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On hidden symmetries of the Skyrme model 
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2 Physics Department, Aristotle University of Thessaloniki, 54124 
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Abstract 

We present a preliminary attempt to establish the existence of hidden nonlinear 
symmetries of the Skyrme model which could lead to the further integration of the 
system. An explicit illustration is given for the SU(2) symmetry group. 

The Skyrme model [1] represents a nonlinear lagrangian which 
supports the existence of stable topological solitone. In terms of 
the Skyrme field U{x) G SU (Ν) it reads 

C = g Ir (3μυ1 d,U) + 3^2 Ί ϊ ([t/t W tf d„uf) , (1) 

where e is a constant and Fv is the pion decay constant. 

The matrix field U(x) can be written in terms of the generators 
of SU(N) Ta , with a = 1,..., N2 - 1, in the foUowing form 
U(x) = etLO<Ta. By taking the logarithm in this relation we get 

-i\nU{x)=LaTa. (2) 

Then, by differentiating (2) with respect to χμ we introduce the 
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left-invariant Maurer-Cartan covariant vector 

-ΐυ*δμυ = Σα

μΤα = Σμ, (3) 

which represents an SU(N) Lie-algebra valued current. In terms 
of ί/μ(χ), the Skyrme lagrangian density (1) reads 

C = ^Tr(LßLt,) + ^1I([Lß,U]2). (4) 

By making use of the standard variational principle, from the 
Skyrme model (4) one can derive the Euler-Lagrange's equation 

9 μ ( ^ Χ μ + 1[ϋ„[£ μ,Χ,]])=0. (5) 

In [1] Skyrme pointed out that the SU(2) static field configura

tion with the spherically symmetric ansatz 

U(r) = cos 6(r) + i fara sin 9{r), (6) 

with unitary vector r = r/r, yields a nontrivial solution of the 
field equation (5) which realizes the absolute minimum of the en
ergy in the first homotopy class, i.e., among fields with |Q | = 1. 
By looking at the field equation (5), one realizes that the first 
term corresponds to a standard chiral field equation, whose prop
erties and exact solutions are well studied. In particular, under 
the assumption of some symmetry conditions, this chiral equation 
can be completely integrable. The second term in (5) corresponds 
to the nonlinear Skyrme term. Thus, it is natural to think that 
if there exists some kind of relationship between the first and 
second terms of (5), the solutions corresponding to the former 
term could be mapped onto solutions of the latter, leading to the 
integration of the field equation (5). Of course, if such a sym
metry does exist, it will be a nonlinear symmetry which involves 
derivatives of the functions that parameterize the covariant vec
tor L^x) due to the nonlinear structure of (5). For simplicity we 
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shall consider the simplest SU(2) case. Thus, the Skyrme field 
has three generators (the Pauli matrices) U(x) = elLaTa, where 
Γ α = σα, and allows the following parametrization 

U(x) = 
I i£ ίθ · \ 
1 eK cos η ew sm η 

—e îosin77 e ^ cos η 
(7) 

where the real functions ξ{χ), θ{χ) and η(χ) depend on χμ. By 
computing Σ,μ(χ) we obtain the following expressions for L^: 

Σμ - sin(0 - ξ) ημ + cos(6> - ξ) sin η cos η (θ + ξ) μ 

L2 = cos(0 - ξ) ημ - sin(6> - ξ) sin τ/ cos η (θ + ξ)^ 

L* = cos2 τ? ξμ - sin2 τ/ 0μ 

(8) 

where ημ = ομη, etc. Here it is useful to denote the second term 
involved in the "conserved chiral current" of (5) as follows 

λ [Lv, [Σμι Lv\[ — Ρμ — ΡμΤα. (9) 

where we have introduced the effective constant λ = l / ( F 2 e 2 ) . 

By computing the components Pjf of the vector Ρμ(χ) we get 

Pi = sin(<9 - ξ) {cos2 η ξν [ξμ, η,] + sin2 η θ, [θμ, ην]} 

+ cos(0 - ξ) sin η cos η { (cos2 η ξ„ — sin2 η θ„) [ξμ, θ„] 

Ρ 2 = cos(<9 - ξ) {cos2 η ξ„ [ξμ, ην] + sin2 η θν [θμ, ην]} 

+ sin(0 - ξ) sin η cos η {(cos2 η ξ„ - sin2 η θν) [θμ, ξ„] 

+ ^ [ ( ^ + ξ)μ,^]} ( 1 0 ) 

Ρ* = sin2 η cos2 τ? (0 + ξ)ρ [θμ, ξρ] + cos2 η ην [ημ, ξ„] 

+ sin2 η ην [θμιην]. 
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Here it will be useful to introduce the following notation 

