al. [25] as reviewed by Clark
[26]. Next this formula was simplified by considering normalised correlated wave functions

of the relative motion which are parametrized in the following way:

"r/)nla(r) =i nla[l = e-tp("/\nlarz /b2)]¢nl(r) (21)

where Ny, are the normalisation factors, ¢,i(r) are the harmonic oscillator wavefunctions
and b = V2b; (b = Vh/mw) is the harmonic oscillator (HO) parameter for the relative
motion. Thus, an expression for Fi;(q) of the *0 nucleus was derived in closed form. The
correlation parameters Aq, (state dependent) and the HO parameter b; were determined

by fitting to the experimental values of F.4(q) of 1%0.
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In an extension of the above work [23,24] an approximate formula for the two-body term
F3(q) in the cluster expansion of F(q) = Fl(q)L+ Fy(q) (Fi(q) is the one-body term) was
found for the case of *He, *0 and 4°Ca, which contains b; and the correlation parameter

A (state independent). The two body term has the form

Fy(g) = \™3?[A(y)e™" + B(y)e™ + C(y)eTHm | (2.2)

where y = ﬂsiz— and A(y), B(y), C(y) are polynomials of zero order for *He, second order
for 10 and fourth order for *°Ca. The coefficients a;, §;i, 7; of these polynomials are
shown in table 1 of ref. 24. The coefficients of A(y), B(y), C(y) for the other p shell (or s-d
shell) nuclei were determined by making a linear interpolation between the corresponding
values of 4He and 160 (or 160 and 0Ca).

The correlation parameter A was a free parameter for * He, 10 and “°Ca, while for the
open p shell or s-d shell nuclei was determined by interpolation using the relation A =
Ao + M AY/3,

The method described above offers the possibility of finding the correction to the uncor-
related charge (or proton) density analytically by a Fourier transform of F3(g). Thus the

correlated proton density distribution is written :

pcor(r) = pl(r) + pz(f‘)

where p;(r) is the Fourier transform of Fj(g), which for s-p shell nuclei is :

1 Z ) 2 2 1‘2 _’.2/,’2 .
Pl(r) = 7r3/2b;1; [1 - Z (1 - Eb_li)]e L (24)

while for s-d shell nuclei is:

oL (_Z=2s Z-8rt
P =0~ "32 b2 3Z B

Jle= /82 (2.5)

and the two-body term p,(r) is the Fourier transform of Fz(q), which for s-p and s-d shell

nuclei has the form :
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/\—3/2

pa(r) = Sz I(@)e™ + J(21)e™™" + K(z2)e™™] (2.6)
where ) ) ,
r T T
_r T = 2.6
T bg s Iy éf’ T2 6% ( a)
14 A/2 142
2 _ 2T Mo 2 - B 2.6b
61 1 +A bl7 52 1+2/\b17 ( )
and
1 3 3 15 3
Iiz) = b—3[2ao + 5 1Fi(-1; 5;.7:) + 5 1Fi(-2; §;z)+
105 945
+3—2013 1Fi(=3; 3 $)+ 128 1Fi(—4; ,:z)] (2.7)

The expression for J(z;) results from (2.7) setting z — 1, by — 6; and oy — (l—f‘_j’,\ﬁ\;)"ﬂk,
k= 0,1,2,3,4, while the expression for K(z;) by setting z — z;, by — 62 and ax —
( T+ )k'ﬂ:

Finally, from (2.3) one can find analytic expressions for the various moments of the proton

density distribution for the s-p and s-d shell nuclei. The moments have the form :
<k >=<rt >+ <k >y (2.8) .

where < r* >; and < r* >; are the contributions of the one body and two body density
respectively. The former can be found from equations (2.4) and (2.5) and for the s-p shell

nuclel has the form :

ko ib_l‘_ 1 3+k Z-2_5+k
<rt >= - ZF( 5 )+ 3Z I( 5 ) (2.9a)
while for the s-d shell nuclei is written :
k 445 [1 3+L Z-20_54+k Z-8_ T+k
<r® >= G I'( ) — 6Z I 3 )+ 6z T( 5 ) (2.9b)



The corresponding expression for < r* >3 can be found from (2.6). If we keep powers of

X up to A~3/2_ it takes the simple form :
< ¥ > CpbEATI2 (2.10)

The values of Cy (k=1,2,3,4) for *He, 10 and 4°Ca are given in table 1.

