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Abstract

The electron-screening acceleration of laboratory fusion reactions at astrophysical’
energies is an unsolved problem of great importance to astrophysics. That effect is
modeled here by considering the fusion of hydrogen-like atoms whose electron prob-
ability density is used in Poisson’s equation in order to derive the corresponding
screened Coulomb potential energy. That way atomic excitations and deformations
of the fusing atoms can be taken into account. Those potentials are then treated
semiclassically in order to obtain the screening (accelerating) factor of the reaction.
By means of the proposed model the effect of a superstrong magnetic field on lab-
oratory Hydrogen fusion reactions is investigated here for the first time showing
that, despite the considerable increase in the cross section of the dd reaction, the pp
reaction is still too slow to justify experimentation. The proposed model is finally
applied on the H? (d,p) H® fusion reaction describing satisfactorily the experimen-
tal data although some ambiguity remains regarding the molecular nature of the
deuteron target. Notably, the present method gives a sufficiently high screening en-
ergy for Hydrogen fusion reactions so that the take-away energy of the spectator
nucleus can also be taken into account.

1 Introduction

At astrophysical energies of a few keV corresponding to stellar temperatures
of several milliohs degrees kelvin the cross section o (E) of the predominant
s-wave fusion reactions is given by

o) =28pm) 1



where the astrophysical factor S (E) embodies all the nuclear effects of the
reaction and for non-resonant cases is a slowly varying function of the center-
of-mass energy E. On the other hand , the penetrability factor P (E) embodies
all atomic effects of the reaction and when the electron cloud around the fusing
nuclei is ignored it is given by P (E) = exp (—27n) where n is the Sommerfeld
parameter.

As the astrophysical factor varies slowly with energy we usually replace it
with a truncated Taylor series which will be studied extensively in the present

paper
 S(E)=5(0)+5 (0) E+055" (0) B? @)

Any error in the zero-energy astrophysical factor S (0) is actually an error in
the corresponding reaction rate in the stellar plasma, which in turn reflects
linearly on the energy production rate.

In the past years there have been exhaustive efforts to extend measurements of
the S (E) towards even lower energies1][2] in order to obtain a reliable value
for §(0). This is necessary as extrapolating higher energy data to zero energies
introduces an inevitable numerical error. However, at such low energies, the
electron cloud that screens the fusing nuclei enhances the fusion reaction by
lowering the Coulomb barrier. Consequently, disregarding its presence leads
to an overestimation of S (0). Unfortunately, even very recent experiments|3]
cannot explain the screening enhancement which exceeds all the available the-
oretical predictions as was recently admitted [4], [5] .

Various authors have studied the influence of the atomic cloud on the cross sec-
tion of low energy nuclear reaction. A qualitative study[6], which parametrized
various atomic processes such as molecular formation, excitation and ioniza-
tion, yielded a fair approximation for the possible contributions of the elec-
tronic degrees of freedom in the nuclear collision experiment. Moreover, by
assuming a constant charge density around the target nucleus, a subsequent
model[7] predicted a screening shift which was compatible with the experi-
mental data . However that assumption is an oversimplification which will be
amended in the present paper. The most sophisticated approach has been a
few-body treatment[8] which established a lower (sudden) and a higher (adi-
abatic) limit for the screening energy transferred into the relative nuclear
motion. Although more studies followed[9][10], which also extended the cal-
culations to molecular fusion reactions[11], despite their mathematical rigor
they could not explain the discrepancy between experimental and theoretical
screening energies.

In this work there is presented a mean-field model for the study of screened nu-
clear reactions at astrophysical energies in the laboratory. That model agrees
well with the available experimental data, thus enabling us to improve the



accuracy of the associated astrophysical factor. Moreover, by means of the
proposed model the effect of a superstrong magnetic field on laboratory Hy-
drogen fusion reactions is also investigated for the first time, yielding the
associated magnetic accelerating factor. Notably, the present method gives a
sufficiently high screening energy for Hydrogen fusion reactions so that the
spectator nucleus take-away energy can also be taken into account.

