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Abstract 

A 7-rigid solution of the Bohr Hamiltonian for 7 = 30° is derived, its ground state 
band being related to the second order Casimir operator of the Euclidean algebra 
E(4). Parameter-free (up to overall scale factors) predictions for spectra and B(E2) 
transition rates are in close agreement to the E (5) critical point symmetry, as well 
as to experimental data in the Xe region around A = 130. 

1 Introduction 

The E(5) critical point symmetry [1] has been obtained as an exact solution of 
the Bohr Hamiltonian [2] for 7-independent potentials, while the X(5) model 
is obtained as an approximate solution for 7 « 0° [3]. Another approximate 
solution, with 7 « 30°, called Z(5), has also been obtained [4]. In all these 
cases, five degrees of freedom (the collective variables β, 7, and the three Euler 
angles) are taken into account. 

In the present work we derive an exact solution of the Bohr Hamiltonian 
for 7 = 30°, by "freezing" 7 (as in Ref. [5]) to this value and taking into 
account only four degrees of freedom (β and the Euler angles). In accordance 
to previous terminology, this solution will be called Ζ (4). 

The Ζ(4) solution will be introduced in Section 2 and its ground state band 
will be related to the Euclidean algebra E(4) in Section 3. Numerical results 
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and comparisons to E(5) and experiment will be given in Section 4, while 
discussion of the present results and plans for further work will appear in 
Section 5. 

2 The Ζ (4) model 

In the model of Davydov and Chaban [5] it is assumed that the nucleus is rigid 
with respect to 7-vibrations. Then the Hamiltonian depends on four variables 
(/?, #i) and has the form [5] 

H = 
2B 

l - L · * d 

1 
Σ- Q 

β3 0/Γ dß 4ß2 g - sin2(7 - f ft) 
+ U(ß), (1) 

where β and 7 are the usual collective coordinates [2], while Qk (k = 1, 2, 3) 
are the components of angular momentum and Β is the mass parameter. 

Introducing [1] reduced energies e = (2B/h2)E and reduced potentials u — 
(2B/h2)U, and considering a wave function of the form Ψ(/3,0») = φ(β)φ(θί), 
where 0, ( ΐ = 1, 2, 3) are the Euler angles, separation of variables leads to 
two equations 

1 d - d X . . . . 

fßdßfaß-p + (e-u{ß)) 

Q 1 3 

- A 

Φ(β) = ο, 

φ{θί) = 0. 

(2) 

(3) 

In the case of 7 = π/6, the last equation has been solved by Meyer-ter-Vehn 
[6], with λ = λι,,α = L{L 4- 1) — 3α2/4, where a. are the eigenvalues of the 
projection of angular momentum on the body-fixed âr'-axis. a has to be an 
even integer [6]. 

Instead of the projection a of the angular momentum on the x'-axis, it is 
customary to introduce the wobbling quantum number [6] nw = L — a, which 
labels a series of bands with L — nw, nw + 2, nw + 4 , . . . (with nw > 0) next to 
the ground state band (with nw = 0) [6]. 

The "radial" Eq. (2) is exactly soluble in the case of an infinite square well 
potential (u(ß) = 0 for β < ßw, u(ß) — 00 for β > ßw)· Using the transfor­
mation φ(β) = ß~lf{ß), Eq. (2) becomes a Bessel equation 

d2 ±d_ 
dß2 + ßdß (-S) ß2 f(ß) = 0, u = y/λΤΊ. (4) 
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Then the boundary condition f{ßw) — 0 determines the spectrum, €#β>ί/ = 
£ß;s,nw,L = {ks,uYi ks,v = ^s,v/ßwi where xSiU is the sth zero of the Bessel 
function Ju(ks,uß)· The ground state band corresponds to s = 1, nw = 0. This 
model will be called the Ζ(4) model. 

The calculation of B(E2)s proceeds as in Ref. [4], the only difference being 
that the volume element in the integrals over β contains βΆ instead of /?4, 
since it corresponds to four dimensions instead of five. 

Fig. 1. Spectrum and intraband and interband B(E2) transition rates in the Z(4) 
model, normalized to the B(E2;2iio —• Οι,ο) rate. Bands are labelled by (s,nw), their 
levels being normalized to 2^0- The (2,0) band is shown both at the left and at the 
right end of the figure for drawing purposes. 

3 Relation of the ground state band of Z(4) to E(4) 

The ground state band of the Ζ(4) model is related to the second order Casimir 
operator of E(4), the Euclidean group in four dimensions. In order to see 
this, one can consider in general the Euclidean algebra in η dimensions, E(n), 
which is the semidirect sum of the algebra T n of translations in η dimensions, 
generated by the momenta, and the SO(n) algebra of rotations in η dimensions, 
generated by the angular momenta, symbolically written as E(n) = T n Θ 5 

SO(n) [7]. One can see that the square of the total momentum, P 2 , is a second 
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order Casimir operator of the algebra, while the eigenfunctions of this operator 

satisfy the equation 

{-^"-li+uJ^)™=*™. (5) 

in the left hand side of which the eigenvalues of the Casimir operator of SO(n), 

ω(ω + η - 2) appear. Putting F(r) = r ( 2 _ n>/2/(r)> and ν = ω + (η - 2)/2, Eq. 

