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A b s t r a c t 

The root mean square radii of the Λ-particle orbits in 

hypernuclei are calculated in the ground and first excited 

states using the Dirac equation with scalar and vector po­

tentials of orthogonal shape.An exact analytic and also appro­

ximate expressions are derived for the root mean square ra-' 

dius of the Λ orbit in its ground state.It is shown that 

2 1/2 1/3 

<r > ' varies linearly with A ' for the higer mass hyper-
s
1/2 ^ 

nuclei, Our results in the ground state are compared with the 

results of Rayet and also with those of Daskaloyannis et. al. 
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1. Introduction 

The radii of the orbits which the Λ-particle can occupy 

inside the Λ-hypernuclei is a subject which attracted the 

(1-6) 
interest of several authors in the past.Though there are no 

experimental results with respect to which one can compare 

his theoretical results, yet the problem is interesting.In 

some previous publications we have considered this subject 

(4) 
using the Woods-Saxon potential and also the potential U(r)=* 

2
 (

'
5) 

-D/cosh (r/R).These results were obtained entirely by nume­

rical calculations. 

In this paper we consider the same problem assuming that 

the Λ-nucleus potential is made up of an attractive U (r) 

and a repulsive U (r) components both of orthogonal shape 

and that the equation of motion of the Λ-particle in hyper-

nuclei is the Dirac equation. 

The reason behind this choice of potential is not because 

one expects an improvment of the results already obtained 

using the more realistic Woods-Saxon potential but because 

in the square well case one obtains analytic solutions for 

bound (10-12) 
the wavefunctions in all/ states.(Note that the square 

well potential belongs to the few cases for which the Dirac 

equation is solvable analytically.) Using the wavefunctions 

the root mean square radii of the orbits of the A-particle 

in hypernuclei can be calculated either numerically or analy­

tically in terms of the potential parameters.We mention also 

that in the square well case one can derive an eigenvalue 

equation holding for all the states from which the binding 

energies Β of the Λ-particle in hypernuclei can be calcu­

lated. 
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In section 2 of this paper the basic formalism used in 

our calculations is explained, while in section 3 our results 

are given and discussed. 

2. Formalism 

We assume that the potential between the Λ-particle and 

the nucleus is made up of an attractive component U (r) and 

a repulsive component U. (r).We assume also that the differen­

tial equation describing the motion of the.Λ-particle in hyper· 

(7-10) 
nuclei is the Dirac equation 

(ca.p + 0uc
2
 + ßOg(r) + υγ

(Γ))φ*= Εφ (1) 

where a = ( α.,α,,α, ) , β are the Dirac matrices.E is the to-

2 
tal energy i.e. Ε ̂  -Β

Λ
 + μο ,B. being the binding energy of the 

Λ particle.ψ is the Dirac four-spinor which may be written as 

Φ= Φ nljm" 

iG
nlj
(r)(1/r) 

F
nlj
(r)o.r(1/r) 

Φ ljm 
(2) 

Instead of the potentials U (r) and U (r), the potentials 

U, (r) = U (r) + U (r) (3) 

+ s - ν 

are used, which are both attractive. 

From the Dirac equation (1) one obtains by the procedure 

outlined in refs ( 7-10 ) the following radial differential 

equation of the Schrödinger type 
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1(1+1) ο 
g (r>-{ +-f^(V

c e n t r e
(r

f
B

A
)

+
V

e e O
(r

f
B

A
)

+
B

A
)}g(r)-0 (4) 

j.2 /il 

where V (
r
'

B
J

 i s t h e
 central part of the potential and 

vocili L.-L · χι 

V ^
r
'

B
A^

 t h e s
P

i n o r b i t
 P

a r t o f
 it.The complete expressions 

of these potentials are given in ref. ( 10 ) . 