2 Screened Coulomb potentials

After the pioneering work[6] that established the importance of atomic ef-
fects in low energy nuclear reactions various authors have tried to create
models that account for the observed enhancement. A simple model(7], sug-
gested at an early stage, assumed that the electronic charge density around
the target nucleus is constant, thus predicting for the nucleus-atom reac-
tion between the atomic target Z,eand the projectile Z;e a screening energy
U. = (3/2) Z1Z3€% ™. In order to take into account the dependence of the:
screening radius on the charge state of the reaction participants, that model
used a screening radius taken from scattering experiments[12] so that

-1/2

(3)

where ag the Bohr radius. Although that screening energy is larger than the
one predicted by the simple formula[6] U, = Z; Z2¢? (a0/Z4 )"1 it has some very
obvious defects. The assumption that the charge density is constant leads to
an unnaturally sharp cut-off at a distance r = afrom the center of the target
nuclei, which is not born out either by theory or experiment. Moreover, atomic
excitations and deformations of the target atom are totally disregarded. On
the other hand normalizing the charge distribution so that the total charge is
—Z,e gives a charge density

a = 0.8853a, (22/3 + 23/3)

3Z
po= 3518 @)

4 rad
In order to assess the validity of that density we can consider the hydrogen-
like atom Zje which will also be used in this section . The charge density at
the center of the cloud of such an atom (when the electron is in its ground
state) is pff = —e(Zl/ao) /m. It is obvious that for Z; = Z; = 1 we obtain
po =~ —(e/a3) and pf = —(e/ad) /r, that is the simplified model in question
overestimates the central density by a factor of 7.

Consequently it is obvious that if low energy nuclear reactions are to be treated
by means of a mean-fleld potential a more sophisticated treatment is necessary.



As a first step we consider a more plausible charge distribution:

p(r)=po (1 - '3) ()

which takes into account the depletion of charge with respect to distance from
the center. The radius a is the screening radius given by Eq. (3) and the
charge density pg at the center of the cloud can be found by means of the
normalization condition :

/p(r) drridr = —Zie (6)
0
This integral yields a central value of

o= =g (7)

Note that for a collision Z; = Z; = 1 we have a central charge density po =
7.68 (¢/al) /m which gives an even larger core density than the constant density.
assumption. An alternative approach would be to consider the value py equal
to the corresponding hydrogen-like one and then calculate the screening radius.
using Eq. (6). The latter treatment gives a screening radius

15 \°
a—(m) Gg (8)

which is independent of the charge of the projectile., For hydrogen isotopes
Eq. (8) gives a radius of a = 0.842q,

We can calculate the electrostatic energy by solving the equation of Poisson
for the above charge distribution with the appropriate boundary conditions,
so that

_ 15Z:e 3 r\? 3 /r\* ,
2= [5‘ ) +T6<2>] ®)
Whenever a bare nucleus Zye impinges on the target nuclei surrounded by

the electron cloud of Eq.(5) the total interaction potential in the atom-nucleus
reaction channel is

Z 7€ 157,25 [3 ™2 3 /r\¢
OB R r5 (5] (10)

Although the above potential energy is more plausible than the constant
charge density one, a more reliable charge distribution should be considered
which could account for various other atomic effects as well as for the atom-
atom reaction channel.



Let us consider a hydrogen-like atom with atomic number Z;. When the wave
function of the electron is given by ¥ (r,8) then the charge density around
the point-like nucleus is

p(r,6) = —e[Tu (r,6)* (11)
by which it is obvious that both the previous screening model and that of Ref.

[7] are imperfect. If we solve the equation of Poisson for hydrogen atoms (or
hydrogen-like ions) whose electron is in its ground (1s) state we obtain

Do (r) = —; + ; (1 + i) exp (—r/ro) (12)

where the screening radius is

Qo
To = 27, (13)
If a positive projectile Z;e interacts with the above screened nucleus then the
total potential energy is A .
21Z2€2 Z2€2 2262 ( r ( r ) g
Voo (r) = T + - 1+ 5;;) exp —E (14)

On the other hand if we assume that the electron is in an excited state (2s)
then the potential energy is found to be:

_ Z1Zy6* Iy | Zhe? 3r e rd r
Vio (r) = . —+— 1+§E+—~16r3 +m exp (—5;;>(15)

It should be emphasized that in the derivation of the above potentials we

have assumed an unperturbed wavefunction of the target nuclei, throughout

the tunnelling process. In fact at astrophysical energies the electron cloud

responds rapidly and by the time tunneling begins the nuclei are so close

that the wavefunction is actually that of a hydrogen-like atom with charge
t = (Z1 + Z3) and a screening radius r§ = aq/2Z}

3 Nuclear reactions at astrophysical energies
At astrophysical energies reactions between light nuclei take place via s-
interactions, thus enabling us to investigate them by means of the WKB.

If we assume that a bare nucleus Z;e collides at very low energy E with
a screened nucleus whose electron is in its ground state then the tunneling



probability according to the WKB method is:

re(E)
P(E) =exp - f Voo (r) — Edr (16)

We can assume that the lower limit of the WKB integral is given in terms
of the mass number A of the reacting nuclei : R = 1.4 (Al/ + Al/ 3) For

most practical purposes this lower bound is set equal to zero as all the nuclear
effects of the fusion reaction are included in the cross section factor.

