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Root mean square radii of the A-particle orbits in
hypernuclei using potentials of orthogonal shape in

a relativistic treatment

‘C.G.Koutroulos and G.J.Papadopoulos

Department of Theoretical Physics

Aristotle University of Thessaloniki

54006 Thessaloniki,Greece

Abstract

Thg root mean square radii of the A-particle orbits in
hypernuclei are calculated in the ground and first excited
states using the Dirac equation with scalar and vector po-
tentials of orthogonal shape.An exact analytic and .also appro-
ximate expressions are derived for the root mean square ra-’
dius of the A orbit in its ground state.It is shown that

25172 varies linearly with Aléie

s
1/2
nuclei.Our results in the ground state are compared with the

for the higer mass hyper-

results of Rayet and also with those of Daskaloyannis et. al.



1. Introduction

The radii of the orbits whiéh the A-particle can occupy
inside the A-hypernuclei is a subject Wﬂ%ﬁ% attracted the
interest of several authors in the past.Though there are no
.experimental results with respect to which one can compare
his theoretical results, yet the problem is interesting.In
some previous publications we have considered this subject
using the WOodg-Saxon potential and also the potential U(r)=

—D/cosh2

(r/R) .These results were obtained entirely by nume-
rical calculations.

In this paper we consider the same problem assuming that
the A-nucleus potential is made up of an attractive Us(r)
and a repulsive Uv(r) components both of orthogonal shape
and that the equation of motion of the A-particle in hyper-
nuclei is the Dirac equationf7_11)

The reason behind this choice of potential is not because
one expects an improvment of the results aiready obtaihed
using the more realistic Woods-Saxon potential but because

bound (10-12
the wavefunctions in all/ states. (Note that the square

in the square well case one obtains analgtic solutions for

well potential belongs to the few cases for which the Dirac
equation is solvable analytically.) Using the wavefunctions
the root mean square radii of the orbits of the A-particle

in hypernuclei can be calculated either numerically or analy-
tically in terms of the potential parameters.We mention also
that in the square well case one can derive an eigenvalue
equation holding for all the states from which the binding

energies BA of the A-particle in hypernuclei can be calcu-

lated.
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In section 2 of this paper the basic formalism used in
our calculations is explained, while in section 3 our results

are given and discussed.

2. Formalism

We assume that the potential betweén the A-particle and
the nucleus is made up of an attractive component Us(r) and
a repulsive component Uv(r).We assume also that the differen-
tial equation describing the motion of thg.A—particle in hyper-

(7-10)
nuclei is the Dirac equatiocn

(cd.p + Buc? + BU_(r) + U_(r))d-= EY (1)

where a = ( @y 10,0, ) , B are the Dirac matrices.E is the to-
tal energy i.e. E = -B, + uc2 ,BA being the binding energy of the
A particle.y is the Dirac four-spinor which may be written as

(
iGnlj(r)(1/r)

b= bn15m= ®1 4m (2)
> >
Fnlj(r)c.r(1/r)
Instead of the potentials Us(r) and Uv(r), the potentials
Ui(r) = Us(r) + Uv(r) (3)

are used, which are both attractive.
From the Dirac equation (1) one obtains by the procedure
outlined in refs ( 7-10 ) the following radial differential

equation of the Schrddinger type



;! e 21 +B,) }g(r)=0 (4)
g (r)-{ + 2 (vcentr.(r’BA)+Vs.o(r'BA) A glri=
2 A
r
where Vcentr.(r'BA) is the central part of the potential and

Vs.o(r’BA) the spin orbit part of it.The complete expressions
of these potentials are given in ref. (10 ).

The solution g(r) of the differential equation (4) is rela-
ted to the large radial component G(r) of the Dirac wavefunc-

tion through the formula

1/2

G(r) = 0/ ?(r)q(r) ' ~(5)

where

1
hc

The small radial component of the Dirac wavefunction is rela-

D(r) = {2uc2 - B

A+ U_(O), (6)

ted .to G(r) by means of the fdrmula

F(x) = (6 () + 26(r))n"" (x) (7

(where we have suppressed the quantum numbers nlj in G(r) and

F(r)) and »= +(j + (1/2)) for j=1 e (1/2).