(5) is brought into the form 

(P_ ld_ k2_^_ 
ßr2 γ βγ j-2 fir) = 0, (6) 

the eigenfunctions of which are the Bessel functions f(r) — Ju{kr). The simi­

larity between Eqs. (6) and (4) is clear. 

The ground state band of Ζ(4) is characterized by nw = 0, which means that 

a = L. Then in Z(4) one obtains ν = L/2 + 1, while in the case of E(4) one 

has ν = ω + 1. The two results coincide for L — 2ω, i.e. for even values of L. 

One can easily see that this coincidence occurs only in four dimensions. 

4 8 12 16 2C 

angular momentum L 
12 16 

angular momentum L 

Fig. 2. (a) Ground state band [(s,nw) = (1)0)] and first excited band 
[(s,nw) = (2,0), labeled as /?i-band] of Z(4) compared to the corresponding bands 
of E(5) [1]. In each model all levels are normalized to the 2f state, (b) The 
lowesf'if = 2 band" of Z(4) [formed out of the (s,nw) bands (1,2) and (1,1), 
labeled as 71], compared to the corresponding band of E(5). 

4 Numerical results and comparisons to E(5) and experiment 

The level scheme of Ζ (4) is shown in Fig. 1. The similarity between the spectra 

of Z(4) and E(5) can be seen in Fig. 2(a), where the spectra of the ground 
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state band and the ß\ band are given. One can easily check that the similarity 
extends to intraband and interband B(E2)s, for which the selection rules in 
the two models are the same. 

The main difference between Z(4) and E(5) appears, as expected, in the 71 
band, the spectrum of which is shown in Fig. 2(b). The predictions of the 
two models for the odd levels practically coincide, while the predictions for 
the even levels differ, since in the E(5) model the levels are exactly paired as 
(3,4), (5,6), (7,8), . . . , as imposed by the underlying S O ( 5 ) D S O ( 3 ) symmetry 
[1], while in the Z(4) model the levels are approximately paired as (4,5), (6,7), 
(8,9), . . . , which is a hallmark of rigid triaxial models [8]. The latter behaviour 
is never materialized fully, but it is known [8] that 7-unstable models and 7-
rigid models yield similar predictions for most observables if yrms of the former 
equals frigid of the latter, a situation occuring in the Ru-Pd, Xe-Ba (below 
Ν = 82), and Os-Pt regions. 

. 
: 7.168 J Ü — 

8* 
5.324-

i* S . m 
• 6 * 4 j 0 5 1 - i - = - « » 
. 3.669 1 -

. 2.414 3» 
1 2 2 6 i _ t_ f — - 2 . - M 5 

1.706 \M±r— 

(1,0) (1,2) (1,1) 

(a) 

2* 
4.804 

— Ï 2 3 5 4 

(2,0) Z ( 4 ) 

Λ 10' 
. 7.597— 
• 

f -6.165 
. 5.674- t 

5.150- , 
.» -4.508 

3 9 2 2 ^ — 1 - „ „ . 4 * 
• 1 K 0 3' 

+1.940 1226 

2.333-̂ —4- H I s C -
ο* ι 1.194 --

(b) 

- 4 ^ 1 5 
0* 
=-1574 

1 2 8 Xe 

5.031-

r ., —4.051 

'. w-— mZ— 
2* 

1 . 0 0 0 · = — 

£ 

(0 

2-3346 

1 3 0 Xe 

• 

; 3 . 1 6 3 J _ mSJ=^nm 
4* , t 72-701 

.2.157 1- tmT 3 

,1.238 ΤΣΡ^Τ 

Z U - 0 0 0 3 

(d) 

2-2771 

, 3 2 X e 

Fig. 3. Comparison of the Z(4) predictions for (normalized) energy levels and (nor­
malized) B(E2) transition rates (a) to experimental data for 128Xe [9] (b), 130Xe 
[10] (c), and 132Xe [11] (d). Bands in (a) are labelled by (s,nw). See Section 4 for 
further discussion. 

Predictions of the Ζ(4) model are compared to existing experimental data 
for 1 2 8Xe [9], 1 3 0Xe [10], and 1 3 2Xe [11] in Fig. 3. The reasonable agreement 
observed is in no contradiction with the characterization of these nuclei as 0(6) 
nuclei [8], since, as mentioned above, the predictions of 7-unstable models [like 
0(6)] and 7-rigid models [like Ζ(4)] for most observables are similar if 7 r m s of 
the former equals frigid of the latter. 
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5 Discussion 

It should be emphasized that neither the similarity of spectra and B(E2) values 

of Z(4) to these of the E(5) model, nor the coincidence of the ground state 

band of Z(4) to the spectrum of the Casimir operator of the Euclidean algebra 

E(4) clarify the algebraic structure of the Z(4) model, the symmetry algebra 

of which has to be constructed explicitly, starting from the fact that the Bohr 

Hamiltonian for 7 = 30° possesses "accidentally" a symmetry axis [6]. 
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