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One-body density matrix and momentum distribution in
* s-p and s-d shell nuclei

Ch.C. Moustakidis and S.E. Massen

Department of Theoretical Physics, University of Thessaloniki, Thessaloniki
54006, Greece,

Analytical expressions of the one- and two- body terms in the cluster ex-
pansion of the one-body density matrix and momentum distribution of the
s-p and s-d shell nuclei with IV = Z are derived. They depend on the har-
monic oscillator parameter b and the parameter § which originates from
the Jastrow correlation function. These parameters have been determined
by least squares fit to the experimental charge form factors. The inclusion
of short-range correlations increases the high momentum component of
the momentum distribution, n(k) for all nuclei we have considered while
there is an A deperidence of n(k) both at small values of k£ and the high
momentum component. The A dependence of the high momentum com- .
ponent of n(k) becomes quite small when the nuclei Mg, 2Si and 328
are treated as 1d-2s shell nuclei having the occupation probability of the
2s-state as an extra free parameter in the fit to the form factors.

1 INTRODUCTION

The momentum distribution (MD) is of interest in many research subjects of
modern physics, including those referring to helium, electronic, nuclear, and
quark systems [1-3]. In the last two decades, there has been significant effort
for the determination of the MD in nuclear matter and finite nucleon systems
[4-17]. MD is related to the cross sections of various kinds of nuclear reactions.
Specifically, the interaction of particles with nuclei at high energies, such as
(p,2p), (e,e'p), and (e,e’) reactions, the nuclear photo-effect, meson absorp-
tion by nuclei, the inclusive proton production in proton-nucleus collisions,
and even phenomena at low energies such as giant multipole resonances, give
significant information about the nucleon MD. The experimental evidence ob-
tained from inclusive and exclusive electron scattering on nuclei established
the existence of a high-momentum component for momenta k& > 2 fm™! [18-
21]. It has been shown that, in principle, mean field theories can not describe
correctly MD and density distribution simultaneously [9] and the main fea-
tures of MD depend little on the effective mean field considered [10]. The



reason is that MD is sensitive to short-range and tensor nucleon-nucleon cor-
relations which are not included in the mean field theories. Thus, theoretical
approaches, which take into account short range correlations (SRC) due to
the character of the nucleon-nucleon forces at small distances, are necessary
to be developed.

Zabolitzky and Ey [4], employing the coupled-cluster (or exp(S)) method for
the microscopic evaluation of nuclear MD for the ground states of *He and
160 and using various realistic NN-potentials, showed that the contribution of
correlations dominates for momenta beyond 2 fm™!. Bohigas and Stringari [6]
and Dal Ri et al [7] evaluated the effect of SRC’s on the ore- and two- body
densities by developing a low order approximation (LOA) in the framework of
Jastrow formalism. They showed that one-body quantities provide an adequate
test for the presence of SRC’s in nuclei, which indicates that the independent-
particle wave functions cannot reproduce simultaneously the form factor and
the MD of a correlated system and also the effect of SRC’s strongly modify
the MD by introducing an important contribution in the region & > 2 fm™.
Stoitsov et al [12] generalised the model of Jastrow correlations within the
LOA, to heavier nuclei as 160, %¥Ar, “°Ca. Their analytical expressions for the -
MD show the high momentum tail. They found that there is an 4 dependence
of MD for small values of k, while for large values of k& the slope of logn(k) -
versus k is roughly the same for the above three nuclei as well as for *He.
MD for the nuclei “He, *0 and “°Ca was also calculated by Traini and Or-
landini [8] within a phenomenological model in which dynamical short-range
and tensor correlations effects were included. They showed that SRC increase
the high momentum component considerably while the tensor correlations do
not affect the MD appreciably [8,22]. In heavy nuclei, the local density ap-
proximation was used [11] for the study of the effect of SRC’s in MD and the
predictions were in agreement with the results of microscopic calculations in
nuclear matter and in light nuclei.