1μ = Χμ 

^μ = Φμ 

11 = Ψμ 

Ρ1 

μ 

Ρ2 : 
μ 

Ρ3 

μ 

= αμ 

= Ημ 

= F, 

(H) 

where χμι ψμ and φμ are defined through the relations (8) and 

Gμ = { — cos(0 — ξ) sin η cos η [η2 + cos2 η ξ2 — sin2 η (θ ξ)] 

+ sin((9-0sin27?(6>7?)}(9M 

+ { — cos(# — ζ) sin η cos η [η2 — cos2 η (θ ξ) + sin2 τ? 02] 

+ 8ίη(0-ξ)(Χ)8 2 7 ? (ξ7 ? )}ξ μ 

+ {cos(# — f) sin 77 cos 77 [(0 77) 4- (ζ rj)\ 

- sin(<9 - ξ) [cos2 τ/ ξ2 + sin2 η θ2]} ημ 

Ημ — {- sin(0 - ξ) sin η cos τ? [τ?2 + cos2 77 ξ2 - sin2 η (θ ζ)] 

+ cos((9-Osin2ry (07?)} 0μ 

+ {sin(0 - ξ) sin 77 cos 77 [η2 - cos2 77 (θ ξ) + sin2 77 02] 

+ C O S ( 0 - O C O S 2 7 7 ( £ T ? ) } ^ (12) 

- {sin(0 — ξ) sin 77 cos η [{θη) + (ξη)] 

+ cos(6> - ξ) [cos2 77 ξ2 Η- sin2 η θ2]} 77μ 

Ff, = {sin2 77 cos2 η [(θ ξ) + ξ2 ] + sin2 77 τ?2} θμ 

- {sin2 77cos2 77 [(θξ) + <92 ] 4- cos2 τ? τ?2} ξ^ 

+ [cos2 77 (ξ 77) - sin2 77 {θ η)] ημ. 

where, for instance, ξ2 = (ξν · ξ„), (ζ η) = (ξ„ · ην), etc. 

We are looking for a symmetry between the vectors Σμ and Ρμ 

Σμ(χ) <—> Ρμ(χ), (13) 
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where now 

Lß(x) = 
ξμ ψ μ - ΐψμ 

Κφμ+ίψμ ~ξμ J 
(14) 

and 

Ρμ(χ) = λ 
Ρμ G μ — %Ημ 

^ϋμ+ίΗμ —FM J 
(15) 

In the particular case in which θ(χ) = ξ(χ), the components of 

the chiral vectors Σμ and Ρμ read 

ψμ = sin(2?7) ξμ <—> ϋμ = \ sin(27?) [(ξ η)ημ - η2 ξμ] , 

% = ημ — Ημ = λ [(ξ η)ξμ - ξ2 ημ] , (16) 

χ μ = cos(2r?) ξμ <—• FM = λ cos(2rç) [{ξ η)ημ - η2 ξμ] , 

By choosing the following initial functions for the vector Σμ 

^8Ϊτι(2η)[{ξη)ημ-η2 ξμ 

Ψ Qu ομ 
$λ{ξ2η2-(ξηη 

ψ = (ξν)ξμ-ξ2ημ 

χ, 

ομ ^[ξ2ν2-(ξν)2ΐ 

_ ̂ 2η)[{ξη)ημ-η2 ξμ] 
ομ ^[ξϊηϊ-ΙξηΥί Ί ' 

(17) 

(18) 

(19) 

and computing the components of the current Ρμί we obtain 

ομ = sin(27?) ξμ ΈΞ φμ 

Ημ = ημ = φμ (20) 

Fß = cos(2r/) ξμ = χμ 
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which precisely coincide with the components of the vector Σμ. 

Thus, the initial functions (17)—(19) map the components of the 

chiral current Ρμ onto the components of the chiral vector Σμ, 

establishing a nontrivial symmetry between them. 

Obviously, the generalization of this relationship to the general 

case in which the restriction θ(χ) = ζ(χ) does not hold, con

stitutes a nontrivial task. It is interesting to try to apply the 

obtained nonlinear symmetry in order to generate exact solu

tions to the field equation (5) of the Skyrme model. Even if this 

constitutes a rather difficult task in the general case, it could 

be analytically treatable for some simple nontrivial initial so

lutions. It is worth noticing that a first attempt to obtain the 

spherically symmetric ansatz (6) or axially symmetric field con

figurations compatible with the special condition θ(χ) = ζ(χ) (or 

some equivalent restrictions) was unsuccessful. It seems that it 

is necessary to consider the three nontrivial different functions 

ξ(χ)ί θ(χ) and η(χ) in order to achieve this aim. This topics are 

currently under investigation. 
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