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Abstract

A ~4-rigid solution of the Bohr Hamiltonian for v = 30° is derived, its ground state
band being related to the second order Casimir operator of the Euclidean algebra
E(4). Parameter-free (up to overall scale factors) predictions for spectra and B(E2)
transition rates are in close agreement to the E(5) critical point symmetry, as well
as to experimental data in the Xe region around A = 130.

1 Introduction

The E(5) critical point symmetry [1] has been obtained as an exact solution of
the Bohr Hamiltonian [2] for 4-independent potentials, while the X(5) model
is obtained as an approximate solution for v ~ 0° [3]. Another approximate
solution, with v ~ 30°, called Z(5), has also been obtained [4]. In all these
cases, five degrees of freedom (the collective variables 3, 7, and the three Euler
angles) are taken into account.

In the present work we derive an exact solution of the Bohr Hamiltonian
for v = 30° by “freezing” v (as in Ref. [5]) to this value and taking into
account only four degrees of freedom (3 and the Euler angles). In accordance
to previous terminology, this solution will be called Z(4).

The Z(4) solution will be introduced in Section 2 and its ground state band
will be related to the Euclidean algebra E(4) in Section 3. Numerical results
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and comparisons to E(5) and experiment will be given in Section 4, while
discussion of the present results and plans for further work will appear in
Section 5.

2 The Z(4) model

In the model of Davydov and Chaban [5] it is assumed that the nucleus is rigid
with respect to y-vibrations. Then the Hamiltonian depends on four variables
(83, 6;) and has the form [5]
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where 3 and 7 are the usual collective coordinates (2], while Q (k =1, 2, 3)
are the components of angular momentum and B is the mass parameter.

Introducing [1] reduced energies ¢ = (2B/h*)E and reduced potentials u =
(2B/R*)U, and considering a wave function of the form ¥(3,8;) = ¢(8)¥(6;),
where 6; (i = 1, 2, 3) are the Euler angles, separation of variables leads to
two equations
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In the case of v = /6, the last equation has been solved by Meyer-ter-Vehn
6], with A\ = Ar o = L(L + 1) — 3a?/4, where « are the eigenvalues of the
projection of angular momentum on the body-fixed #’-axis. @ has to be an
even integer [6].

Instead of the projection o of the angular momentum on the i’-axis, it is
customary to introduce the wobbling quantum number [6] n,, = L — a, which
labels a series of bands with L = n,,, ny, + 2,n, +4, . .. (with n,, > 0) next to
the ground state band (with n,, = 0) [6].

The “radial” Eq. (2) is exactly soluble in the case of an infinite square well
potential (u (ﬁ) =0 for 8 < Bw, u(B) = oo for B > PBw). Using the transfor-
mation ¢(3) = 871 f(B), Eq. (2) becomes a Bessel equation
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Then the boundary condition f(8y) = 0 determines the spectrum, €g,s, =
€850l = (ksw)?, ksy = Ts,/Bw, where z,, is the sth zero of the Bessel
function J, (ks 3). The ground state band corresponds to s = 1, n,, = 0. This
model will be called the Z(4) model.

The calculation of B(E2)s proceeds as in Ref. [4], the only difference being
that the volume element in the integrals over 3 contains (3% instead of 3¢,
since it corresponds to four dimensions instead of five.
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Fig. 1. Spectrum and intraband and interband B(E2) transition rates in the Z(4)
model, normalized to the B(E2;2; o — 01) rate. Bands are labelled by (s, ny), their
levels being normalized to 2; 9. The (2,0) band is shown both at the left and at the
right end of the figure for drawing purposes.