Nucleus C: C, Cs Cy
‘He 16323 T 3.7043 7.2054 | 13.8909
180 2.3992 | 7.1775 | 17.5076 | 40.8075
90Cq 3.7509 | 12.4673 | 35.0501 | 92.6091

Table 1. The values of Ck (k=1,2,3,4) for 4IIC, ‘60 and °Ca used in expression (2.10)
3. Theoretical method

The “natural orbitals” {@,} are defined [12] as the orthogonal basis which diagonalizes the

one-body density matrix :

7

p(r,r') = Y aquy(rug(r) (3.1)
g
where a, is the occupation number of the state q (¢ = nlj)
In this representation the density distribution takes the simple form:
(3.2)

p(r) = Z aglug(r)|®
q

Notice that the summation in (3.2) runs over the q largest occupied state above the

Fermi level. In the case of a spherical symmetric system we get :

1 . 5
PUr) = 32 2+ Unaléy(r) (33)
where n, = (ﬁil—) is the occupation probability of the q(=nlj) state.

In our approach we assume that the radial part of the single-particle wave functions { R}

of a harmonic oscillator potential can be identified with the “natural orbitals” {¢,} in a



way similar to [14,19]. One, however, could consider as “natural orbitals” proper linear
combinations of the single-particle wave functions {R,;}, that is, as approximations to
“generalized natural orbitals” [27]. At this point we note that in a previous work of Boffi
and Pacati [28] the natural orbitals were expanded in terms of a few harmonic oscillator
eigenstates and the expansion coefficients were used as fitting parameters. In the present
work, as a first step and for the sake of simplicity of our approach (that is less parameters),
we keep only the dominant term of the expansion. This seems reasonable since in the Boffi-
Pacati approach the value of the coefficient of the dominant term was found to be large i.e
close to unity. In addition one should keep in mind the advantage of harmonic oscillator
wave functions to depend only on one parameter, namely the size parameter b;. On the
other hand one could use instead of harmonic oscillator wave fuunctions the ones of a more
realistic single-particle potential like the Woods-Saxon one as in [14,17-20]. In such a case,
however, the simplicity of the approach and the possibility of obtaing analytic expressions
are lost.

Next we assume that the proton density distribution pcor (expr. 2.3) in which the effect of
short range correlations is taken into account, equals with the density distribution p, (),

corresponding to the “natural orbital” representation :

Peor(r) = Pn.o(T) (3'4)

where pn.o(r) is given by (3.3) with ¢4,(r) = Rni(r). An alternative proposal is to use
instead of pcor(r) the experimental density distributions resulting from the corresponding
experimental charge form factors Fia(g). Such an approach, however, does not permit a .
systematic study of s-p and s-d shell nuclei. In addition, in our expression for the pgor
(which is analytic) the two body correlations enter in an explicit way allowing an estimate
of their role to the deviation from integer occupation numbers and to the depletion of the

nuclear Fermi sea.

If we choose our harmonic oscillator basis to cover n=3 major shells, (3.3) becomes :

rd

2 6
Ny + 2Ny 3 +4Nazg + 8Ny Tleap(~12 /b3) )
1 1 1

P
ool = Z (|

where
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4V1 nls + 3712,

Ny =2n;, — 2ng, + 302,

(3.6)
N3 = -nya+ ln 2n
3= 3nld 3 2s 2p
2 1
Ny = Tk + 52

It is seen from (3.5) and (3.6) that pn.o(r) depends on the four parameters N; (i=1,...,4)
and the size parameter b; of the harmonic oscillator potential. The determination of the

parameters can be carried out by imposing the condition :

< T‘k >cor=< Tk >n.o (37)

that is, the first few moments of pcor(r) to become equal to the ones of pn o(r) distribution.
The general expression for the moments in the “natural orbital” representation has the

form :

k+3 5
<rF >p0= Z\/—bk[Nl )+2N2F( )
k+7 k+9
FANST(EET) + 8N, T 2] (38) .

