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Abstract 

A classical model based on the independent particle approach to the nuclear dy­
namics is used to study the influence of the phase space structures on the one-
body dissipation of isoscalar Giant Monopole Resonances. The model consists of 
a harmonic oscillator describing the collective excitation coupled with a nonlinear 
(Woods-Saxon) oscillator representing the motion of each nucléon. We are particu-
lary interested in the dependence of relaxation on the energy of the system. We have 
found that in a rather broad region of parameter space, contrary to the common 
expectation, both Lyapunov exponent and relaxation time increase as a function of 
the total energy. We examine the conditions required for this effect to occur and 
demonstrate the key role of the dispersion relation of the nonlinear oscillator. 

1 Introduction 

There is continuous interest, both theoretical and experimental, in the study 
of the relaxation of nuclear giant resonances (1; 2; 3; 4; 5; 6; 7). There are 
many relaxation mechanisms, such as one and two body dissipation, collisional 
damping etc. Dynamics in nuclear systems, including giant resonances, is usu­
ally mixed, i.e. regular and chaotic regions coexist in phase space (3; 4; 5; 6; 7). 
The effect of chaotic dynamics on their damping is still not completely un­
derstood. In general, the largest Lyapunov exponent (λι) is the most common 
measure of the chaoticity of the system. It appears that, at least in com­
pletely chaotic systems, increasing λι, the relaxation time, denned as the time 
required for an observable to reach its equilibrium value, decreases (8). How­
ever, in mixed systems the relationship between λι and relaxation time is not 
well established yet. 
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We have employed a simple classical model based on the independent particle 
approach for the dynamics of the nucléons (9). This model can be used for 
the determination of the decay mechanisms of the isoscalar monopole reso­
nance (the breathing mode) (2; 3; 4; 6; 7). It consists of a harmonic oscil­
lator describing the collective excitation (to a first approximation) coupled 
with a nonlinear (Woods-Saxon) oscillator. The model corresponds to a time-
independent Hamiltonian system with 2 degrees of freedom exhibiting mixed 
dynamics. Our aim is to explore the interrelation between the relaxation time 
of the harmonic oscillator and λχ and how this is affected by changes in the 
chaotic fraction of phase space. In Sec. 2 we describe our model. In Sec. 3 we 
present our main findings. In Sec. 4 we discuss the dependence of our findimgs 
on some of the parameters. In Sec. 5 we summarize our main results and give 
future prospects. 

2 Description of the model system 

Our model system consists of a particle of mass m moving in a Woods-Saxon 
well of finite depth V0 coupled with a harmonic oscillator of mass M moving 
with frequency ω HO· The Hamiltonian of the system is 

The choice of this Hamiltonian is motivated by the study of the damping 
of Isoscalar Giant Monopole Resonances (IGMR) in nuclei. Specifically, this 
mode is represented by a harmonic oscillator which interacts with the nucléons, 
represented as independent particles moving in an average potential which has 
the form of a Woods-Saxon well. The strength of the coupling between the 
particle and the harmonic oscillator is controlled by the parameter b. In the 
limit b —• 0 the oscillators become uncoupled and thus the system becomes 
integrable. As b increases the system becomes increasingly chaotic. In nuclear 
systems b equals to 1 and the coupling is adjusted by the ratio M/m. 

3 Relaxation time, Lyapunov exponent and chaotic fraction of phase 
space 

For the analysis of the system dynamics, we start with a microcanonical en­
semble of initial conditions in a rectangular region of (r, Ep) plane, where Ep is 
the particle energy. For each such ensemble, the total energy E is constant. All 
initial conditions we use belong to the main chaotic region of phase space. We 
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Fig. 1. (a) < Ai >, (b) T\j2 and (e) g as a function of the total energy E for 
M/m = 1, i?o = 7.69/m, a = 0.05/m, VQ = 48MeV, ωΗΟ = 13.73MeV/ft and 
b = 0.08. 

evolve them forward in time and at each time instant t we calculate the mean 
value < R(t) > of the coordinate R of the harmonic oscillator. It is expected 
that < R(t) > will approach the equilibrium value Req ~ Ro almost exponen­
tially (8), since all orbits in the ensemble are chaotic. The corresponding time 
scale defines the relaxation time. For the values of the parameters chosen, the 
time dependence of < R(t) > —Req can be fitted very well by a function of 
the form R — Req = Ae_lt cos (ωί). We calculate the half-life Ti/2 of the initial 
amplitude A as a function of the total energy of the system. To quantify the 
degree of chaoticity of these orbits, we calculate for each one the Lyapunov 
exponent Χχ. We determine the average value < λχ > over the ensemble of 
initial conditions as a function of the total energy of the system. In addition 
to λι we calculate the percentage q of chaotic phase space in the (R,pn) plane 
as a function of the total energy of the system. In the study presented in 
this section we choose the following values for the parameters of the system: 
Ro = 7.69/m, V0 = A8MeV and ωΗο = lS.73MeV/H. These parameters are 
relevant for the decay of the IGMR of the nucleus 2 0 8 Pb (2; 3; 6). The strength 
of the coupling has been chosen equal to b = 0.08. We also choose M/m = 1 
and a = 0.05/m. The results for < λι >, Ti/2, and q as a function of the total 
energy of the system are shown in Fig. 1. It is clearly seen that although the 
value of < λχ > is a monotonically increasing function of the total energy E, 
the relaxation time, above a critical value of the total energy, starts increasing 
contrary to the common expectation from fully chaotic systems (8). We also 
observe that above this critical energy, the percentage q of chaoticity in the 
(R,Pn) section is decreasing. Motivated by this observation we consider in 
more detail the Poincaré surfaces of section for different values of the total 
energy of the system. In Fig. 2, (R,pR) sections (for r = Ro/2 and pr > 0) for 
three values of the total energy are shown. In Fig. 3 we plot (r, Ep) sections 
(for R = Ro, PR > 0) for the same values of the total energy. 

