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Abstract

A neural-network model is developed to reproduce the differences between exper-
imental nuclear mass-excess values and the theoretical values given by the Finite
Range Droplet Model. The results point to the existence of subtle regularities of nu-
clear structure not yet contained in the best microscopic/phenomenological models
of atomic masses. Combining the FRDM and the neural-network model, we create
a hybrid model with improved predictive performance on nuclear-mass systematics
and related quantities.

1 Introduction

The problem of devising global models of nuclidic (atomic) masses (see Ref. [1]
for a recent review) is of great current interest in connection with experimen-
tal studies of nuclei far from stability conducted at heavy-ion and radioactive
ion-beam facilities and with the theory of nucleosynthesis and supernova ex-
plosions [2]. The spectrum of global mass models ranges from those with high
theoretical input that explicitly take account of known physical principles in
terms of a relatively small number of fitting parameters, to models that are
shaped only by the data and thus have a correspondingly large number of
adjustable parameters. Current models of the former class that define the
state of the art are the Finite Range Droplet Model (FRDM) of Méller, Nix,
and coworkers [3] and the Hartree-Fock-Bogoliubov model (HFB2) of Pearson,
Tondeur and coworkers [4]. Statistical models based on neural networks are
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situated far toward the other end of the spectrum. They have been under con-
tinuing development in recent years, to the extent that they can now provide
a valuable complement to conventional global models [5].

Here we provide a preliminary report of results from a synthesis [6] of the two
approaches. Training by example, a neural network is constructed that esti-
mates the differences AM®® — AMFRPM hetween experiment and the FRDM,
where AM denotes the nuclidic mass excess. Combining the FRDM with this
neural network, we obtain a hybrid global mass model that performs with
precision both in reproducing AM values for familiar nuclei and predicting
them for new nuclei. This strategy is pursued with the hope of determining
whether the residual physical corrections to the FRDM model (a) stem from
a large number of small effects that may fluctuate strongly with Z and N,
defying systematic quantification, or instead (b) can be attributed in part to
regularities of nuclear structure not yet embodied in theory.

2 Neural-network model of the mass differences

A multilayer feedforward architecture is adopted for the neural network, hav-
ing the structure indicated schematically by (4-6-6-6-1)[169]. The four in-
put units encode the atomic number Z, the neutron number N, and their
respective parities. The single output unit encodes the mass-excess difference
AM®P— AMFRPM Three intermediate layers, each containing six units, trans-
fer information from input to output through weighted connections. The total
number of weight parameters charactering the network is 169. To construct
the neural-network model, we have employed the database of 1654 nuclei fitted
by the FRDM parameterization of Ref. [3], screening out some uncertain cases
in light of the more recent experimental mass-excess assignments published in
the 2003 Atomic Mass Evaluation (AMEO03) [7]. The surviving 1620 nuclei are
divided randomly into two data sets of 1276 (M1) and 344 (M2) nuclei, which
respectively comprise the learning and validation sets for neural-network mod-
eling. Performance on the learning set serves as the criterion for progressive
adjustment of the weights of the feedforward connections, while performance
on the validation set is used to guide the termination of training. To obtain
an unambiguous measure of predictive performance, some of the data must be
reserved as a test set, or prediction set, which is never referred to during the
training process. The test set (denoted M3) is provided by the remaining 529
nuclei of the AMEOQ3 evaluation. These data points correspond predominantly
to nuclides far from stability, lying on the outer fringes of the 1620-nuclide set
M1U M?2 as viewed in the N — Z plane (see Fig. 1). The ability of the neural
network to model the difference AM®® — AMFRPM i jllustrated in Fig. 2. It
is seen that the deviations of the FRDM evaluation from experiment for the
data sets M1 and M2 involved in the training process can be substantially
reproduced by the neural network.
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Fig. 1. Locations in the N — Z plane are indicated for the M1, M2, and M3 data
sets employed in neural-network modeling of the differences between experimental
mass-excess values and those given by the FRDM.

3 Mass excess evaluation — Hybrid Model

To generate and predict mass-excess values for nuclides of specified Z and
N, we construct a hybrid model by combining the FRDM outputs with the
difference values predicted by the neural-network model described in Section
2. In Table 1 we compare performance (measured by the rms error g,y) on
the learning, validation, and prediction sets for (i) the hybrid model, (ii) the
neural-network mass model of Ref. [5] and its most recent version [6] and (iii)
the theoretical models FRDM [3] and HFB2 [4]. The neural-network mass
models of Refs. [5,6] were trained to directly predict mass-excess values (as
opposed to differences of mass-excess values). Likewise, the FRDM and HFB2
models were fitted to mass-excess data. vspacebtruept Overall, the hybrid
model shows the best performance among the four models considered, having
very small error figures even for the prediction set M3. Further insight into
the behavior of the hybrid model of mass excess is furnished by Fig. 3, where
the rms error of the difference estimate per isotope chain, i.e., calculated for
all N for given Z, is plotted for the full database M1 U M2 U M3. For the
majority of chains, the hybrid model yields smaller errors than FRDM and
HFB2.
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Fig. 2. Mass-excess differences between experiment and FRDM for the data sets
M1 and M2 involved in the training process are compared with the corresponding
differences predicted by the neural network.