The solution g(r) of the differential equation (4) is rela­

ted to the large radial component G(r) of the Dirac wavefunc-

tion through the formula 

G(r) = D
1 / 2

(r)g(r) (5) 

where 

D(r) = — {2uc
2
 - B

A
 + U_(r)}. (6) 

Jtic 

The small radial component of the Dirac wavefunction is rela­

ted to G(r) by means of the formula 

F(r) = (G*(r) + -*-G(r))D*"
1
 (r) (7) 

(where we have suppressed the quantum numbers nlj in G(r) and 

F(r) ) and κ=» +(j + (1/2)) for j» 1 - (1/2) . 

Assuming that the potentials U\ (r) and U (r) are square 

of
 + 

wells with depths D and D_ and/the same radius R i.e. 

U
+
(r) = -D

+
(1 + e(r-R)) ( Q) 

1 /3 
where Θ is the unit step function and R=r„A '

 f
the correspon-c

 0 core 

ding differential equation can be solved analytically for all 
bound 

/ states as it was pointed out in ref (.12) .The wavefunctions 

G (r ) and F (r ) are given by the following expressions 

G (r) = Ν {(1 - 0(r-R)) j
x
(nr)r + 

0(r-R) 
j-, (nR)

 m 

-± hj
1 ;
 (in

Q
r) r} ( g ) 

h{
1 )
 (in

0
R) 
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1 d j , ( n r ) 
F ( r ) = Ncjft{ ( 1 - 0 ( r - R ) ) ( r + (κ + 1) j ^ n r ) ) 

( 2 u c 2 - Β Λ -D_) d r 

• f n\ d h , ( 1 ) ( i n n r ) 
1 3-, (nR) 1 0 

+Q(r-R) ( r 
(-Β Λ +2μσ 2 ) h { 1 } ( in Q R) d r 

+ (κ + 1 ) h { 1 ) ( 1 η 0 Γ ) ) > • (10) 

where 

η = { — 2 ~ ( D + -B A ) (1 - ( B A + D J ( 2 U c 2 ) ~ 1 ) } 1 / 2 ( l l ) 

n
0
= i ^ - B

A
, l - B

A
,

2
u c

2
, -

1
, }

1
/

2 

(1 ) 

and j,(r|r) -, h (iri
Q
r) are the spherical Bessel and Hankel 

functions of the first kind.The normalization constant Ν follows 

from the following normalization condition 
00 

• / ( G
2
(r) + F

2
(r) ) dr = 1 (

13
 ) 

ο 

With the help of the wavefunctions G(r) and F(r) we have 

calculated the root mean square radii of the Λ particle orbits 

in hypernuclei using the formula 

00 

7 * n j r 2 ( G 2 ( r ) + F 2 ( r ) ) d r 1 . 
< r 2 > 1 / 2 = { ^ } 1 / 2 (14) 

J ( G 2 ( r ) + F 2 ( r ) ) d r 
ο * 

For the ground state the above integrals were calculated ana-
expression for the 

lytically and the corresponding /root mean square radius is 

3 "> 
< r
2 1/2 _

 f
 R R"sin(2nR) Rcos(2nR) sin(2nR) , 

S
V2 °

 6
 «" 4n

2
 8n

3 
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c V . r\2RZ TiR 2 s in(2nR) R 2 c o s ( 2 n R ) 
{ ' 6 ' " 4 4 

( 2 U c 2 - B . - D ) 2 

Λ -

5 s i n ( 2 n R ) R Rcos(2nR) x , s i n 2 (nR) ( 2 η ή Ρ 2 + 2 η ^ +1 ) 
8η - + 2 + 2 ) + , 

4η·3 

Ό 

c 2 / i 2 s i n 2 (TIR) 2 η ^ 2 + 4 η ^ + 5 , 1 / 2 (15) 

( - Β Λ + 2 μ σ 2 ) 2 4η. 