In the various approaches, the MD of the closed shell nuclei *He, 0 and “°Ca
as well as of 2%8Pb and nuclear matter is usually studied. There is no systematic
study of the one body density matrix (OBDM) and MD which include both the
case of closed and open shell nuclei. This would be helpful in the calculations
of the overlap integrals and reactions in that region of nuclei if one wants to
go beyond the mean field theories [23]. For that reason, in the present work,
we attempt to find some general expressions for the OBDM p(r,r’) and MD
n(k) which could be used both for closed and open shell nuclei. This work
is a continuation of our previous study [24] on the form factors and densities
of the s-p.and s-d shell nuclei. The expression of p(r,r’) was found, first,
using the factor cluster expansion of Clark and co-workers [25-27] and Jastrow
correlation function which introduces SRC for closed shell nuclei and then
was extrapolated to the case of N = Z open shell nuclei. n(k) was found by
Fourier transform of p(r, r’). These expressions are functionals of the harmonic



oscillator (HO) orbitals and depend on the HO parameter b and the correlation
parameter 3. The values of the parameters b and 8 have been determined by
fit of the theoretical Feu(q), derived with the same cluster expansion, to the
experimental one [24,28]. It is found that the high-momentum tail of the MD
of all the nuclei we have considered appears for k > 2 fm™' and also there
is an A dependence of the values of n(k) for 2 fm™' < k < 5 fm™'. This A
dependence of MD was first investigated considering Mg, %Si and *%S as 1d
shell nuclei. Next we treated the above nuclei as 1d-2s shell nuclei having the
occupation probability of the 2s state as an extra free parameter in the fit of
the form factors. The A dependence is quite small in the second case.

The paper is organised as follows. In Sec. II the general expressions of the
correlated OBDM and MD are derived using a Jastrow correlation function.
In Sec. III the analytical expressions of the above quantities for the s-p and
s-d shell nuclei, in the case of the HO orbitals, are given. Numerical results
are reported and discussed in Sec. IV.

2 CORRELATED ONE-BODY DENSITY MATRIX AND MO-
MENTUM DISTRIBUTION

A nucleus with A nucleons is described by the wave function U(ry,ry,...,r4)
which depends on 3A coordinates as well as on spins and isospins. The eval-
uation of the single particle characteristics of the system needs the one-body
density matrix [29,30]

p(r, ") =f\11*(r, r2,..,T4) U(r',ry, ++,r4) dry---dry , (1)

where the integration is carried out over the radius vectors ry,---,rs and
summation over spin and isospin variables is implied. p(r,r’) can also be rep-
resented by the form

p(r,r') = N(¥|O¢w|¥') = N(Oxv) , (2)

where ¥ = ¥(r},r},...,r)y) and V = (¥|¥)~! is the normalization factor. The
one-body ”density operator” Oy, has the form

O = ZA: §(r; — r)é(ri — r')ﬁé(rj —r}). (3)
=1 i

In the case where the nuclear wave function ¥ can be expressed as a Slater
determinant depending on the SP wave functions ¢;(r) we have

psn(tF) = 3 B ) @)

i=1



The diagonal elements of the OBDM give the density distribution p(r,r) =
p(r), while the MD is given by the Fourier transform of p(r, r’),

/ /
() = Gy [ explik(z =] () dr & (5)
In the case of a Slater determinant, MD takes the form

nsp(k) = S B (0H(K) $;(k)=(é—ﬂl)5/3 [ #i(x) explierlar. (6)

=1

2.1 One-body density matriz

If we denote the model operator, which introduces SRC, by F, an eigenstate
® of the model system corresponds to an eigenstate ¥ = F® of the true
system. Several restrictions can be made on the model operator F and it is
required that F be translationally invariant and symmetrical in its arguments
1..-i..+ A and possesses the cluster property [27,31]. In order to evaluate the
correlated one-body density matrix peor(r,r’), we consider, first, the general-
ized integral