The classical turning point can be obtained by equating the relative collision
energy E with the potential energy of the interaction. The collision energy is
set equal to the Gamow peak of the corresponding reaction in the plasma so
that:

Vo) = 120 (22347 v an

where A the reduced mass number and T the temperature in million degrees
kelvin. For a wide range of light nuclei we have performed extensive numerical
solutions for Eq. (17) as well as numerical integrations of Eq. (16). At astro-
physical energies, just as is the case with the Debye-Hiickel model in plasma.
conditions[13], the results indicate that throughout the potential barrier the
potential energy Voo (r) of Eq. (14) can be safely replaced by the much simpler
formula:

Zl Z'z 62 Zf Zz 62
Voo (7') = r a0 (18)
Therefore the WKB penetration factor can be written as:
wr re(®) lezez 73 72"
P(E)=exp |—-—— 1 — Edr (19)
f aq
The equation for the classical turning point is modified accordingly:
2 .
Zlfze = 1220 (2222472)""° kev (20)
where we have ignored the screening shift given by:
Z31Z,€*
U, = 25 (21)
Qo

It is now obvious that the relative energy of the reaction has been increased
by U.. In that case the penetration factor can be easily found to be[10]:

fua () = exp [ (B) %] | (22)



where the subscripts indicate the excitation state of the target atom. If we
follow the same methodology for the 2s state we obtain

U.

fas (E) ~ exp |mn (E) 4—5} (23)

The much simpler potential model of Eq. (10) gives a screening factor:
A

fo(E) ~ exp |mn(E) - (24)
with an energy shift of

ol 15 Z1 Zg 62

Uc - E’ a (25)
where a is given either from Eq. (3) or Eq. (8)
4 Magnetically catalyzed fusion v

By now it is obvious that any shift U. << E of the interaction potential
energy V (r)

Z]_ Z262

r

U, - (26)

Vir)=

accelerates the fusion cross section of hydrogen isotopes by a factor fi, (E)
given by Eq. (22). That observation will prove very useful in the study of the
effects of a superstrong magnetic field on laboratory hydrogen fusion reactions
which follows.

As a matter of fact under such extreme conditions the electron-screening cloud
is deformed in the sense that it becomes compressed perpendicular and parallel
to the magnetic field so that the screening potential energy for the strongly
magnetized hydrogen atom is[14] '

e 1 7°exp [—% (1% + &'%J)] du (27)
0

U,(p,z;a)=-5\/2_ﬂ_. (1+u)vel+u

where p, z are the coordinates in a cylindrical frame of reference whose origin
coincides with the point-like nucleus of the hydrogen atom.

The natural length unit in the above formula is of course the cyclotron radius
so that 7 = p/p,Z = z/p , and « is a parameter which depends on the
magnetic fleld and is determined by the variational method. The above formula



was shown to be reliable for very strong fields whereas it becomes inaccurate
below the threshold of the intense magnetic field regime given by:

Biyr=4.7x 10°G. (28)

In Ref. [14] potential (27) was applied at zero relative energies in order to
obtain the mean-life times of hydrogen isotopes in neutron star surfaces. How-
ever, a more recent work[15] used that potential in a problem where the relative
energies were of the order of keV' showing that for energies £ > 0.5keV and
fields of the order of By = 0.047 (B being the field measured in 10'G) the
classical turning point is so deep inside the cloud that the screening shift can
be considered constant and equal to the value of the potential at the center of
the cloud given in Ref. [14]

U.(0,0 e 2 In(a+vo?-T)
¢ (0, )a)—gm m

In the present work that approximation has been tested for various other
fields and energies. The results show that for fields as high as B;; = 4.7 and
interaction energies £ > 0.5 keV the screening effect is independent of the
angle at which the projectile enters the electron cloud and can be considered
equal to Eq. (29). '

(29)

Therefore if the target hydrogen nuclei are in such a magnetic field the reaction
is going to be accelerated by a factor

fis (E) ~ exp |mn (E) g’—(—ol’?(—)f-)-} (30)
Especially for the pp reaction numerical results show that even in such a strong
field the cross section is still significantly small. Namely, as the corresponding
zero energy astrophysical factor is Spp, (0) o~ 4x107*2keV —barns, the screening
effect in a superstrong field By = 4.7 can only increase Sy, (0) by roughly one
order of magnitude compared to the unmagnetized case.

The dd reaction, on the other hand, can be significantly affected by such
a magnetic field as it is already much faster than the pp one. At very low
energies the increase can be as high as two orders of magnitude compared to
the unmagnetized case.