Assuming that the potentials g+(r) and U_(r) are square
o

wells with depths D, and D_ and /the same radius R i.e.

Ut(r) = -Dt(1 + .0(r-R))- ("g)

where © is the unit step function and R=r A1/3

oPcore ,the correspon-

diggugéfferential equation can be solved analytically for all

/ states as it was pointed out in ref ( 12) .The wavefunctions

G (r ) and F (r ) are given by the following expressions

G (r) =N {(1 - e(r-R))jl(nr)r +

j; (nR)
0 (r-r) —= h{" (ingr v} (9)

" (ingR)




1 djl(nr)
F (r) = Nch{ (1-0(r-R)) (r +(n +1)jl(nr))
(2uc2 -B, -D.) dr
(1) ,.
1 jl(nR) dhl (lnor)
+0.(r-R) (r
‘ (-B +2 c2) h(1)(i R) dr
Pkl 1. g
+(e + 1 (in.))) . (10)
1 Q
where
4L 2, 4 113
n = {——(D, -B,) (1 =(B, +D_)(2uc™) )} (11)
A
2u
_ 2,-1,11/2 (12)
ny= {TZE-BA(l -B, (2uc”) )}

(1)
1

functions of the first kind.The normalization constant N follows

and jl(nr) 7 h (inor) are the spherical Bessel and Hankel

from the following normalization condition

[ ¢ G%(x) + F3(r) )dr = 1 (13)
0

With the help of the wavefunctions G(r) and F(r) we have
calculated the root mean square radii of the A particle orbits

in hypernuclei using the formula

= 2,2 2
r°(G°(r) + F°(r))dr
212 J }1/2 (14)

J &P+ PPnar

For the ground state the above integrals were calculated ana-

_ exXpression for the
lytically and the corresponding /oot mean square radius 1is

L2172 R’ stin(gnB) Rcos (2nR)
£ g " Wplg— - 7 - 2 *
1/2 " 4n 8n

sin (2nR)
3

+



Czhz ( n2R3 % nstin(ZnR) + chos(ZnR)
' 4 q
2_o _ 2
(2uc BA D_)
. 2p2+2 1
5sin(2nR) R i Rcos (2nR) )+ sin” (nR) (2ngR"+2n R +1)
8n - 2 2 3
4n0

v

c28%s1n (nR)  2n2R%+4naR+5 4172

(15)

(—BA-+2ucz)2 4“o
The . normalization constant N0 is is given by the expression
_[.R sin(2nR) sin?(nR) C%hzsinz(ﬂR) To, 1
N.={—=— - + + (== + )+
0 2 4n 2no 2.2 2 R
(—BA+2uc )
.2 -1/2
cz,h2 ( an + nsin(2nR) _ _sin” (2nR) )} / (16)
2 4 2R

2 2
(2uc BA—D_)

The above analytic expression .of the'root mean square radius
can be simplified further by ignoring the less significant terms.

In this case we ‘£ind.the following expression

i

1/2
2(sin(an _ sinz(nR))_3(sin2(nR) _ cos(2nR) ) /
2nR n_R n<R% 2.2
<rs1/2 . R 1= o (°) 2n"R
Bipm  3'{2 2
1 - sin(2nR) _ sin” (nR). )
2nR noR
(17)
which can be simplified further and leads to the expression
«r?51/2 . _R__ _sin(2nR) sin? (nR)
51/2 31/2 2n31/2 no31/2
S 1 _ _sin(2nR+¢) (18)

31/2 2no31/2 2n031/251n¢



o
where ¢=arccot(-ﬁ—-)

Other similar approximate expressions were derived which are

less accurate.