I(e) = (¥]exp[al(0)Ow]|T) , (7)

corresponding to the one-body "density operator” O (given by (3)), from

which we have
_[9ln1{a)
<Orr,> h [ aa JQ:O . (8)

For the cluster analysis of equation (8), we consider the sub-product integrals
[25-27], for the sub-systems of the A-nucleons system corresponding to the
density operators O (1),0r(2). The factor cluster decomposition of these
integrals, following the factor cluster expansion of Ristig,Ter Low, and Clark
[25-27], gives

(Orr’) = (Orr’>1 + <Orr')2 +-er <Orr’>A . (9)

Three- and many-body terms will be neglected in the present analysis. Thus,
in the two-body approximation, peor(r,r’), defined by Eq. (2), is written

Pcor(r) l") ~ N[(Orr'>1 + (Orr’>22 - <Orr')21] i (10)



where (Opp)1 = psp(r,r’), the uncorrelated OBDM associated with the Slater
determinant and

A
(Oswr)az = 3 (i | FH(ria)Orw (2)F (r2) /5 - (11)

<5

The term (Oyy)a1 is as the term (Oyp )32 without the operator F1(ry3). If the
two-body operator F1(r2) is taken to be the Jastrow correlation function [32]

f(rij) = 1 — exp[—B(r: — r;)?] then
FH(r12) O (2)F (ri3) = Orw(2) [1 — ga(r,12) — g2(r', 13) + ga(r, ', 13)], (12)
whe;e
gi(r,ra) =exp[—f(r? + rl)] exp[2Brra], ga(r',r2) = g1 (v, 12),
ga(r, v, ry) = exp[—B(r?* + )] exp[—20rZ] exp[26(r + 1')r3] , (13)
and per(r,r’) takes the form
Pcor(r, r’) ~ NKO!‘X")I - 022(1'3 r,sgl) - 022(13 rl,g2) + 022(1‘, rla g3)] . (14)

where
A

‘022(1'1 1", gl) = Z(ij I Orr’ (2)31(1" rlr 1‘2) l ilj')a
i<j

= / gi(r, v, 23)[psp(r, ') psp(r2, T2) — psp(r, Ta)psp(ra, r')]drs . (15)

In the above expression of pe..(r, r’), the one-body contribution to the OBDM
is well known and is given by the equation

<Orr’)1 = :oSD r, I' Znﬂ-l 2l+ 1)¢n1 ¢n1(1'/)PI(COS wrr’) ’ (16)

where 7, are the occupation probabilities of the states nl (0 or 1 in the case
of closed shell nuclei) and ¢n(r) is the radial part of the SP wave function and
wrr the angle between the vectors r and r’. The term Oy (r, 1/, gz), performing
the spin-isospin summation and the angular integration, takes the general form

Oga(r, ' ge) = 4 ;Zl Tty nji; (20 + 1)(2; + 1)
Nibingej
Ll litl;
X |AARm 0 (e, ge) = 3 (1040 | KOY2ANIMk e v g|, £=1,2,3, (17)

nilingl; £ nilingl;
=0



where

nilinglz

1
Apnat (e, ) = 2Pt (7) Snats(r) exp[=pr?] Piy(coswrr)
X [ $2a(r2) Smata(rs) expl—Brd] in(2rra) 1} drs, (18)
0

and the matrix element A:?fj:;j;k(r, r',g2) can be found from (18) replacing

r +— r’ and nily +— nals while the matrix element corresponding to the
factor g3 is