Using (3.7) and (3.8) for k=0,1,...,4 we obtain five equations with five unknown variables
N1,N3,N3, N4 and b;. The equation for b; is :

4
b: - 2\/7_I’7'1b? + 4r2b2 \/—rgbl + Eu =0 (39)

while the equations for N; are linear and r; (i=0,1,...,4) are the moments of pcor(r) distri-
bution, that is r; =< r* >cor-

If we reduce the HO space of the bound states up to n=2 major shells, pp o(r), N1,N2,N3,N4
come out from (3.5),(3.6) by setting nyp=niy = 0. In such a case Ny =0 and b, satisfies

the following equation:



4b3 — 6/mr b2 + 8raby — V/7r3 =0 (3.10)

A further reduction (up to n=1 major shell) leads to only two unknown variables Ny, N,

while N3~ = N4y = 0 and b, satisfies the equation:

302 — 3y/mriby +2r; =0 (3.11)

It should be noted that such reductions are necessary for lighter nuclei in order to get
physical acceptable values for the occupation probabilities and the size parameter b, (see
also next section). We also note that p,.o(r) (expr. 3.5) is normalized to unity.

It is interesting to investigate the possibility of estimating the occupation probabilities 7,
and the depletion of the Fermi sea using this simple method. We note that we have the
four equations (3.6) for six variables n,; where N; are already known in the case with n
=3 major shells. In the case with n =2 major shells we have Ny = 0 and equations (3.6)
become a system of three linear equations with four variables. Finally, for n =1 major
shells N3=N,=0 and equations (3.6) lead to a system of two linear equations which allow
the determination of n;, and n,, in a unique way. From a first glance, it seems that there
are an infinite number of combinations for nn; which satisfy (3.6) in the cases with n =3
and n=2 major shells. However, we can limit the values of n,; to a narrow region by
setting plausible conditions on them.

We note that since in the present approach we consider the “natural orbital” representation,
the number of particles in the Fermi sea should be expected to be maximum [17-19,29,30].
Taking into account the above remark as well as the fact that the deeper states should

have higher occupancy, we impose the conditions :

Tlsyz 2 Mpajz = Nipyys > Mdsy, > N2syyp > Midgyy > Nifryz > N2pgyy > Nfgya > N2pyy,

(3.12)
where the occupation probabilities nn; are related to n, as follows:
1+1 l
Ml = Sr T Mnhi/2 +t3 i1 (3.13)

From the possible solutions of (3.6) satisfying the conditions (3.12) we choose the ones

which yield the smallest depletion of the Fermi sea.
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4. Numerical results and discussion

The moments r; i=0,1,...,4 of the correlated proton density distribution pcor(r) are calcu-
lated numerically using pcor coming from ref. 19. Then we solve for b; (n.0) eq. (3.9) for
nuclei belonging to n=3 major shells, eq. (3.10) for n=2 major shells and eq. (3.11) for
n=1. The results for the values of b; (n.o) along with b; (HO) (uncorrelated) and b; (cor)

are shown in table 2.

Nucleus | b (HO) | b(cor) | bi(n.o)
‘He 1.363 1.215 1.118
2¢ 1.639 1.529 1.465
150 1.786 1.679 1.597

Mg 1.807 1.760 1.714
8.5, 1.891 1.821 1.761
stp 1.849 1.746 1.685
329 1.860 1.793 1.728
i ¢ 1.969 1.866 1.792
b 8.7 1.950 1.860 1.785

Table 2. Comparison of b; (HO), by (cor), bj(n.o) for various nuclei.

