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Abstract

A classical model based on the independent particle approach to the nuclear dy-
namics is used to study the influence of the phase space structures on the one-
body dissipation of isoscalar Giant Monopole Resonances. The model consists of
a harmonic oscillator describing the collective excitation coupled with a nonlinear
(Woods-Saxon) oscillator representing the motion of each nucleon. We are particu-
lary interested in the dependence of relaxation on the energy of the system. We have
found that in a rather broad region of parameter space, contrary to the common
expectation, both Lyapunov exponent and relaxation time increase as a function of
the total energy. We examine the conditions required for this effect to occur and
demonstrate the key role of the dispersion relation of the nonlinear oscillator.

1 Introduction

There is continuous interest, both theoretical and experimental, in the study
of the relaxation of nuclear giant resonances (1; 2; 3; 4; 5; 6; 7). There are
many relaxation mechanisms, such as one and two body dissipation, collisional
damping etc. Dynamics in nuclear systems, including giant resonances, is usu-
ally mixed, i.e. regular and chaotic regions coexist in phase space (3; 4; 5; 6; 7).
The effect of chaotic dynamics on their damping is still not completely un-
derstood. In general, the largest Lyapunov exponent (A;) is the most common
measure of the chaoticity of the system. It appears that, at least in com-
pletely chaotic systems, increasing A;, the relaxation time, defined as the time
required for an observable to reach its equilibrium value, decreases (8). How-
ever, in mixed systems the relationship between \; and relaxation time is not
well established yet.
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We have employed a simple classical model based on the independent particle
approach for the dynamics of the nucleons (9). This model can be used for
the determination of the decay mechanisms of the isoscalar monopole reso-
nance (the breathing mode) (2; 3; 4; 6; 7). It consists of a harmonic oscil-
lator describing the collective excitation (to a first approximation) coupled
with a nonlinear (Woods-Saxon) oscillator. The model corresponds to a time-
independent Hamiltonian system with 2 degrees of freedom exhibiting mixed
dynamics. Our aim is to explore the interrelation between the relaxation time
of the harmonic oscillator and A; and how this is affected by changes in the
chaotic fraction of phase space. In Sec. 2 we describe our model. In Sec. 3 we
present our main findings. In Sec. 4 we discuss the dependence of our findimgs
on some of the parameters. In Sec. 5 we summarize our main results and give
future prospects.

2 Description of the model system

Our model system consists of a particle of mass m moving in a Woods-Saxon
well of finite depth V, coupled with a harmonic oscillator of mass M moving
with frequency wgo. The Hamiltonian of the system is

P Vo

2
- p_R 1 2 _ 2
T 2m 1 + exp (r—R.,+I;(Ro—R)) + oM + 2M“’H0(R Ro)*. (1)

The choice of this Hamiltonian is motivated by the study of the damping
of Isoscalar Giant Monopole Resonances (IGMR) in nuclei. Specifically, this
mode is represented by a harmonic oscillator which interacts with the nucleons,
represented as independent particles moving in an average potential which has
the form of a Woods-Saxon well. The strength of the coupling between the
particle and the harmonic oscillator is controlled by the parameter b. In the
limit b — 0 the oscillators become uncoupled and thus the system becomes
integrable. As b increases the system becomes increasingly chaotic. In nuclear
systems b equals to 1 and the coupling is adjusted by the ratio M/m.

3 Relaxation time, Lyapunov exponent and chaotic fraction of phase
space

For the analysis of the system dynamics, we start with a microcanonical en-
semble of initial conditions in a rectangular region of (r, E,) plane, where E, is
the particle energy. For each such ensemble, the total energy F is constant. All
initial conditions we use belong to the main chaotic region of phase space. We
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Fig. 1. (a) < A1 >, (b) Ty/2 and (c) g as a function of the total energy E for
M/m =1, Ry = 7.69fm, a = 0.05fm, Vo = 48MeV, wyo = 13.73MeV/h and
b=0.08.

evolve them forward in time and at each time instant ¢ we calculate the mean
value < R(t) > of the coordinate R of the harmonic oscillator. It is expected
that < R(t) > will approach the equilibrium value R, ~ Ry almost exponen-
tially (8), since all orbits in the ensemble are chaotic. The corresponding time
scale defines the relaxation time. For the values of the parameters chosen, the
time dependence of < R(t) > —R,, can be fitted very well by a function of
the form R — R, = Ae™ cos (wt). We calculate the half-life 775 of the initial
amplitude A as a function of the total energy of the system. To quantify the
degree of chaoticity of these orbits, we calculate for each one the Lyapunov
exponent ;. We determine the average value < A; > over the ensemble of
initial conditions as a function of the total energy of the system. In addition
to A\; we calculate the percentage ¢ of chaotic phase space in the (R, pg) plane
as a function of the total energy of the system. In the study presented in
this section we choose the following values for the parameters of the system:
Ry = 7.69fm, Vo = 48MeV and wyo = 13.73MeV/h. These parameters are
relevant for the decay of the IGMR of the nucleus 2® Pb (2; 3; 6). The strength
of the coupling has been chosen equal to b = 0.08. We also choose M/m =1
and a = 0.05fm. The results for < A\; >, T}, and q as a function of the total
energy of the system are shown in Fig. 1. It is clearly seen that although the
value of < A\; > is a monotonically increasing function of the total energy E,
the relaxation time, above a critical value of the total energy, starts increasing
contrary to the common expectation from fully chaotic systems (8). We also
observe that above this critical energy, the percentage g of chaoticity in the
(R,pr) section is decreasing. Motivated by this observation we consider in
more detail the Poincaré surfaces of section for different values of the total
energy of the system. In Fig. 2, (R, pr) sections (for r = Ry/2 and p, > 0) for
three values of the total energy are shown. In Fig. 3 we plot (r, E,) sections
(for R = Ry, pr > 0) for the same values of the total energy.