" analan 1 * | -
A als 4""‘(1‘, r’,gs) = Z‘;¢mll(r) ¢nala(7") eXp["ﬂ(Tz + 7'12)] Qﬁla(wrr’) X

nilingly
[ $raa(r2) Gt (r2) expl=26] s (28]e + ¥'ra) 73 drs (19)
0

In Eqgs. (18) and (19) the modified spherical Bessel function, #x(z), comes _
from the expansion of the exponential function exp[26x;xX2] of the factors g,
in spherical harmonics, while the factor Qf ; (wr) depends on the directions .
of r and r’ . The expression of the term O, (ar, r',g;) depends on the SP wave
functions and so it is suitable to be used for analytical calculations with the
HO orbitals and in principle for numerical calculations with more realistic SP
orbitals. Expressions (16) and (17) were derived for the closed shell nuclei with
N = Z, where 7, is 0 or 1. For the open shell nuclei (with NV = Z) we use the
same expressions, where now 0 < 7, < 1. In this way the mass dependence of
the correlation parameter § and the OBDM or MD can be studied. Finally,
using the known values of the Clebsch-Gordan coefficients, Eq. (17), for the
case of s-p and s-d shell nuclei, takes the form

On(e, v, 50) =4 [ 3450071, + [89381° - 48] oy + 34188003

50 90
+ [9545303" - AT - TAT e+ [12450° + 12438°

0100,1 0001,1 0002,0 0200,0 0200,2
—340001" — 340100 ] MsMp + [20 ooz + 2040300 — 540002

0002,2 0010,0 10000 _ 410000 _ 40010,0
=540200 ] TsThd + [4Aoo1o' +441000" — Aoo10” ~ 41000’ ] MisT2s

0201,1 0102,1 0201,3 0102,3
— B T - 94 = 9A4g0;" ] NpMid

0102,0 0201,
+[60A0102 +60Ag201" — 6Ag10z 201 0102
+[1248358° + 124138} - 34355 — 3498 mipma,
+ 20452800+ 0L - S - 5% nam | (20)

It should be noted that Eqs. (17) and (20) are also valid for the cluster ex-
pansion of the density distribution and the form factor as it has been found



in ref. [24] and also in the cluster expansion of the MD. The only difference is
the expressions of the matrix elements A.

2.2 Momentum distribution

The MD for the above mentioned nuclei can be found either by following the
same cluster expansion or by taking the Fourier transform of p(r,r’) given by
(14). In both cases the correlated momentum distribution takes the form

neor (k) @ N [(Oic)1 — 202(k, g1) + Ona(k, 85)] (21)

where (Oy); = nsp(k) given by Eq. (6) and the term Oz (k, g¢), as in the case
of OBDM, is given again by the right-hand side of Eqs. (17) and (20) replacing
the matrix elements A™/2m4l4k (r, !, g¢), defined by Eqs. (18) and (19), by the

nylinale
Fourier transform of them, that is by the matrix elements

nylingly

Apsinaitk (k,gg) = (#/A:ﬂfzﬂg'k(r, v, g) exp[ik(r — )]drdr, £=1,3. (22)

As in the case of the OBDM, expression (21) is suitable for the study of the MD
for the s-p and s-d shell nuclei and also for the study of the mass dependence
of the kinetic energy of these nuclei. The mean value of the kinetic energy has

the form

(T) = N[(T)1 — 2Tna(g1) + Toa(gs)] (23)
where

ﬁ,2 g ﬁ2 g
(Th = o / Knsp)dk, Tpa(ge) = / K205(k, g)dk, £=1,3. (24)

3 ANALYTICAL EXPRESSIONS

In the case of the HO wave functions, with radial part in coordinate and
momentum space,

%(r) N b3 LH'Z ( ) —r§/2, ro=r/b,
Fai(k) = i (=1)"H Nyt 2R L (k) 8%, ky=kb, (25)

where Ny = (2n!/T(n + 1 + 3/2))1/ ? | analytical expressions of the one—body
terms, (0,.,:)1 and (Ok); as well as of the matrix elements A::ﬂjﬁ;f;' (r,r',gs)



and fi"als"‘“'k(k g¢), which have been defined in Sec. II, can be found. From

nylingla
these expressions, the analytical expressions of the terms Oj(r,r’,g) and

Oa2(k,g2), defined by Eq. (20), can also be found.

