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Abstract

An analytic collective model in which the relative presence of the quadrupole and
octupole deformations is determined by a parameter (¢g), while axial symmetry
is obeyed, is developed. The model [to be called the analytic quadrupole octupole
axially symmetric model (AQOA)] involves an infinite well potential, provides pre-
dictions for energy and B(EL) ratios which depend only on ¢g, draws the border
between the regions of octupole deformation and octupole vibrations in an essen-
tially parameter-independent way, and describes well 226Th and 2?6Ra, for which
experimental energy data are shown to suggest that they lie close to this border.
The similarity of the AQOA results with ¢y = 45° for ground state band spectra
and B(E2) transition rates to the predictions of the X(5) model is pointed out.

1 Introduction

The critical point symmetries E(5) [1] and X(5) [2] developed up to now treat
the quadrupole degree of freedom alone. In the present work an Analytic
Quadrupole Octupole Axially symmetric (AQOA) model is developed, aiming
at the description of the transition from octupole deformation [3] to octupole
vibrations in the light actinides.

In Section 2 the AQOA model is formulated, while numerical results are com-
pared to experiment in Section 3, and Section 4 contains discussion of the
present results and plans for further work.
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2 The AQOA model

We consider a nucleus in which quadrupole deformation (32) and octupole
deformation (0;) coexist. We take only axially symmetric deformations into
account, which implies that the v degrees of freedom are ignored, as in the
Davydov—Chaban approach [4]. The body-fixed axes z’, ¢/, 2’ are taken along
the principal axes of inertia of the (axially symmetric) nucleus, while their
orientation relative to the laboratory-fixed axes z, y, z is described by the
Euler angles § = {6,,6,03}. The Hamiltonian reads [5,6]

R 1 8 9 g h2L2
3553 2Bx B3 0P '\3»3,\ 6(B2/33 + 2B3f33)

+V (B2, Bs) (1)

where By, B3 are the mass parameters.

We seek solutions of the Schrodinger equation of the form [5]

DF (B2, B3, 0) = (B2B3) /> WE(Bs, B3)| LMO, £), (2)

where the function |LMO0, +) describes the rotation of an axially symmetric
nucleus with angular momentum projection M onto the laboratory-fixed z-
axis and projection K = 0 onto the body-fixed z’-axis. The moment of inertia
with respect to the symmetry axis 2’ is zero, implying that levels with K #
0 lie infinitely high in energy [5]. Therefore in this model we are restricted
to states with K = 0 only. The function |LMO0,+) transforms according to
the irreducible representation (irrep) A of the group Ds, while the function
|LMO, —) transforms according to the irrep B; of the same group [5,6]. The
general form of these functions is [7]

2L +1

|LMK’ :t> - 167’(’2(1 + 61{0)

(Dkp(0) £ (=1)"DZy 1, (6)). ®3)

In the special case of K = 0 it is clear that |[LMO,+) # 0 for L = 0, 2,
4, ..., while |[LM0,—) # 0 for L = 1, 3, 5, ... The functions ¥} (8, 3s)
and V7 (0s,3s) are respectively symmetric and antisymmetric with respect to
reflection in the plane z'y’, and therefore describe states with positive and
negative parity respectively [6].

Using the solutions of Eq. (2) for the Hamiltonian of Eq. (1), introducing
[5,6] B2 = B2y/Ba/B, Bs = B3y/Bs/B, B = B, + Bs/2, reduced energies ¢ =
(2B/h?)E and reduced potentials u = (2B/h?*)V [1,2], polar coordinates (with
0<pB <ooand —7/2 < ¢ < 7/2) [5,6] B2 = Bcos, B3 = Bsing, B =
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V32 + (32, and assuming the potential to be of the form (8, ¢) = w(8) +
u(¢*), where u(¢*) is supposed to be of the form of two very steep harmonic
oscillators centered at the values £¢y, i.e.

u(@*) = el F 6o = 5@ F=6Fa, @

with ¢ being a large constant, the Schrédinger equation corresponding to the
Hamiltonian of Eq. (1) is separated into

8 10 1 ( L+ 3 w(B) — e
[ 3ﬁ2 ﬁaﬁ Ay B2 ( 3(1 +sin® ) = sin? 2¢0) +ulp) - ﬂ(L)] Vi)
=0, (5)
and
_ 1 82 T+ e T+
[ Y ¢] X(¢*) = ©

where \Ili(ﬁ, ¢) = i (B)(x(1) £ x(¢7))/v2, while (3?) is the average of 52
over z/)*(ﬂ) and e, = €5(L)+¢4. Eq. (6) for the potential of Eq. (4) becomes a
simple harmonic oscillator equation (n4 being the relevant quantum number),

while in the case in which u(ﬁ) is an infinite well potential (u(ﬂ) = 0 if
B < Bw; w(B) = oo if B > Bw), using the definitions €= k'ﬁ, z= ﬂkﬂ, Eq.

