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Abstract

The universal property for the information entropy S = a + b In Z is verified for
atoms using a systematic study with Roothaan-Hartree-Fock (RHF) wave functions
with atomic number Z = 2 — 54. The above relation was proposed previously for
atoms, nuclei, atomic clusters and correlated atoms in a trap. Kullback-Leibler rel-
ative entropy K and Jensen-Shannon divergence J are employed to compare RHF
with Thomas-Fermi (TF) density of atoms as well as another phenomenological
density obtained by Sagar et al. Two-body density distributions in position- and
momentum-space are used to calculate and compare the corresponding information
entropies for correlated and uncorrelated nuclei and bosonic systems (correlated
atoms in a trap). It is seen that short-range correlations (SRC) increase the values
of S. One-body information entropy entropy S; is compared with two-body infor-
mation entropy and a conjecture is made for N-body information entropy Sy. The
entropy K and the divergence J are also used to evaluate the information distance
between correlated and uncorrelated densities both at the one- and the two-body
levels for nuclei and trapped Bose gases.

1 Theoretical framework

The information entropy for a continuous probability distribution
p(z) in one dimension is defined by the expression

8 = —/p(x) Inp(z)dx, where /p(a:) dr=1 (1)
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S is measured in bits if the base of the logarithm is 2 and nats
(natural units of information) if the logarithm is natural. It rep-
resents the information content of a probability distribution as
well as a measure of uncertainty of the corresponding state. It is
noted that the information and the thermodynamic entropy are
different concepts but can be connected employing some assump-
tions.

For a three-dimensional system the information entropy in position-
space has the form

Sy == [ p(r) Inp(r) dr (2)

and momentum-space is

/n ) Inn(k) dk (3)

where p(r), n(k) are the density distributions in position- and
momentum-space respectivelly, normalized to unity.

An important step was the discovery of an entropic uncertainty
relation (EUR), which for a three-dimensional system is

S=5+5k>3(1+Inm)~6.434 (4)

This inequality, for the information entropy sum in conjugate
spaces, is a joint measure of uncertainty of a quantum mechanical
distribution, since a highly localized p(r) is associated with a
diffuse n(k), leading to low S, and high Sy and vice versa.

The lower bound in (4) is attained for gaussian density distrib-
utions. Expression (4) is an information-theoretical uncertainty
relation stronger than Heisenberg’s, for two reasons: first EUR
leads to Heisenberg’s uncertainty relation but the inverse is not
true. Second, the right-hand-side of EUR does not depend on the
state of the system, while in Heisenberg’s relation does depend.
It is also noted that expression (4) does depend on the unit of
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length in measuring p(r) and n(k) i.e. the sum S, + .S is invariant
to uniform scaling of coordinates.

In [1] we proposed a universal property for S for the density
distributions of nucleons in nuclei, electrons in atoms and valence
electrons in atomic clusters

S=a+blnN (5)

where the parameters a, b depend on the system under consider-
ation. The values of the parameters are the following

a=5.325 b=0.858 (nuclei)
a=5.891 b=0.849 (atomicclusters) (6)
a=6.257 b=1.007 (atoms)

In [2] relation (5) was found to hold for bosonic systems as well
i.e. correlated atoms in a trap. The values of a, b are

a=6.029 b=0.068 5x10°< N <10° (¥"Rb)
a=5961 b=0.066 10> <N <5x10° (}38Cs) (7)

Another interesting result is the fact that the entropy of a N-
photon state subjected to Gaussian noise increases linearly with
the logarithm of N. It is remarkable that property (5) holds for
systems of different sizes i.e. ranging from the order of fermis
(10713 cm) in nuclei to 104 (10~* cm) for bosonic systems, obey-
ing different statistics and subject to various interactions.

Relation (5) was derived using one-body density distributions. In
the present paper we introduce two-body density distributions
p(ri,re) and the corresponding two-body momentum distribu-
tions n(kj, ke). We intend to examine the properties of S at the
two-body level for the correlated densities. The correlated nuclear
systems or the trapped Bose gas are studied using the lowest or-
der approximation [3,4]. Short-range correlations (SRC) are taken
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into account employing the Jastrow correlation function [5]. We
are interested in investigating how S, is affected qualitatively
and quantitatively by the same form of correlations in compari-
son with S, in view of the fact that the quantities p(ry,rs) and
n(ky, k) carry more direct information for correlations than the
quantities p(r) and n(k), which are only indirectly affected by
correlations.

A well known measure of distance of two continuous probabil-
ity distributions p()(z), p®(z) is the Kullback-Leibler relative
entropy [6]

(D (g
K= /p(l)(a:) In %%dm (8)

which can be easily extended for 3-dimensional systems. Our
aim is to calculate K (distance) between p()(z) (correlated) and
p?(z) (uncorrelated) densities both at the one- and the two-
body levels in order to evaluate the effect of SRC (through the
correlation parameter y) on the distance K. This is done for
both systems under consideration: nuclei and correlated atoms
in a trap. There is also an alternative definition of distance of
two probability distributions introduced by Rao and Lin [7] i.e.
a symmetrized version of K, the Jensen-Shannon divergence

J=H (P(l)(x) ‘;p(2)($)) _ %H( ) (z)) — %H (r2 () (9)

where H(p) = — ¥; p; In p; stands for Shannon’s entropy. It is ex-
pected that for strong SRC the amount of distinguishability of
the correlated from the uncorrelated distribution is larger than
the corresponding one with small SRC. We may also see the ef-
fect of SRC on the number of trials L (coin tosses) needed to
distinguish p()(z) and p®(z) (in sense described in [8]).

Shannon information entropy S = S, + Sj is calculated as func-
tion of the atomic number Z (2 < Z < 54) in atoms. RHF elec-
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tron wave functions [9] are used. The universal property S =
a + bInZ is verified. Thus we obtain a framework to be used
as basis for further work on information-theoretic properties of
atoms. We examine the problem of similarity index based on the
concept of information distance K and J. The concept of simi-
larity is an old one and related to the distinction between two or
more objects. In this work we study K and J, which are connected
with the concept of similarity or information distance. This en-
ables us to compare various density distributions obtained using
various models for atoms.

2 Results

2.1 Atoms

We use the RHF electron wave functions and obtain for the total
information the relation

S =6.257 +1.069 In Z (10)

Thus we verify a previous property obtained employing other
wave functions and use this framework for new calculations. Next
we calculate Kullback distance K between RHF density distribu-
tions and TF density of atoms, as well as another phenomenologi-
cal density. It turns out that K is useful for the comparison of the
above densities. Similar results are obtained for Jensen-Shannon
divergence J.

2.2 Nuclei and trapped Bose gases

Our main conclusions are the following

(i) Increasing SRC the information entropy S and the information
distances K and J increase.
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(ii) There is a similar behavior of the entropies as functions of SRC
for both systems (nuclei and trapped Bose gases) although they
obey different statistics (fermions and bosons).

(iii) The relation Sy = 25; holds exactly for the uncorrelated densi-
ties in trapped Bose gase, while the above relations are almost
exact for the uncorrelated densities and in the case of corre-
lated densities both in nuclei and trapped Bose gas. For 3-body
distributions p(ry,rs,r3) and n(ki, ko, k3) we extrapolate to
S3 = 3(a+ b InN) and generalizing for N-body distributions
we have Sy = N(a + b In N), conjectured for N > 3.

More details concerning the formalism, the results and more ref-
erences of our work can be found in [10,11].
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