The regular region of Fig. 2(c) contains invariant tori and corresponds to the 
upper invariant curves of Fig. 3(c). These curves are close to straight lines 
and correspond to almost constant particle energy and hence almost constant 
total energy. They are therefore Kolmogorov- Arnold- Moser (KAM) tori, 
which are remnants of the uncoupled integrable system. By inspecting these 
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Fig. 2. (R,PR) Poincaré sections for (a) E = -SòMeV, (b) E = -15MeV and (c) 
E = —hMeV. For the values of the other parameters see text (Sec. 3). 

Fig. 3. (r,Ep) Poincaré sections for (a) E = -35MeV, (b) E = -IbMeV and (c) 
E = —bMeV. For the values of the other parameters see text (Sec. 3). 

Poincaré sections, we observe that the appearance of KAM tori leads to the 
observed relative decrease of chaos in phase space. The onset of this decrease 
coincides with a change in the monotonicity of T\ß as a function of the energy. 
Once the KAM tori appear, they are not destroyed as the energy increases. 
We conjecture that such an appearance of KAM tori counteracts the increase 
of the Lyapunov exponent and leads to a change in the monotonicity of the 
relaxation time. 

The key role of dispersion relation and the influence of the cou­
pling strength 

The diffuseness parameter a is of crucial importance for the appearance of 
the effect described in the previous section. In the Woods-Saxon potential 
Vwsir) — —VQ/ (l + exp f 1 1 ^ ) ) , the frequency of the motion of the particle 
ωρ depends on its energy Ep. The frequency of the motion of a particle in a 
potential V(r) is given by 
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Fig. 4. (a) The Woods-Saxon potential for VQ = 48MeV and four values of a, namely 
0.05/m, 0.5/m, 1.5/ra, and 3.1/m, (b) The u>p(Ep) curve of the Woods-Saxon 
potential for the same values of the a. The straight line shows the frequency of the 
harmonic oscillator. 

E -30 

Fig. 5. (r, Ερ) Poincaré sections for E = —ï>MeV, a 
b = 0.1 and (c) b = 0.2. 

0.05/m and (a) b = 0.02, (b) 

where rr and ri are the right and left turning points at a given energy Ep. The 
form of the ωρ(Ερ) curve of the Woods-Saxon potential depends strongly on 
a as can be seen from Fig. 4, where V(r) and OJP{EP) curves for four values 
of a are shown. At the limit a —* 0 the potential tends to the square well 
and therefore the ωρ(Ερ) curve has the form ωρ oc JEP. For large values of a, 

ωρ(Ερ) is decreasing and for intermediate values it has a maximum. 

In the following we consider a value of a (i.e. a = 0.05/m) for which the above 
mentioned behaviour of relaxation time occurs. The ωρ(Ερ) curve has two 
intersection points with the corresponding curve of the harmonic oscillator. 
The leftmost intersection point is a ωρ : ωπο = 1 : 1 resonance which is 
apparent in Figs. 2 and 3. For small values of b, the phase-space is dominated 
by KAM tori. Resonances of small width also exist. As the coupling strength 6 
increases, the width of these resonances also increases. They therefore overlap 
with higher-order resonances located close to them leading to the appearance 
of a chaotic region. The area of this chaotic region increases with b. Higher-
order resonances (1 : 2, 1 : 3, . . .) appear in the low-energy region and their 
density increases as the energy becomes smaller. Therefore, as 6 increases chaos 
emerges first in the low-energy region of the (r, Ep) section. This transition is 
illustrated in Fig. 5. 

For fixed values of b and a, above some particle energy threshold only KAM 
tori exist. As the energy increases, the existing KAM tori are not destroyed 
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and new KAM tori are added to the phase space in the region of large particle 
energies. Therefore, as the energy increases, the relative area of the chaotic 
phase space decreases, as can be seen from Fig. 3. Increasing 6 makes the 
system more chaotic, i.e. both the Lyapunov exponent and the relative area 
of the chaotic phase space increase (see Fig. 5). The inverse behaviour of 
relaxation time and Lyapunov exponent appears as long as a sufficiently wide 
layer of KAM tori exists at high energies. Increasing b further, will lead to a 
destruction of all KAM tori and thus to the usual behaviour of the relaxation 
time: < λχ > is an increasing function of the energy, q is also increasing due 
to the decrease of the area of the regular island around the 1 : 1 resonance 
and T\/2 is decreasing. Increasing a beyond a critical value of around 1, leads 
to a qualitative change in the dispersion relation. In that case chaos emerges 
from the region of high energies in the (r, Ep) section and the effect of the 
simultaneous increase of < \\ > and relaxation time is destroyed. 

5 Conclusions 

We have studied a classical model suitable for the investigation of the decay of 
Isoscalar Giant Monopole Resonances (IGMRs) focusing on relaxation prop­
erties. Using phase space considerations, it has been found that, in a rather 
broad range of the parameters, the relaxation time can increase or remain 
constant although the Lyapunov exponent increases. We have attributed this 
behaviour to the appearance of KAM tori. For this behaviour to occur, the 
dispersion relation of the non-harmonic oscillator must either be strictly in­
creasing or have a maximum. The model presented in this work is currently 
used for the detailed study of the decay width of IGMRs in several nuclei. The 
results of these studies will be presented in a forthcoming paper (10). 
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