Expression (18)can be simpilified further by observing that

- the ratio (sin(2nR+¢))/sin¢ varies between the values -1.13 and
=1.35 for almost the entire range of hypernuclei and it can be ap-
proximated by the intermediate value -1.2 holding for most of the

higher mass hypernuclei in which case we find the expression

r =
2,1/2 _ R_, _1.1 _ %o ,1/3 1.1

= = A o o——
s1/2 31/2 no31/2 31/2 core n 31/2

(19)

1/3

This expression is of the form - CAcore

+ b (where ¢,b constants)

s g 94 ¢ 1/3 .
i.é.:it is 1linear in Acore for large Acore'A result of tylsvform was

shown to hold for the Woods-Saxon potential but it was derived
(4)
using an entirely different argument.Note that in (19) N is energy

dependent.It can be replaced by the energy independent quantity

n, (ap)={-24-p_(1-p, (2uc?)~")}1/2 (20)
b

derived from Ny by --taking A =D, which is a rather good approxi-

mation for suff1c1entl heavy hypernuclei.Better approximate expres-
Y OG0 RS RERCENIAS S50

sions may also be used

If in expression (18) instead of using the assumption

(sin(2nR+¢)) /sin¢=-1.2 the trigonometric functions are expanded

separately using the formula sinx=x we find for <r2>1/2 the fol-
S1/2

lowing approximate expression



D D
er21/2 . fo g = - 20 ———1—5—)}A1/3 +
172 5172 A 4m, ¢ wore
3n _—
—_ 1 ]
hc = * dmpc
1 1 B2 = i —3)1/2} (21)
2(3 /5(2mAc y 1/ A + " By

1/3

which is of the form CAcore

+b ,where c and b are (energy de-
pendent) constants.In this expression additional terms invol-

ving negative powers can be included.The omitted part is

the following:

r D D
o - +
_ oy 1/2 =2/3
+ 31/2 4m c2 ( B 1 Acore +
A A
Ahc 1 4+ 372‘ _12, 3D_ -1
{ +(D,-B,) ( ——— + 0.5)1}Aa +
1/2 2,1/2 + TA 2 core
2(3 )(2mAc ) 2B1/2 BmAc
hc © - )-1/2 _O- -2
1/2 2.1/2 + A 8 c2 core °°°
2(3 )(2mAc ) A

This part does not contribute significantly in the case of the

higher mass hypernuclei while in the case of the small mass hy-

pernuclei, for instance around 12C its contribution is 5% From

the first term of(21) one: can see that the slope of the curve

changes sign when B,=0.5(1- D_(4mAc2)~1)D+=14 MeV which is

true for hypernuclei between 120 and 2251 (see fig.1).



Finally in the ground state the <r2>1/2 can be calcula-

s
1/2
ted approximately from the formula
2
. 3 A LI
Aoy® 59— W 3 “Asp (22
r<>

St r2

where Asp=BA(1s)-BA(1p)A3fcourse it is understood that this
formula is not relativistic (like for instance (15)) despité of
the fact that the binding energies involved in it were obta-
ined relativistically.It can merely be used to give a first

estimate of the root mean square radii.

3. Numerical results and comments.

Numerical calculations of the root mean square radii of
the A-particle orbits in its ground and excited states in
hypernuclei were performed using the definition (expression
(14)) and the results obtained with potential parameters r

=1.01 fm, D ,=30.55 MeV and D_=300 MeV are shown in table
1.



In table 2 the root mean square radii of the A-particle
orbits in its ground state in hypernuclei are given jcalcul-
ated using a) the analy tic expression (15) see col.II and
b) the approximate expressions (17) see col.III, (18) see

col.IV, (19) see col.V, (21) see col.VI, (22) see col.VII,

In col. VIII the results obtained using in expression (19)
insteaa of Ng the quantity no(ap) derived from g by re-
placing BA by D+, are given.The potential parameters used
in obtaining the results of this table are the same as

gygig_used in table 1.

In table 3 the root mean square radii of the A-particle
orbits in hypernuclei in the states 151/2 ' 1p3/2, 1p1/2 obt-

ained using the square well potentia;tgith the same parameters
wi

as those of table 1 are compared / the corresponding results

obtained using the Woods-Saxon potential with parameters a=

. (14)
0.6 fm, ro=1.198 fm, D+=29.8 MeV and D_=300 MeV.(Note that

the extra decimals given in our results are given for the sake

of comparison.)

