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Abstract

We present a preliminary attempt to establish the existence of hidden nonlinear
symmetries of the Skyrme model which could lead to the further integration of the
system. An explicit illustration is given for the SU(2) symmetry group.

The Skyrme model [1] represents a nonlinear lagrangian which
supports the existence of stable topological solitons. In terms of
the Skyrme field U(z) € SU(N) it reads

F? 1 2
L= QU OU) + 555 Tr (ttau,utau]’), @

where e is a constant and F} is the pion decay constant.

The matrix field U(z) can be written in terms of the generators
of SU(N) T, , with a = 1,...,N? — 1, in the following form
U(z) = e'l"T=. By taking the logarithm in this relation we get

—tInU(z) = L*T,. (2)

Then, by differentiating (2) with respect to z* we introduce the
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left—invariant Maurer—Cartan covariant vector

—iU'8,U = LT, = L, (3)

which represents an SU(N) Lie-algebra valued current. In terms
of L,(z), the Skyrme lagrangian density (1) reads

F? 1 5
£=ET}(LNL#)+@TT([LWLV] ). (4)

By making use of the standard variational principle, from the
Skyrme model (4) one can derive the Euler-Lagrange’s equation

3, (F,’f L+ 515 (Lo, (L., L,,]]) 0. (5)

In [1] Skyrme pointed out that the SU(2) static field configura-
tion with the spherically symmetric ansatz

U(7) = cos @(r) + i 77, sinb(r), (6)

with unitary vector 7 = 7/r, yields a nontrivial solution of the
field equation (5) which realizes the absolute minimum of the en-
ergy in the first homotopy class, i.e., among fields with |Q| = 1.
By looking at the field equation (5), one realizes that the first
term corresponds to a standard chiral field equation, whose prop-
erties and exact solutions are well studied. In particular, under
the assumption of some symmetry conditions, this chiral equation
can be completely integrable. The second term in (5) corresponds
to the nonlinear Skyrme term. Thus, it is natural to think that
if there exists some kind of relationship between the first and
second terms of (5), the solutions corresponding to the former
term could be mapped onto solutions of the latter, leading to the
integration of the field equation (5). Of course, if such a sym-
metry does exist, it will be a nonlinear symmetry which involves
derivatives of the functions that parameterize the covariant vec-
tor L,(z) due to the nonlinear structure of (5). For simplicity we
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shall consider the simplest SU(2) case. Thus, the Skyrme field
has three generators (the Pauli matrices) U(z) = e'l" T« where
T, = o,, and allows the following parametrization

ecosn  e?sinny
U(z) = - , , (7)
—e ¥siny e % cosn

where the real functions {(z), 6(x) and n(z) depend on z,. By
computing L,(z) we obtain the following expressions for Lg:

L}l = sin(f — €) n, + cos(f — &) sinycosn (0 + &),
L2 = cos(0 — £) 7, — sin(6 — ) sinqcosn (0 +6),  (8)

L3 = cos’n &, —sin’n 6,

where 7, = 0,1, etc. Here it is useful to denote the second term
involved in the “conserved chiral current” of (5) as follows

ALy, Ly, L)) = P, = P}T,, (9)

where we have introduced the effective constant A = 1/(F2e?).
By computing the components Pg of the vector P,(z) we get

Pj =sin(f — &) {cos2 n & [€um] +sin’n 8, [6,, 17,,]}
+cos(f — &) sinncosn {(0052 n &, —sin’n 9,,) [€u, 6.
+ 0y [y (6 + €)u]}
Pﬁ =cos(f — &) {0032 n& [Eum)+ sin®7 6, 16, 77,,]}
+sin(f — &) sinncosn {(cos2 n &, —sin’y 0,,) [0, 6]
+ 00 [(0 + &) s mo} (10)
Pl =sin’ncos’n (0 +€), [0, &)+ cos’n ny [0, 6]
+sin®n n, [0,,m.) -
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Here it will be useful to introduce the following notation

L}; = Xu P‘} =G,
2=y, P=H, (11)
Li = oy P,f’ = F,

where x,, ¥, and ¢, are defined through the relations (8) and

Gy= {— cos(f — &) sinncosn [772 + cos®n €% — sin’n (6 f)]
+sin(f — ¢) sin®n (61)} 6,
- {— cos(f — &) sinncosn [772 —cos’n (6€) +sin’y 92]
+sin(8 — €) cos’n (En)} &
+{cos(6 — §) sinncosn [(6n) + (En)]
— sin(f — ) [cos®n £* + sin®n 6%]} n,

H,={-sin(0 — &)sinncosn [n* + cos’n & —sin’n (6¢)]
+cos(0 — £) sin’n (67)} 6,
-+ {sin(@ —§)sinncosn [n2 — cos’n (0€) +sin’n 02]
+ cos(0 — £) cos®n (£n)} &, (12)
—{sin(6 — &) sinncosn [(8n) + (£n)]
+ cos(f — &) [0052 n €2 4 sin? 7y 92] } N

Fy= {sin2 ncos’n [(9 £) + & ] +sin’n 772} 6,
— {sin2 ncos’ 7 [(9 £) + 6 ] + cos’n 772} §u
+ [cos®n (€m) — sin®n (67)] 9.

where, for instance, £2 = (£, -&,), (€n) = (£, -n.), etc.

We are looking for a symmetry between the vectors L, and P,

L,(z) — Pl (13)
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where now
Ll = §u  Pu— Wy (14)
Out by =&
and
Po(z) = A Fy Gup—il, (15)

Gu+iH, -—F,

In the particular case in which 6(z) = £(x), the components of
the chiral vectors L, and P, read
Pu = Sin(277) f# — Gll = ’\Sin(277) [(§ 77)% - 772 fp] )
¢u =Tu - Hy =A [(§ n)gu - 52 77#] ) (16)
Xu=cos(2n) &  +—  F,=Xcos(2n) [(Emnu — n* &),

By choosing the following initial functions for the vector L,

L) [(Em)m — n* &
oo InEen -y

- (E U)fu - 52 um 18

Vo Ixezn? - En)?’ (18)

= cos(2n) [(Enm, — n? &,
o Iaen - (€n?Y

(17)

; (19)

and computing the components of the current P,, we obtain
G, =sin(2n) &, = v,
H,=n,=1, (20)
F, = cos(2n) & = x4
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which precisely coincide with the components of the vector L.
Thus, the initial functions (17)—(19) map the components of the
chiral current P, onto the components of the chiral vector L,,
establishing a nontrivial symmetry between them.

Obviously, the generalization of this relationship to the general
case in which the restriction 6(z) = £(z) does not hold, con-
stitutes a nontrivial task. It is interesting to try to apply the
obtained nonlinear symmetry in order to generate exact solu-
tions to the field equation (5) of the Skyrme model. Even if this
constitutes a rather difficult task in the general case, it could
be analytically treatable for some simple nontrivial initial so-
lutions. It is worth noticing that a first attempt to obtain the
spherically symmetric ansatz (6) or axially symmetric field con-
figurations compatible with the special condition #(z) = £(z) (or
some equivalent restrictions) was unsuccessful. It seems that it
is necessary to consider the three nontrivial different functions
&(z), O(z) and n(z) in order to achieve this aim. This topics are
currently under investigation.
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