The . n o r m a l i z a t i o n c o n s t a n t NQ i s i s g i v e n by t h e e x p r e s s i o n 

N ={_R_ _ s i n ( 2 n R ) + s i n 2 ( n R ) + c 2 f l 2 s i n 2 ( n R ) {% + J _ } + 

0
 v
 2 4η 2η, 

(-Β
Λ
+2μο

2
)

2 
2 R 

c
2
/i

2

 f
 n

2
R ηsin(2ηR) _ .sinli^QR)^., "

1
 ̂

2 

1
 2

 +
 4 " 2R ' ì (16) 

(2uc2-BA-Dj
2 

The above analytic expression of the root mean square radius 

can be simplified further by ignoring the less significant terms, 

In this cas.e we êind-the following expression < ·, 

1/2 <r> ' 
s 1 /2 ,1/2 

- , s i n ( 2 n R s i n (nR)χ ^ / S i n (pR) c o s ( 2 η R ) . ' 

1-

1 - ( sin(2ηR) _ sin (nR)·. . 
2ηR "o

R 

1/2 

(17) 

which can be simplified further and leads to the expression 

< r 2 > 1 / 2 ~ 
S 1 / 2 

R 
3 I / 2 

R , 
3 I / 2 

s i n ( 2 η R ) s i n (nR) 

2 n 3 1 / 2 n 0 3 1 / 2 

1 sin(2nR+4>) 
- , 1 / 2 0 , 1 / 2 . . 
2η 3 ' 2 π ο ^ sm<t> 

(18) 
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where <i>=arccot(——) . 

η 

Other similar approximate expressions were derived which are 

less accurate. 

Expression (18)can be simplified further by observing that 

• the ratio .· (sin (2nR+<J>) ) /εϊηφ varies between the values -1.13 and 

-1.35 for almost the entire range of hypernuclei and it can be ap­

proximated by the intermediate value -1. 2 holding for most of the 

higher mass hypernuclei in which case we find the expression 

' <
r

2
>V2 _ _R_

 +
 1-1 _ _Ü2_AV3 + LJJ (19) 

S1/2 " 31'2 T,03
1'2 " 31/2A°°" „^1/2 ' 

1 /3 This expression is of the form · cA ' + b (where c,b constants) c core 
1 /3 i.e. it Ì3 linear in A ' for large A .A result of this.form was 
core core .. · 

shown to hold for the Woods-Saxon potential but it was derived 
(4) 

using an entirely different argument.Note that in (19) η is energy 

dependent.lt can be replaced by the energy independent quantity 

n
o
(ap)={-^-D

+
(1-D

+
(2ucV

1
)}

1/2
 (20) 

derived from r\Q by taking
 B

A
~

D

+
 which is a rather good approxi­

mation for sufficiently heavy hypernuclei.Better approximate expres­

sions may also be used . 

If in expression (18) instead of using the assumption 

(sin(2nR+<j>) ) /sin<i>=-1 .2 the trigonometric functions are expanded 

2 1/2 

s e p a r a t e l y us ing the formula sinx^x we f ind for <r > e ' t h e f o l ­

lowing approximate e x p r e s s i o n 

S 1 / 2 
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<rV/2 . -fSL { 1- (-jL - D V 2 ( 1 _ ^ = _ ) ) A 1 / 3 + 
S 1 / 2 3 l / 2 Β Λ 4 m A c 2 °°Ee 

1+ - ^ - 1+. 
D 

f . χ » Λ 

J7T - : : ,i/2 2 ( 3 1 ^ ( 2 I „ A C 2 ) 1 / 2 Β / ' ( ° + " Β Λ ) - ^ (21) 

1 /3 
which is of the form cA ' +b »where c and b are (energy de-

core
 J 

pendent) constants.In this expression additional terms invol­

ving negative powers can be included.The omitted part is 

the following: 

D - D

+ 

- 1 )
1
'

2
 A"

2 / 3
 + 

3 V 2
 *»*c

2
 Β

Λ
 '

 C
°

r e 

Λ Λ 

Λ σ 1 +
 "^H -1/2

 3D
- -1 

_ rr-rP,{ — +(D -B.)
 i/Z{ 5- + 0.5)}A ' + 

2(3
1 / 2

)(2m
A
c

2
)

1 / 2
 „1/2

 + Λ
 8m

A
c

2 c o r e 

Λ 2B. Λ 
Λ 

te
 ( D
 Β , -1/2 _ ^ _ _

 A
-2

 +
.... 