The expressions of the one-body terms, (Oyw); and (61:)1, have the forms

g
(Orph1=psp(r,¥) = YT [27713 + 3125 — 2 (r? +r}7) + 4M1pTHTh COS Wppt

+ 30+ ma(B 08 s = 1)rr? | el (rd + 1i7)/2], (26)
= 26°%-
{Ok)1 = nsp(k) = —77 exp[—F]] ZCZkkb ; (27)
k=0

where the coefficients Cy; are: Co = 2n15 + 3m2s, C2 = 4(m1p — M2s), Cs =
5(2ma + ms).

}’Il[‘he a;ial};tica.l expressions of the matrix element Afo‘:Zﬁ:k(r, r,g) {=1,3) -
ave the form

L
AR (o, v, g1)=Bo b3y pktliptls phFh oy Pl i b cogin)
+3y 1 k+} —y? r
X exp[ Ty ]MZ_:OWZ‘:O Buauws (¥) Ly (1341, —k)un+us (1_,_ (28)
4=
and

n. - l§ l
AzSlsaiek (r, v, g3) = Bo 670 [ my 45 [F el LT E (D) Lt E (rf2)0f ()
142y 2 y?

X exp [— 5 (rf+ r )] exp [1+2y(rb+rg)2

ng 4 y2 2

/

x 3 2 Buru(2) L1(12+u k) +u g (_'1—4727(““6) ) =

wy =0 wg=0

where y = 3b% and By = 3-6%; (H;-*:l Nn‘.(‘.) , and

- 1) [n;+ L+ % '
Bupus(2) =[——“12+;4 LS | ). (" * '+2) (14 2)-Hmui-bEH0)

1
=24 Wi g — W;

while the one corresponding to the factor gz can be found from (28) replacing
ry +— 5 and nyl; ¢ nals.

The substitution of A::;i:::;’k(l‘, r/,g¢) to the expression of Oga(r,r’, g¢) which is



given by Eq. (20) leads to the analytical expression of the two-body term of the
OBDM, which is of the form

N / _ 1+3y 2 1 12]
Oaa(rs, ry) = fi(rs, Th, COSWepr) €XP [ 30T 9) T 57

! _1+3y 12_£ 2]
+f1(rbarbycoswrr )exp [ 2(1+y)rb 2rb

1+2y 2 y?
+ fa(rs, Th, COSWppr) €XP [— 5 (rg + r£ )] exp [1 T 2y(rb +14)?], (30)

where fo(rs, mh, cOswpp), (€ = 1,3) are polynomials of r4, r} and cosw, which
depend also on y = Bb? and the occupation probabilities of the various states.
The corresponding analytical expressions of the matrix elements A,’:ff‘;’:; ﬁ; (k, ge)
(¢ =1, 3) which contribute to the two-body term of the MD were found substitut-
ing & 2 with that of the HO wave function into Eq. (22). The expression of

:?fi:gf;’ (k, 1), which can be found easily, has the form

) . 1
A"““‘“"‘(k, g) = 3053(_1)7319313 LE{": (kf) exP[

nilinalz

1+ Sy
ng g 3llatla—k)+wa+w,

X Z 2 L > Buyua(v) [%(11-13+k)+w1+t)J!

wy =0 we=0 wy=0 =0

1
% (_1)w1 m+h+ 2 2-}(11—13)+w1 (1 + y)%(11+13-12—14)+w1 —wp —wy

wl! ny —
(3l Hla+h)—wy =t pla+d 1+y 9
X (14 3y)"2TTs L kb 31+ 39) ki ) s (31)
where
3 k42t k=13 —14
Buguet(v) = (vV2y) 1+12+l4+k)+w2+w4 —g—— ~ =1y
t
witt fn; 41
(k+t+ )z-—u w;it: n; — w;

nalznaly,k

nlnsls (Ki83) is more complicated. It has the form

The expression of A

- . 2 1 mp ne Elatla—k)Fuztws

~nalanaly, I 3 b B

A s (k,ga)—ﬁBob exp [— ¥ +2y] w,z=ow.2-_;o ; ~ Buguyt(y)
x(1+zy)-%(3+1=+l4+k)—wz-w4—t1:13{ff'°(kb) . (33)