The regular region of Fig. 2(c) contains invariant tori and corresponds to the
upper invariant curves of Fig. 3(c). These curves are close to straight lines
and correspond to almost constant particle energy and hence almost constant
total energy. They are therefore Kolmogorov- Arnold- Moser (KAM) tori,
which are remnants of the uncoupled integrable system. By inspecting these
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Fig. 2. (R, pr) Poincaré sections for (a) £ = —35MeV, (b) E = —156MeV and (c)
E = —5MeV. For the values of the other parameters see text (Sec. 3).
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Fig. 3. (r, Ep) Poincaré sections for (a) E = —35MeV, (b) E = —15MeV and (c)
E = —5MeV. For the values of the other parameters see text (Sec. 3).

Poincaré sections, we observe that the appearance of KAM tori leads to the
observed relative decrease of chaos in phase space. The onset of this decrease
coincides with a change in the monotonicity of T}/ as a function of the energy.
Once the KAM tori appear, they are not destroyed as the energy increases.
We conjecture that such an appearance of KAM tori counteracts the increase
of the Lyapunov exponent and leads to a change in the monotonicity of the
relaxation time.

4 The key role of dispersion relation and the influence of the cou-
pling strength

The diffuseness parameter a is of crucial importance for the appearance of
the effect described in the previous section. In the Woods-Saxon potential
Viws(r) = =W/ (1 + exp (%‘1 ), the frequency of the motion of the particle
wp depends on its energy E,. The frequency of the motion of a particle in a
potential V() is given by

7 dr -
wp(By) =7 ( / T V(T))) : @)
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Fig. 4. (a) The Woods-Saxon potential for Vj = 48 MeV and four values of a, namely
0.05fm, 0.5fm, 1.5fm, and 3.1fm, (b) The wy(E,) curve of the Woods-Saxon
potential for the same values of the a. The straight line shows the frequency of the
harmonic oscillator.
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Fig. 5. (r, Ep) Poincaré sections for E = —5MeV, a = 0.05fm and (a) b = 0.02, (b)
b=0.1and (c) b=0.2.

where r, and r; are the right and left turning points at a given energy E,. The
form of the w,(E,) curve of the Woods-Saxon potential depends strongly on
a as can be seen from Fig. 4, where V(r) and w,(E,) curves for four values
of a are shown. At the limit a — 0 the potential tends to the square well
and therefore the wy(E),) curve has the form w, o y/E,. For large values of a,
wy(E,) is decreasing and for intermediate values it has a maximum.

In the following we consider a value of a (i.e. a = 0.05 fm) for which the above
mentioned behaviour of relaxation time occurs. The wy(E,) curve has two
intersection points with the corresponding curve of the harmonic oscillator.
The leftmost intersection point is a w, : wgo = 1 : 1 resonance which is
apparent in Figs. 2 and 3. For small values of b, the phase-space is dominated
by KAM tori. Resonances of small width also exist. As the coupling strength b
increases, the width of these resonances also increases. They therefore overlap
with higher-order resonances located close to them leading to the appearance
of a chaotic region. The area of this chaotic region increases with b. Higher-
order resonances (1 :2,1: 3, ...) appear in the low-energy region and their
density increases as the energy becomes smaller. Therefore, as b increases chaos
emerges first in the low-energy region of the (r, E,) section. This transition is
illustrated in Fig. 5.

For fixed values of b and a, above some particle energy threshold only KAM
tori exist. As the energy increases, the existing KAM tori are not destroyed
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and new KAM tori are added to the phase space in the region of large particle
energies. Therefore, as the energy increases, the relative area of the chaotic
phase space decreases, as can be seen from Fig. 3. Increasing b makes the
system more chaotic, i.e. both the Lyapunov exponent and the relative area
of the chaotic phase space increase (see Fig. 5). The inverse behaviour of
relaxation time and Lyapunov exponent appears as long as a sufficiently wide
layer of KAM tori exists at high energies. Increasing b further, will lead to a
destruction of all KAM tori and thus to the usual behaviour of the relaxation
time: < A; > is an increasing function of the energy, q is also increasing due
to the decrease of the area of the regular island around the 1 : 1 resonance
and T}/, is decreasing. Increasing a beyond a critical value of around 1, leads
to a qualitative change in the dispersion relation. In that case chaos emerges
from the region of high energies in the (r, E,) section and the effect of the
simultaneous increase of < A; > and relaxation time is destroyed.

5 Conclusions

We have studied a classical model suitable for the investigation of the decay of
Isoscalar Giant Monopole Resonances (IGMRs) focusing on relaxation prop-
erties. Using phase space considerations, it has been found that, in a rather
broad range of the parameters, the relaxation time can increase or remain
constant although the Lyapunov exponent increases. We have attributed this
behaviour to the appearance of KAM tori. For this behaviour to occur, the
dispersion relation of the non-harmonic oscillator must either be strictly in-
creasing or have a maximum. The model presented in this work is currently
used for the detailed study of the decay width of IGMRs in several nuclei. The
results of these studies will be presented in a forthcoming paper (10).
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