We note that though the number of solutions is greater than one, it turns out that in each
case from the real solutions of egs. (3.9, 3.10, 3.11) only one (the smallest) is physically
acceptable i.e yields a reasonable value for Aiw. It is seen from table 3 that the following
inequality holds:

b1 (HO) > bi(cor) > by(n.o) (4.1)

The values of Ny, N2, N3, Ny, which are displayed in table 3, are determined from equations
(3.7), (3.8) and the calculated values of r;. '

Nucleus N, N, N3 N,
‘He 0.9508 | 0.3497 | 0. 0.
e 1.3463 | 1.0585 | 0.0985 | O.
10 1.6019 | 1.2085 | 0.1848 | 0.
Mg 2.4424 | 0.8267 | 0.3847 | 0.0125
85; 2.6790 | 0.7140 | 0.4119 | 0.0286
sip 2.7964 | 0.6871 | 0.4176 | 0.0369
g 2.9013 | 0.6763 | 0.4162 | 0.0460
¥E 3.1932 0.7316 0.3828 0.0750
10Cq 3.2706 | 0.7816 | 0.3587 | 0.0858

Table 3. The values of Nl, Nz, N3, Ny for various nuclei.
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At this point we note that using an expression similar to (3.5), in momentum space, one
could calculate the corresponding proton momentum distribution n(k). It should be noted,
however, that in such a case we do not expect the calculated n(k) to be the proper ones,
since it is well known [17-18,31] that the momentum distribution is determined by the
non-diagonal elements of the one body density matrix.

Next step is to estimate the occupation probabilities n,;; and the depletion of the Fermi
sea. Therefore, eqs. (3.6) are solved for nn;j, taking into account the relation (3.13) and
the restriction (3.12) (which is justified in the previous section). In table 4 the occupation
probabilities ny,; of the shells 1s, 1p, 1d, 2s, 1f and 2p are shown. It is seen that as it
should be expected the probabilities for the deeper states are much higher than those near

the Fermi surface.

Nucleus Nis Nip nid Nos nis ng
‘He 048 | 0.17
12c 067 | 053 | 0.15
169 069 | 068 | 0.24 | 0.08

2 Mg 0.72 | 0.70 | 0.46 | 0.33 | 0.07 | 0.02
286 070 | 0.69 | 051 | 042 | 0.16 | 0.04
sip 070 | 069 | 054 | 047 | 0.21 | 0.05
328 0.70 | 0.69 | 0.56 | 0.50 | 0.25 | 0.06
K 0.68 0.67 0.64 0.61 0.38 0.12
10Cq 0.68 | 067 | 0.65| 064 | 043 | 0.14

Table 4. Occupation probabilities N, for various nuclei.

In the framework of this approach the following values of the depletion of the nuclear
Fermi sea are obtained: *He 53%, '2C 33%, ‘60 32%, **Mg 30%, *%Si 30%, *'P
32%, 328 34%, 3°K 35%, %°Ca 34%. It is observed that apart from *He where the
depletion is very large, for nuclei with A > 12 the depletion is nearly constant, that is
32¥2%. This has to be expected taking into account that the phenomenon of nuclear
saturation causes a stabilization of the interior matter density distribution and the related
momentum distribution [1].

The calculated occupation probabilities do not agree well with those obtained in micro-
scopic calculations in nuclear matter [32,33]. However, one should have in mind the sim-
plicity of our model and the fact that the present approach is pure phenomenological. On
the other hand. occupation probabilities in nuclei may differ from those in nuclear matter

due to surface effects [30,32]. In addition it was stated that the transition from nuclear
2

R

~

b
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matter to finite nuclei is an open theoretical issue and a fully consistent calculation is
clearly called for [34].

In table 5 we present the occupation numbers a, corresponding to our approach (column
4) and the available “experimental values” (which correspond to nuclei in the region of
our interest) quoted from table X of ref. 35. These values correspond to a DWIA analysis
of Tokyo, Saclay (e,e'p) [36-39] and CERN (p,2p) [40,41] experiments. The (e,e'p) results
seem to be more reliable even for deep shells where the (p,2p) reaction fails to give rea-
sonable numbers, due to too high contributions from multiple collision background [35].
In column 3 we give for comparison the occupation numbers of the independent particle
model (IPM). Finally in column 7 the numbers in parentheses correspond to a PWIA
analysis of the data of ref. 39. It is seen that our results are close to the “experimental”
occupation numbers. It should be noted, however, that there are large uncertainties con-
cerning the absolute determination of the occupation numbers, which do not allow one to
assert that the occupation numbers are known from experiments to better than ~ 20%

[35]. In addition the various analyses are not entirely model independent [35].