In figqure 1 the results given in table 1 i.e. the <r12\>1/2

~in the states a1s1/2, 1p3/2, 191/2, 1d5/2,.1d3/2, 1f7/2, 1f5/2

are plotted versus Aléie.The corresponding points are indica-

ted by shaded triangles ( & ).In the same table also our re-
sults concerning the ground state obtained using the Woods-
Saxon potential with the parameters of table 3 are plotted. The
corresponding points are indicated dy shaded dots (® ) .For co-

mparison we give also for the ground state the results of Ray-

et indicated by sguares (B ) and the results of Daskaloyannis



et. al. indicated by crosses (% ) which ini both cases were ob-
tained by a nonrelativistic approach.
Comparing the results of tables 1 and 2 we see that the

results obtained numerically and analytically concerning the

. ground state are in a very good agreement.. - St

N

..Comparing the results of table 2 obtained using the va-
rious approximate expressions we see that almost all of them
are in good agreement among-themselves and with the analftic

»

one, except expressions(ZZ)ﬁgga (19) with B,=D, in the case

of small Acore“ In particularAthe error percentages observed

in comparing the various approximate expressions with the ana-
lytic expression (15) are respectively for exp.(17) 0%-5%, |
for exp. (18) 63%-8%, for exp. (19) 5%-6% and for exp.(21) 0%-
11%. Expression(19) is the most interesting because it shows§
immediately the two interesting features of the curve <r:2>1s/2
versus Aléie ,i.e. first the linear behaviour of the curve ;éi
the large Acore which is deduced by setiing BA=D+ (see col.VIIT
of table 2) and secondly the deviation from linearity for the
small Acore which is deduced from the fact that the second term
in (19) depends inversly on Ng which is energy dependent and so
for small binding energies (i.e. for small Acore)the curve rises

above the straight line obtained for BA=D+.T0 be more precise

the rising above the straight line is observed through out the

entire range of the A-hypernuclei but is small for the hyper-

nuclei with large Acore and so the straight line forms a good

, ; 2 : ;
approximation of the curve as far as down to iSl (see fig. 1.

Also compare columns V and VIII of table 2) .Expression (22) is



refered here because it gives an alternative way of a rough
1/2

Sq72
viewed from table 2.

estimate of <r2> .Its degree of accuracy can be immediately

Comparing the results of tables 2 and 3 (see also fig.1)we obs-
. erve /tsige results obtained with the more realistic Woods-
Saxon potential are a littly Jdifferent from those obtained with
the square well potential, the difference being of the order
of 7%-14% in the ground state.This is of course what one
should expect éi;ce for the Woods-Saxon: po-='
tential r0=1.198 fm while for the square well potential r0=1.01
fm . As we see from formula (19) a larger value of ry in the
case of the square well potential would have increased the root
mean square radius so as to make the difference with the Woods-

Saxon potential minimum.

From fig. 1 we see that the root mean square radius shows a

rather linear behavior with respect to Aléie for the larger va-

lues of Acore not only in the ground state but also in the exci-

ted states.Graphically we find for the ground state that the

equation of the straight line part of the curve is

«r?1/2 _a1/3 4Ly 2p.5a1/3

+ 0.75
S,| /2 core core

If the approximate formula (19) is used we find for

r
c= —2—=0.58
31/2
and for
1.1
b= =~ 0,48
1/2
n,(ap) 3

Finally from fig. 1 we observe that our results in the ground

state are slightly higher than the results of Rayet



and in a very good agreement with the results of Daskaloyan-
nis et. al. obtained for a nonrelativististic square well potential

with parameters ro=1.035 fm and D=29.5 MeV.
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Table 1

Root mean square radii of of the A-particle orbits in the ground and excited states for
various hypernuclei obtained numerically using the definition (expression (14)) .The po-

tential parameters used are r

=1.01 £m, D,=30.55 MeV, D_=300 MeV.