The general expression of the quantity I"ats’ (k) is quite complicated. For that



reason we calculated it for various cases which are needed for the s-p and s-d shell
nuclei (see Ref. [28]).
The substitution of A:afj:;f;'k(k,gz) to the expression of Ogq(k, g;) Which is given
by Eq. (20) leads to the analytical expression of the two-body term of the MD,
which is of the form

Ona(k) = fulk?) exp [~ 22 k2] 4 (k) exp [-——#2], (34)
1+3y 142y

where fy(k?), (€= 1,3) are polynomials of k¥ which depend also on y = §b? and the
occupation probabilities of the various states. Similar expressions have been found
for the mean value of the kinetic energy.

4 RESULTS AND DISCUSSION

The calculations of the MD for the various s-p and s-d shell nuclei, with N = Z,
have been carried out on the basis of Eq. (21) and the analytical expressions of
the one- and two-body terms which were given in Sec. III. Two cases have been *
examined, named case 1 and case 2 corresponding to the analytical calculations
with HO orbitals without and with SRC, respectively. The parameters b and § of
the model in cases 1 and 2 have been determined by fit of the theoretical Fys(g),
derived with the same cluster expansion, to the experimental one are given in Table
1. It is found that the inclusion of SRC’s improves the fit of F,(g) of the above
mentioned nuclei and all the diffraction minima are reproduced in the correct place
[24,28]. The values of the parameter 8 (see Fig. 1) is almost constant for the closed
shell nuclei and takes larger values (less correlated system) in the open shell nuclei.

This behaviour has an effect on the MD of nuclei as it is seen from Fig. 2a, where
the MD, of the various s-p and s-d shell nuclei calculated with the values of & and
@ of Table I for case 2, have been plotted. It is seen that the inclusion of SRC’s
increases considerably the high momentum component of n(k), for all nuclei we have
considered. Also, while the general structure of the high momentum component of
the MD for A = 4, 12, 16, 24, 28, 32, 36, 40, is almost the same, in agreement with
other studies [2,4,8,33], there is an A dependence of n(k) both at small values of k
and in the region 2 fm™! < k < 5 fm™!. The A dependence of the high momentum

Fig. 1. The correlation parameter §
versus the mass number A. The solid
line correspond to the case when the
nuclei 24Mg,%85i,325,36 Ar were treated
as 1d shell nuclei while the dashed line
to the case when these nuclei were
treated as 1d-2s shell nuclei.




Table 1

The values of the parameters b and 4, of the mean kinetic energy per nucleon, (T)
and of the rms charge radii, (r%)!/2, for various s-p and s-d shell nuclei, determined
by fit to the experimental F.;(g). Case 1 refers to the HO wave function without
SRC and case 2 when SRC are included. Case 2* is the same as case 2 but with
the occupation probability of the state 2s taken to be as a free parameter. The
experimental rms charge radii are from Ref. [34].

Case Nucleus b[fm] g [fm™% (T) Mev] (r3)1/2 (fm]

HO SRC Total Theor.  Expt.
1 4He 14320 - 15166 - 15166 1.7651 1.676(8)
2 ‘He 11732 2.3126 22,594 7.310 29.904 1.6234
1 & 1.6251 = 17.010 = 17.010 2.4901 2.471(6)
2 12C 1.5190 2.7468 19.469 6.111 25.580 2.4261
1 180 1.7610 - 15.044 ~—  15.044 2.7377 2.730(25)
2 180 1.6507 24747 17.121 6.493 23.614 2.6802
1 Mg 1.8495 - 16.162 -~ 16.162 3.1170 3.075(15) ~
2 24Mg  1.8103 4.2275 16.870 4.239 21.109 3.0948