Nucleus | State | IPM ay CERN (p,2p) | TOKYO (e,e'p) | SACLAY (e,e'p)
3] 1s 2 1.34 2.0 1.34 1.0
1p 4 2.68 1.3 2.6 25
160 1s 2 1.37 1.6
1p 6 4.09 3.6
854 1s 2 1.41 (>11) 0.9
1p 6 4.15 2.8 2.9
1d 6 4.14 4.8 55
2s - 0.85 0.5 0.4
°Ca 1s 2 1.35 (>40) 1.5
1p 6 4.03 6.0 10.2 (1.8) 5.7
1d 10 6.5 5.0 8.9 (2.6) (i
2s 2 1.28 0.5 2.0 (0.9) 1.3

Table 5. Comparison of occupation numbers &g (n.o) calculated in the present method with the
“experimental values”. See comments in text.
In ref. 42 a theoretical expression for F.;(q) is derived in the framework of a harmonic oscil-

lator shell model which depends on parameters describing the occupancy of specific surface



orbits while the rest are considered fully occupied. Numerical calculations are reported
only for 4°Ca where the values of the parameters are obtained by fitting to experimental
values of F¢;(q), while the harmonic oscillator parameter is determined separately in order
to reproduce the experimental rms radius. In our approach, however, the size parameter
is free to vary together with n,;;. In addition we demand that pn.. = pcor, Where pcor
comes from a theoretical closed form expression for F.;(q) derived by assuming a partic-
ular simple form for the short range correlations and the value of ) is obtained by fitting
to experimental Fcu(q). It would be interesting to use other forms for the short range
correlations in order to observe the corresponding change of nyy;.

A merit of our approach is that, in some way, it establishes a relationship of fractional
occupation probabilities with short range correlations. However, this relationship is not
completely clear, because we are not able to distinguish the corrections to F.x(gq) for large
values of q due to short range correlations from the ones due to meson exchange currents.
Another limitation is that we approximate the “natural orbitals” with harmonic oscillator
wave functions. In any case, our simple method might be useful to the specialist in order
to compare with more sophisticated models.

Finally, we would like to make clear, that this approach is an attempt for a rough estimate
of the occupation probabilities and the depletion. Qur aim is to give the average trend of
the variation of the occupation probabilities and the depletion of the Fermi sea in a rather
systematic way in the region 4 < A < 40. A more precise estimate of nn;; is beyond the
capabilities of this approach, having also in mind that the charge distributions alone are
not sufficient to provide a reliable estimate of absolute occupation probabilities of single
particle orbits [5]. On the other hé.nd, experimentally precise occupation numbers are still
uncertain [5]. Therefore, one hopes that the experiments which are planned in NIKHEF, ’
MAMI and those in CEBAF in the near future will shed more light on this problem.

5. Summary

In this paper we propose a simple method for the introduction of short range correlations
in the ground state nuclear wave function for nuclei in the region 4 < A < 40. In the
present approach we adopt correlations of Jastrow type, characterised by the correlation
parameter A and the harmonic oscillator parameter b; which are determined by fitting the
correlated charge form factor to the corresponding experimental values.

The “natural orbital” representation is employed for the determination of the occupation
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probabilities of the shell model orbits of the ground state wave function by imposing the
condition the correlated proton distribution to be equal to the corresponding one calculated
with “natural orbitals”. In this method the effect of short range correlations is taken into
account in an effective way and is absorbed in the values of the calculated occupation
numbers and the size parameter b;. The results show that apart from *He the depletion
of the nuclear Fermi sea is about 32%.

A firm quantitative comparison of the calculated occupation numbers with the “experi-

mental” ones cannot be done due to the large ambiguities of the existing data.
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