5 The astrophysical factor of d — D nuclear reactions.

Despite the fact that the reactions H? (d,p) H3, H? (d,n) He® have been inves-
tigated since the early days of accelerators(16][17][18], the effect of screening



on the associated astrophysical S (E), which will eventually be used in theo-
retical calculations, is still under investigation. In the discussion that follows
we will show that our model is compatible with the experimental data of that

reaction.

The appropriate treatment of a low-energy experiment should take into ac-
count screening effects in order to calculate the respective values of S (E). As
a matter of fact once a screening model and the associated screening energy U,
are adopted the corrected bare-nucleus astrophysical factor of the experiment
is actually given by

Sy (E) = Eo (E)exp (2rn) exp (_—rn%) (31)
Then Eq. (2) is fitted to the data corrected through Eq. (31) in order to obtain
the zero-energy coefficient S (0).

Any effort to extrapolate from higher-energy data or fit all the uncorrected
data with formula (2)is bound to induce errors.

There are three different ways to analyze low energy fusion data [3] which
must of course be consistent with each other. We will apply those methods on--
the available data[19] for dd reactions (E > 2keV') and compare them with the
analytic model proposed in the present paper. First we note that for energies
E > 20keV any screening correction is meaningless since the exponential term
of Eq. (31) is very close to unity at such high energies. Therefore we can obtain
the asymptotic behavior of the astrophysical factor by using the available high-
precision experimental data[20] for higher energies which yielded

Sy (E) = 55.49 (0.46) + 0.094 (0.0054) E (32)

We can now reasonably assume that this should be a fair approximation of
the bare-nucleus astrophysical provided its use consistently describes the low-
energy experimental data. In fact the screened value of S (E) will now be given
by

S (E) = (55.49 + 0.094E) exp <7rnUE ) (33)

where the screening énergy UZ* is determined by fitting Eq. (33) to the un-
corrected data of Ref. [19], so that U2* = 0.019 (0.003) keV with x? = 0.028.

The second method which will corroborate the validity of the proposed models
entails fitting all four parameters S (0), 5" (0), 5" (0) , U. simultaneously to the
uncorrected experimental data. Thus we obtain a screening energy of U2 =
0.017 (0.003) keVand a bare nucleus astrophysical factor:

Sy (E) = 54.54(1.39) + 0.608 (0.265) £ — 0.026 (0.026) (34)



with % = 0.011. Obviously, the two previous approaches give results which
are compatible with each other as expected.

The third method is a straightforward application of the theoretical models
derived in the present paper. However, in order to apply those models on
the experimental data we have to take into account that the data refer to
a molecular target while our models refer to atomic ones. Hence, we have to
allow for the energy which will be carried away by the spectator nuclei plus the
reduction due to the molecular binding energy. Although this assumption has
been argued against[11], the actual energy reduction for a deuteron molecular
target has been calculated[22] by a Coulomb explosion process to be of the
order of 44 eV. Therefore modifying our models for a molecular deuteron target
we derive a screening energy U. = 0.010keV (Eq. (21)) and U. = 0.016 keV
(Eq. (25)) which are in reasonably good agreement with the experimentally
obtained values. We can now fit the formula

S(E) =[S(0)+5 (0)E+055" (0) ] exp (m%) (35)

by using the screening shift of our models. The results are as follows .

U. = 0.010
Sy (E) = 57.3(0.41) + 0.160 (0.125) E — 0.0056 (0.002) £? (36)

with x? = 0.013 and

U. =0.016
Sy (E) = 54.93(0.38) + 0.537 (0.1149) E — 0.0225 (0.007) E? (37)
with x? = 0.011

Although our models are fairly compatible with the experiment there is an
inevitably degree of uncertainty in the associated astrophysical factors due to
the actual amount of energy that is carried away by the spectator nuclei of the
molecular target. In any case the models proposed here turn out to provide a
simple and effective way of describing fusion reactions between hydrogen-like
atoms.

6 Conclusions

This work proposes a simple and efficient model for the study of the screening
enhancing effect on low-energy nuclear fusion reactions. In that model, the fus-
ing atoms are considered hydrogen-like atoms whose electron probability den-
sity is used in Poisson’s equation in order to derive the corresponding screened



Coulomb potential energy. This way atomic excitations and deformations of
the reaction participants can be taken into account. The derived mean-field
potentials are then treated semiclassically, by means of the WKB, in order
to derive the screening enhancement factor which is shown to be compatible
with the experimentally obtained one for the H? (d, p) H® reaction, although
some ambiguity remains regarding the molecular nature of the deuteron tar-
get. Moreover, by means of the proposed model the effect of a superstrong
magnetic field on laboratory Hydrogen fusion reactions is investigated for the
first time showing that despite the remarkable increase in the cross section of
the dd reaction, the pp reaction is still too slow to justify experimentation.
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