2% Mg 17473  2.4992 18.109 6.505 24.614 3.0638

1 8gi  1.8941 - 16.099 -  16.099 3:2570 3.086(18)

2 8  1.8236 3.0020 17.369 5.564 22.933 3.2159

2% BGi 17774 24440 18.283 6.922 25.205 3.1835

1 325 2.0016 - 14.878 -  14.878 3.4830 3.248(11)
823 1.9368 3.0659 15.891 4.976 20.867 3.4425

2+ 323 1.8121 2.6398 18.154 6.761 24.915 3.2822

1 S6Ar  1.8800 = 17.2713 - 17.273 3.3270 3.327(15)
2 36Ar  1.8007 2.2937 18.827 8.500 27.417 3.3343
1 0Ca  1.9453 - 16.437 - 16.437 3.4668 3.479(3)
2 40Ca  1.8660 2.1127 17.863 8.754 26.617 3.5156

component of n(k) is larger in the open shell nuclei than in the closed shell nuclei.
It is seen that the high momentum component is almost the same for the closed
shell nuclei *He, %0 and *°Ca as expected from other studies [2,4,33].

In the previous analysis, the nuclei Mg, %8Si and 32S were treated as 1d shell
nuclei, that is, the occupation probability of the 25 state was taken to be zero. The
formalism of the present work has the advantage that the occupation probabilities
of the various states can be treated as free parameters in the fitting procedure of
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Fig. 2. (a) The correlated MD for various s-p and s-d shell nuclei calculated with
the parameters b and 8 of the case when the nuclei **Mg, 28Si, 32S and 36Ar were
treated as 1d shell nuclei. The normalization is [ n(k)dk = 1. (b) The same as in
Fig. (a) but when the above mentioned nuclei were treated as 1d-2s shell nuclei.

Fen(g). Thus, the analysis can be made with more free parameters. For that reason
we considered case 2* in which the occupation probability 7z, of the nuclei **Mg,
285i and 325 was taken to be a free parameter together with the parameters b and
8. We found that the x? values become better, compared to those of case 2 and the
A dependence of the parameter § is not so large as it was befare. The new values
of b and § are shown in Table 1. The values of the occupation probability 7, of the
above-mentioned three nuclei are 0.19982, 0.17988 and 0.50921 respectively, while
the corresponding values of 74 can be found from the values of 7y, through the
relation 714 = [(Z — 8) — 27,]/10. The MD of these three nuclei together with the
closed shell nuclei *He, ®0 and “°Ca found in case 2 are shown in Fig. 2b. It is
seen that the A dependence of the high momentum component is now not so large
as it was in case 2. As F.x(q) calculated in case 2* is closer to the experimental
data than in case 2, we might say that this result is in the correct direction, that is
the high momentum component of the MD of nuclei is almost the same. We would
like to mention that experimental data for n(k) are not directly measured but are
obtained by means of* y-scaling analysis [21] and only for *He and *2C in s-p and
s-d shell region. We expect that the above conclusion could be corroborated if new
experimental data are obtained in the future for MD for several nuclei and we carry
out a simultaneous fit both to MD and to form factors.

Finally, in table I we give the one and the two-body terms of the mean kinetic energy,
(T), of the various s-p and s-d shell nuclei calculated on the basis of Eq. (23), as
well as the rms charge radii, (r%)!/? which are compared with the experimental
values. It is seen that the introduction of SRC’s (in case 2) increases the mean
kinetic energy relative to case 1 (((Tcqse2) = (Tease1))/(Teasez)) about 50% in “He
and 23% in 24Mg. This relative increase follows the fluctuation of the parameter .
Also the values of the kinetic energy in percents, 100{Tsrc)/{TTotal), as well as the
ratio < Trotas > /(THo) follow the fluctuation of the parameter §. In closed shell
nuclei there is an increase of the above values by the increasing of mass number.
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