3 Relation of the ground state band of Z(4) to E(4)

The ground state band of the Z(4) model is related to the second order Casimir
operator of E(4), the Euclidean group in four dimensions. In order to see
this, one can consider in general the Euclidean algebra in n dimensions, E(n),
which is the semidirect sum of the algebra T, of translations in n dimensions,
generated by the momenta, and the SO(n) algebra of rotations in n dimensions,
generated by the angular momenta, symbolically written as E(n) = T, @,
SO(n) [7]. One can see that the square of the total momentum, P2, is a second
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order Casimir operator of the algebra, while the eigenfunctions of this operator
satisfy the equation

1 8 ,,0 wwt+tn-2) _

in the left hand side of which the eigenvalues of the Casimir operator of SO(n),
w(w +n —2) appear. Putting F(r) = r®™/2f(r), and v = w+ (n — 2)/2, Eq.
(5) is brought into the form

o 10 v?
<ﬁ+;g+k2—ﬁ)f('r‘)=0, (6)

the eigenfunctions of which are the Bessel functions f(r) = J,(kr). The simi-
larity between Egs. (6) and (4) is clear.

The ground state band of Z(4) is characterized by n,, = 0, which means that
a = L. Then in Z(4) one obtains v = L/2 + 1, while in the case of E(4) one
has v = w + 1. The two results coincide for L = 2w, i.e. for even values of L.
One can easily see that this coincidence occurs only in four dimensions.
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Fig. 2. (a) Ground state band [(s,m,) = (1,0)] and first excited band

[(5,n4) = (2,0), labeled as (3;-band] of Z(4) compared to the corresponding bands
of E(5) [1]. In each model all levels are normalized to the 2] state. (b) The
lowest“K = 2 band” of Z(4) [formed out of the (s,n,) bands (1,2) and (1,1),
labeled as 7], compared to the corresponding band of E(5).

4 Numerical results and comparisons to E(5) and experiment

The level scheme of Z(4) is shown in Fig. 1. The similarity between the spectra
of Z(4) and E(5) can be seen in Fig. 2(a), where the spectra of the ground
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state band and the 3; band are given. One can easily check that the similarity
extends to intraband and interband B(E2)s, for which the selection rules in
the two models are the same.

The main difference between Z(4) and E(5) appears, as expected, in the v,
band, the spectrum of which is shown in Fig. 2(b). The predictions of the
two models for the odd levels practically coincide, while the predictions for
the even levels differ, since in the E(5) model the levels are exactly paired as
(3,4), (5,6), (7,8), ..., as imposed by the underlying SO(5)D>SO(3) symmetry
(1], while in the Z(4) model the levels are approximately paired as (4,5), (6,7),
(8,9), ..., which is a hallmark of rigid triaxial models [8]. The latter behaviour
is never materialized fully, but it is known [8] that y-unstable models and ~-
rigid models yield similar predictions for most observables if v,,s of the former
equals v,ig4 of the latter, a situation occuring in the Ru-Pd, Xe-Ba (below
N = 82), and Os-Pt regions.
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Fig. 3. Comparison of the Z(4) predictions for (normalized) energy levels and (nor-
malized) B(E2) transition rates (a) to experimental data for 12Xe [9] (b), 130Xe
[10] (c), and 132Xe [11] (d). Bands in (a) are labelled by (s,n,,). See Section 4 for
further discussion.

Predictions of the Z(4) model are compared to existing experimental data
for 128Xe [9], 13°Xe [10], and !32Xe [11] in Fig. 3. The reasonable agreement
observed is in no contradiction with the characterization of these nuclei as O(6)
nuclei [8], since, as mentioned above, the predictions of y-unstable models [like
O(6)] and 7-rigid models [like Z(4)] for most observables are similar if 4,5 of
the former equals 7igiq of the latter.
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5 Discussion

It should be emphasized that neither the similarity of spectra and B(E2) values
of Z(4) to these of the E(5) model, nor the coincidence of the ground state
band of Z(4) to the spectrum of the Casimir operator of the Euclidean algebra
E(4) clarify the algebraic structure of the Z(4) model, the symmetry algebra
of which has to be constructed explicitly, starting from the fact that the Bohr
Hamiltonian for v = 30° possesses “accidentally” a symmetry axis [6].
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