(5) is brought into the form of a Bessel equation

Py LdyE 2] L [ @+ 3
a2 " & dz + [1 - ;} B =l W= \J 3(1 +sin¢g) = sin® 24y Q0

Then the boundary condition 9#(8) = 0 determines the spectrum

€B,sw = €B,s,.0,L — = (ks, u)21 ks = xs,u/BW: (8)

and the eigenfunctions

P2 (B) = it 118} = cuudlBenuB)s 9)

where z,, is the sth zero of the Bessel function J,,gz), while ¢, are normal-
ization constants, determined from the condition f* |¢j,‘:,,(,§)|2ﬁdﬂ~ =1 to be
Cap= V2] Jy+1(ks). The notation has been kept similar to Ref. [2].
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The total energy in the present model is then

E(S, L, ¢, n¢) = FEy+ A€5,8,¢0,L + Bn¢. (10)

In the axial case used here the electric multipole operators are [5]

)

TEED = 118,6,D50(0), TS = 28,D0(0), T = 183 D(6). (11)

B(EL)s are calculated using the standard techniques, the final result being

B(EL; L — Ly) = c(Co,,Cayy)(LiLLs|000)2(IS)2, (12)
where L = 1-3, the integrals are Iém) = I[(;Ea) = f,é2J,,i(ksi,,,iB)J,,f(ksh,,,ﬁ)dB,

while in IéEl) an extra factor of 3 appears, and all constants have been ab-
sorbed in c.
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Fig. 1. (a) Experimental energy ratios R(L) = E(L)/E(2]) for 2Th [8], 22Th [9],
224Th (10], 226Th [11], 228Th [12], 220Th [13], 232Th [13,14], and 234Th [13], compared
to theoretical predictions for ¢ = 45° and ¢ = 60° (b) Same for 28Ra [15,16],
220Ra [8], #22Ra [13,17], 2?*Ra [13,17], 225Ra [13,17], and ?28Ra [13], compared to
theoretical predictions for ¢ = 45° and ¢ = 56°.

3 Numerical results and comparison to experiment

Spectra for the ground state band and the negative parity band associated
with it (s = 1), as well as for the first excited band (s = 2) and the second
excited band (s = 3), are quite stable in the region 30° < ¢y < 60°, while at
the limiting cases near ¢y = 0° and 90° the rigid rotor results are obtained,
corresponding to a pure rotational spectrum for the ground state band and
the associated negative parity band, while the excited bands are pushed to
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infinity. B(EL) transition rates also possess a smooth behaviour within the
same region.

Comparing AQOA to X(5), it is clear that the ground state band of X(5) lies
a little lower and has slightly higher intraband B(E2)s than the ground state
band of the AQOA model with ¢y = 45° , while for the s = 2 and s = 3 bands
the AQOA model predictions for ¢y = 45° are larger than the X(5) values
by almost a factor of two. The position of the 0F state becomes therefore an
important factor in the process of comparison to experiment.

Experimental data for the ground state and related negative parity bands of
220-234Th are shown in Fig. 1(a). It is clear that 2Th lies on the border
between two different regions. Below ?26Th the odd-even staggering is very
small, while from ?2Th up the odd-even staggering is becoming much larger,
increasing with the neutron number N. It is clear that below ?26Th the sit-
uation corresponds to octupole deformation, in which the ground state band
and the negative parity band merge into a single band, while above 226Th the
picture is corresponding to octupole vibrations, i.e. the negative parity band
is a rotational band built on an octupole bandhead, thus lying systematically
higher than the ground state band. Theoretical predictions for ¢ = 45° lie a
little below 226Th, while the ¢ = 60° results follow the 226Th data very closely.
A similar picture is observed in ?1¥-22Ra, shown in Fig. 1(b), where ?*Ra
appears to be the border nucleus.

As far as the 0§ bandhead is concerned, the experimental values (normalized
to the 2] state) are 12.186 for 22Ra and 11.152 for 226Th, in good agreement
with the 11.226 and 12.410 values predicted by the AQOA model for the ¢g
values of 56° and 60° used in Fig. 1 . It should be noticed that the normal-
ized 0F bandhead is lying close to this height for all Ra and Th isotopes for
which data exist, namely ??Ra (8.225), ?*Ra (10.861), 2®Ra (11.300), *2Th
(14.402), 230Th (11.934), 232Th (14.794), 234Th (16.347), with data taken from
the references used in Fig. 1.

Considering the AQOA model as an extension of the X(5) framework involving
negative parity states implies that the search for X(5)-like nuclei in the light
actinides, where the presence of low-lying negative parity bands is important,
should be focused on nuclei with R(4) ratio close to 3.0 and 0§ bandhead
higher than the X(5) value of 5.65 .

4 Discussion

The analytic quadrupole octupole axially symmetric (AQOA) model intro-
duced in this work describes well the border between octupole deformation
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and octupole vibrations in the light actinides, which corresponds to ??Th and
226Ra in the Th and Ra isotopic chains respectively. The inclusion of stagger-
ing in the present model, as well as its application to the rare earth region
near A = 150, where octupole deformation is known to occur [3], are also of
interest and will be pursued in Ref. [18].
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