o
AHNVM\N AHNVA\N AHMVA\N AHMVM\N AHNvM\M AvaM\m AHNVM\N
Blore 1/2 P3/2 Pq/2 5/2 3/2 7/2 5/2
fm fm fm fm fm fm fm
8 2.11
10 2.05
1 2.05
12 2.05
= 15 2.07
27 2.24
31 2.30 2.89 2.88
39 2.41 2,94 2.9
50 2.54 3.05 3.01 3.75
88 2.92 3.43 3.39 3.84 3.79
137 3.27 3.84 3.78 4.22 4.15 4.55 4.51
207 3.69 4.27 4,24 4.67 4.61 4.99 4.91



Table 2
Root mean square radii of the A-particle orbits in the ground state for various hypernuclei

obtained using the exact analytic expression (15) col.II and the approximate expressions (17)

col,VIII.The

col.III, (18) col.Iv, (19) col.v, (21) col.VvI, (22) col.VII, (19) with B,=D,

potential parameters,used are the same as those of table 1.

35

Analytic mﬂmmmgmv
exp. exp. exp. exp. exp. exp. B =D
(15) (17) (18) (19) (21) (22) | 4 *
Agore AHNVW\N Anmvw\w AHNVW\N AHNVW\N Anmvw\w AHNVW\N AHNVM\N
1/2], 1/2 1/2 1/2 1/2 1/2 1/2
fm fm fm fm fm fm fm
8 2.1% 2.00 2.17 2.27 2.04 - 1.68
10 2.05 1.99 2.15 2.16 2.03 - Y77
1 2.05 2.00 2.15 2.16 2.04 - 1.8
12 2,05 2.01 2.16 2.17 2.05 - .84
15 2.07 2.06 2.20 220 2.10 - 1.94
27 2.25 2.26 2.41 2.40 2.34 2.1 2.24
31 2.31 2.32 2.46 2.46 i 2.42 2.16 2.32
39 2.42 2.44 2.60 2.59 2.56 2.26 2.47
50 [2.55 2.58 2.75 2.74 .78 2.39 2.64
88 2.93 2.96 3.17 3.15 3.19 2.70 3.08
137 3.28 3.31 3.55 3.54 3.63 3.10 3.50
207 3.70 3.73 3.01 3.97 4.12 3.46 3.93




Table 3
Comparison between the root mean square radii of the orbits of the A-particle in various
hypernuclei obtained with the square well potential with parameters Houa.oA fm, U+uuo.mw?
MeV, D_=300 MeV and with the Woods-Saxon potential with parameters r=1.198 fm, D,=29.8

MeV, D_=300 MeV, a=0.6 fm in the states mg\m~ﬁu\~,v4\m.

Hyper-
nuclei Square Well Woods-Saxon
AHNVM\N 22172 (o272 | <o 2172 [<x2o172  |<p25172
, S1/2 P3/2 P1/2 $1/2 P3/2 P1/2
fm fm fm fm fm fm
JJMn 2.05 2.39
16
%o 2.07 2.40
28...
5si |2.24 2.52
wwm 2.30 2.89 2.88 2.54 3.32 3.32
Yca  |2.41 2.94 2.91 2.67 3.37 3.35
v 2.54 3.05 3.01 2.79 3.47 3.45
me 2.92 3.43 3.39 3.16 3.82 3.79
Aumm 3.27 3.84 3.78 3.54 4.22 4.18
mowmu 3.69 4.27 4.24 3.97 4.69 4.65
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Figure caption

Fig. 1:Variation of the <ri>1/2 with Aléi? ir the ground and
first excited states of A-hypernuclei.Shaded triangles indi-
cate the results obtained with orthoc¢gnal —hape potentials
while'dots indicate the results {in the ground state) obtai-
ned/;;zgs—Saxon shape potentials.Empty squares indicate the
results of Rayet and crosses the results of Daskaloyannis et.

al. (both in the ground state).
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