2 ( 3
1
/ 2

) ( 2 - A C
2

)
1 / 2

 Λ
 8m

A
c

2 

This part does not contribute significantly in the case of the 

higher mass hypernuclei while in the case of the small mass hy-

1 3 
pernuclei,for instance around C its contribution is 5% .From 

the first term of(21) one· can see that the slope of the curve 

changes sign when B
A
*0.5<1- D_(4m

A
c

2
)~

1
)

D+
*14 MeV which is · 

true for hypernuclei between
 1
^0 and

 2
^Si (see fig.1). 
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2 1/2 
Finally in the ground state the <r > ' can be calcula-S1/2 

ted approximately from the formula 

Jico^ -|— -^ Ö *Δ (22) 

Λ 2 μ
 < r

2
>
 sp 

^1 /2 

where Δ
s p

= B

A
d s ) - Β

Λ
 (1p).Of course it is understood that this 

formula is not relativistic (like for instance (15)) despite of 

the fact that the binding energies involved in it were obta­

ined relativistically.lt can merely be used to give a first 

estimate of the root mean square radii. 

3. Numerical results and comments. 

Numerical calculations of the root mean square radii of 

the Λ-particle orbits in its ground and excited states in 

hypernuclei were performed using the definition (expression 

(14)) and the results obtained with potential parameters r 

=1.01 fm, D =30.55 MeV and D =300 MeV are shown in table 

1 . 



?Q 

In table 2 the root mean square radii of the Λ-particle 

orbits in its ground state in hypernuclei are given jcalcul-

ated using a) the analytic expression (15) see col.II and 

b) the approximate expressions (17) -see col.Ill, (18) see 

col.IV, (19) see col.V, (21) see col.VI, (22,) see col.VII, 

In col. VIII the results obtained using in expression (19) 

instead of η the quantity η
ο
(ap) derived from η

ο
 by re­

placing Β by D , are given.The potential parameters used 

Λ + 

in obtaining the results of this table are the same as 

those used in table 1. 

In table 3 the root mean square radii of the Λ-particle 

orbits in hypernuclei in the states Is^ ,
2
 ' ̂ 3/2' ̂ 1/2 °^

t
" 

ained using the square well potential with the same parameters 

w i t h 
as t h o s e of t a b l e 1 a r e compared / t h e corresponding r e s u l t s 

o b t a i n e d using t h e Woods-Saxon p o t e n t i a l wi th parameter s a= 
(14) 

0.6 fm, r =1.198 fm, D =29.8 MeV and D =300 MeV.(Note t h a t 

t h e e x t r a decimals g i v e n i n our r e s u l t s a r e g iven for t h e sake 

of comparison.) ----

I n f i g u r e 1 t h e r e s u l t s g iven in t a b l e 1 i . e . t h e <rj> ' 

in t h e s t a t e s - . 1 e 1 / 2 , 1 p 3 / 2 , 1 p 1 / 2 # 1 * 5 / 2 ' : 1 d 3 / 2 ' 1 f 7 / 2 ' 1 f 5 / 2 
1 /3 

are p l o t t e d ver sus A ' .The corresponding p o i n t s a r e i n d i c a -

core 

ted by shaded triangles (A ).In the same table also our re­

sults concerning the ground state obtained using the Woods-

Saxon potential with the parameters of table 3 are plotted. The 

corresponding points are indicated dy shaded dots (· ).For co­

mparison we give also for the ground state the results of Ray-

et indicated by squares ( D ) and the results of Daskaloyannis 
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et. al. indicated by crosses (ft ) which ini both cases were ob­

tained by a nonrelativistic approach. 