Table 1
Root-mean-square error o;y,s(MeV) in estimation of mass excess by global models
(see text for details).

Learning set Validation set Prediction set

Model (M1) (M2) (M3)

FRDM ([3]) 0.68 0.71 0.58

HFB2 ([4]) 0.67 0.68 0.67

Neural net mass model ([5]) 0.44 0.44 0.95
Neural net mass model ([6]) 0.28 0.40 0.71
Hybrid model 0.40 0.49 0.41

4 Mass-related nuclear quantities — Hybrid Model

Mass-related quantities of interest can also be evaluated based on the various
models of mass excess, statistical and theoretical. Table 2 presents the rms
errors in determination of the one- and two-proton separation energies S(p)
and S(2p), the one- and two-neutron separation energies S(n) and S(2n), and
the Q-values for alpha and beta-minus decays, for all nuclei in AMEO3 with
experimentally measured values. The hybrid model outperforms its competi-
tors in all of the comparisons, although generally by smaller margins than for
the mass excess (cf. Table 1). However, the ultimate test of any global model
is in the accuracy it can achieve on nuclei that have not been used in adjusting
its parameters. Table 3 reports rms errors in the separation energies and Q-
values for the subset of cases involving only nuclides of the prediction set M3.
In this part of the nuclidic chart, the hybrid model demonstrates predictive
performance comparable to that of FRDM alone.
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Fig. 3. RMS mass-excess error per isotope chain, plotted versus atomic number Z
for the full AMEO3 database. Results are shown for the hybrid, FRDM, and HFB2
global mass formulas.

Table 2

Performance of global mass models for various quantities related to nuclear-mass
systematics, quantified by the corresponding rms error over all cases involving
AMEO3 nuclides [7] for which experimentally measured values are available. Nu-

merical entries are in MeV.
S(p) S(2p) S(n) S(2n) Q) Q(67)

Model (1968) (1836) (1988) (1937) (2039) (1868)
FRDM ([3]) 040 049 040 051 061  0.50
HFB2 ([4]) 049 051 047 046 055  0.60

Neural net mass model ([5]) 0.53 0.6l 048 058 067  0.64
Neural net mass model ([6])  0.56 0.49 0.38 0.46 0.62 0.53
Hybrid model 0.36 0.40 0.35 0.42 0.48 0.42

5 Conclusions — Future steps

Global semi-empirical models of atomic masses have reached a stage of sophisi-
cation such that sub-MeV accuracy is achievable in predicting the mass ex-
cess of newly created nuclides. At this stage one is naturally led to inquire
whether the residual errors are “chaotic” or random in nature, arising from
the fluctuation and interplay of a large number of small physical effects as
well as some experimental error. We have addressed this question by creating
a neural-network model that generates the difference between experimental
mass excesses and the values given by a state-of-the-art global mass model,
specifically, the Finite Range Droplet Model of Mdller, Nix, and coworkers
[3]. Our results suggest that a significant portion of the residual error (per-
haps 30-40%) can be treated systematically, i.e., some regularities remain to
be extracted from the data. More extensive neural-network studies aimed at
revealing the statistical behavior of the discrepancy are needed to test this
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Table 3

Performance of global mass models for various quantities related to nuclear-mass
systematics, quantified by the corresponding rms error over all cases involving only
nuclides of the prediction set M3. Numerical entries are in MeV.

Sp) S(2p) S(n) S(2n) Qo) Q(B7)

Model (453) (434) (435) (418) (465) (387)
FRDM ([3]) 041 044 040 040 052 0.51
HFB2 ([4]) 045 046 041 041 048  0.56

Neural net mass model ([5]) 065 0.70 0.70 0.78 048  0.50
Neural net mass model ([6]) 0.65 0.65 054 067 048 0.50
Hybrid model 041 039 037 041 0.48 0.50

inference.

The present work has shown that hybrid models built by supplementing the
FRDM evaluation with a trained neural network show promise of accurate pre-
diction of atomic masses far from stability, as well as other nuclear properties
required as input for theories of nucleosynthesis and supernova explosions.
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