Comparing the results of tables 1 and 2 we see that the 

results obtained numerically and analytically concerning the 

ground state are in a very good agreement.. »-. 

..Comparing the results of table 2 obtained using the va­

rious approximate expressions we see that almost all of them 

are in good agreement among themselves and with the analytic 

one/ except expressions (2 2) "and (19) with Β
Λ
=Ε)

+
 in the case 

of small A . In particular the error percentages observed 

in comparing the various approximate expressions with the ana­

lytic expression (15) are respectively for exp.(17) 0%-5%/ 

for exp. (18) 6%-8%, for exp. (19) 5%-6% and for exp.(21) 0%-

11%. Expression(19) is the most interesting because it shows 

2 1/2 
immediately the two i n t e r e s t i n g f e a t u r e s of the curve <r > 

1/3 1 / 2 

v e r s u s A ' , i . e . f i r s t the l i n e a r behaviour of t h e curve for 
t h e l a r g e A _ which i s deduced by set&ng B.=D, (see c o l . V I I I ' 

core Λ + 

of table 2) and secondly the deviation from linearity for the 

small Α„
Λ
„,

Λ
 which is deduced from the fact that the second term 

core 

in (19) depends inversly on η which is energy dependent and so 

for small binding energies (i.e. for small A ) the curve rises 

core 

above the straight line obtained for Β =D .To be more precise 

the rising above the straight line is observed through out the 

entire range of the Λ-hypernuclei but is small for. the hyper-

nuclei with large A
c o r e

 and so the straight line forms a good 

2 8 

approximation, of the curve as far as down to ?Si (see fig. 1. 

Also compare columns V and VIII of table 2) .Exoression (22) is 
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refered here because it gives an alternative way of a rough 

estimate of <r > ' .Its degree of accuracy can be immediately 
s1/2 

viewed from table 2. 

Comparing the results of tables 2 and 3 (see also fig.Dwe obs· 

that 

erve / .the results obtained with the more realistic Woods-

Saxon potential are a littly different from those obtained with 

the square well potential, the difference being of the order 

of 7%-14% in the ground state.This is of course what one 

should expect since for the Woods-Saxon> po-. ' 

tential r =1.198 fm while for the square well potential rQ=1.01 

fm . As we see from formula (19) a larger value of r in the 

case of the square well potential would have increased the root 

mean square radius so as to make the difference with the Woods-

Saxon potential minimum. 

From fig. 1 we see that the root mean square radius shows a 

1 /3 rather linear behavior with respect to A '„„ for the larger va-c core 

lues of A not only in the ground state but also in the exci-core -1 

ted states.Graphically we find for the ground state that the 

equation of the straight liï̂ e part of .the curve is 

<r2>1'2 =CA1'3 + b = 0 . 5 A ^ + 0 . 7 5 1/2 core core 

If the approximate formula (19) is used we find for 
r 

c= ° =0.58 
3I/2 

and for 

1 .1 
b= =0.48 

no(ap)3
1/2 

Finally from fig. 1 we observe that our results in the ground 

state are slightly higher than the results of Rayet 
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and in a very good agreement with the results of Daskaloyan-

nis et. al. obtained for a nonrelativististic square well potential 

with parameters r =1.035 fm and D=29.5 MeV. 
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Figure caption 

Fig. 1iVariation of the <rK> ' with A
 7
 ir the ground and 

Λ cor?
 3 

first excited states of Λ-hypernuclei.Shaded triangles indi­

cate the results obtained with orthogonal chape potentials 

while dots indicate the results (in the ground state) obtai-

with 
ned/Woods-Saxon shape potentials.Empty squares indicate the 
results of Rayet and crosses the results of Daskaloyannis et. 

al. (both in the ground state). 
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