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Abstract 

The electron-screening acceleration of laboratory fusion reactions at astrophysical' 
energies is an unsolved problem of great importance to astrophysics. That effect is 
modeled here by considering the fusion of hydrogen-like atoms whose electron prob­
ability density is used in Poisson 's equation in order to derive the corresponding 
screened Coulomb potential energy. That way atomic excitations and deformations 
of the fusing atoms can be taken into account. Those potentials are then treated 
semiclassically in order to obtain the screening (accelerating) factor of the reaction. 
By means of the proposed model the effect of a superstrong magnetic field on lab­
oratory Hydrogen fusion reactions is investigated here for the first time showing 
that, despite the considerable increase in the cross section of the dd reaction, the pp 
reaction is still too slow to justify experimentation. The proposed model is finally 
applied on the H2 (d, p) H3 fusion reaction describing satisfactorily the experimen­
tal data although some ambiguity remains regarding the molecular nature of the 
deuteron target. Notably, the present method gives a sufficiently high screening en­
ergy for Hydrogen fusion reactions so that the take-away energy of the spectator 
nucleus can also be taken into account. 

1 Introduction 

At astrophysical energies of a few keV corresponding to stellar temperatures 
of several millions degrees kelvin the cross section σ (E) of the predominant 
5-wave fusion reactions is given by 

*(Ε) = ϊψ-Ρ(Ε) (1) 



where the astrophysical factor S (E) embodies all the nuclear effects of the 
reaction and for non-resonant cases is a slowly varying function of the center-
of-mass energy E. On the other hand , the penetrability factor Ρ (E) embodies 
all atomic effects of the reaction and when the electron cloud around the fusing 
nuclei is ignored it is given by Ρ (E) = exp (—2πη) where η is the Sommerfeld 
parameter. 

As the astrophysical factor varies slowly with energy we usually replace it 
with a truncated Taylor series which will be studied extensively in the present 
paper 

S (E) = S (0) + S' (0) E + 0.55" (0) E2 (2) 

Any error in the zero-energy astrophysical factor S (0) is actually an error in 
the corresponding reaction rate in the stellar plasma, which in turn reflects 
linearly on the energy production rate. 

In the past years there have been exhaustive efforts to extend measurements of 
the S(E) towards even lower energies[l][2] in order to obtain a reliable value 
for S (0). This is necessary as extrapolating higher energy data to zero energies 
introduces an inevitable numerical error. However, at such low energies, the 
electron cloud that screens the fusing nuclei enhances the fusion reaction by 
lowering the Coulomb barrier. Consequently, disregarding its presence leads 
to an overestimation of 5(0). Unfortunately, even very recent experiments [3] 
cannot explain the screening enhancement which exceeds all the available the­
oretical predictions as was recently admitted [4], [5] . 

Various authors have studied the influence of the atomic cloud on the cross sec­
tion of low energy nuclear reaction. A qualitative study[6], which parametrized 
various atomic processes such as molecular formation, excitation and ioniza­
tion, yielded a fair approximation for the possible contributions of the elec­
tronic degrees of freedom in the nuclear collision experiment. Moreover, by 
assuming a constant charge density around the target nucleus, a subsequent 
model[7] predicted a screening shift which was compatible with the experi­
mental data . However that assumption is an oversimplification which will be 
amended in the present paper. The most sophisticated approach has been a 
few-body treatment[8] which established a lower (sudden) and a higher (adi-
abatic) limit for the screening energy transferred into the relative nuclear 
motion. Although more studies followed[9][10], which also extended the cal­
culations to molecular fusion reactions[11], despite their mathematical rigor 
they could not explain the discrepancy between experimental and theoretical 
screening energies. 

In this work there is presented a mean-field model for the study of screened nu­
clear reactions at astrophysical energies in the laboratory. That model agrees 
well with the available experimental data, thus enabling us to improve the 



accuracy of the associated astrophysical factor. Moreover, by means of the 
proposed model the effect of a superstrong magnetic field on laboratory Hy­
drogen fusion reactions is also investigated for the first time, yielding the 
associated magnetic accelerating factor. Notably, the present method gives a 
sufficiently high screening energy for Hydrogen fusion reactions so that the 
spectator nucleus take-away energy can also be taken into account. 

2 Screened Coulomb potentials 

After the pioneering work[6] that established the importance of atomic ef­
fects in low energy nuclear reactions various authors have tried to create 
models that account for the observed enhancement. A simple model[7], sug­
gested at an early stage, assumed that the electronic charge density around 
the target nucleus is constant, thus predicting for the nucleus-atom reac­
tion between the atomic target ^ e a n d the projectile Z^e a screening energy 
Us = (3/2) ZiZ2e

2a~1..In order to take into account the dependence of the" 
screening radius on the charge state of the reaction participants, that model 
used a screening radius taken from scattering experiments[12] so that 

a = 0.8853a0 [z\'z + Z\'z) ~Φ (3) 

where a0 the Bohr radius. Although that screening energy is larger than the 
one predicted by the simpleformula[6] Ue = ΖχΖϊβ2.(αο/Ζχ)'1 it has some very 
obvious defects. The assumption that the charge density is constant leads to 
an unnaturally sharp cut-off at a distance r — a from the center of the target 
nuclei, which is not born out either by theory or experiment. Moreover, atomic 
excitations and deformations of the target atom are totally disregarded. On 
the other hand normalizing the charge distribution so that the total charge is 
—Zie gives a charge density 

3 Zie 

4 πα3 

In order to assess the validity of that density we can consider the hydrogen­
like atom Zie which will also be used in this section . The charge density at 
the center of the cloud of such an atom (when the electron is in its ground 
state) is PQ = —e(Zifao) /π. It is obvious that for Z\ — Z2 = 1 we obtain 
po ~ — (e/al) and p% = - (e/al) /π> t û a t 'ls &e simplified model in question 
overestimates the central density by a factor of π. 

Consequently it is obvious that if low energy nuclear reactions are to be treated 
by means of a mean-field potential a more sophisticated treatment is necessary. 

(4) 



As a first step we consider a more plausible charge distribution: 

p{r)=p0\l-- (5) 

which takes into account the depletion of charge with respect to distance from 
the center. The radius a is the screening radius given by Eq. (3) and the 
charge density pa at the center of the cloud can be found by means of the 
normalization condition : 

α 

/ ρ (r) 4irr4dr — —Zie (δ) 

This integral yields a central value of 

Po 
15 Zie 

8 πα3 m 
Note that for a collision Z\ = Z2 — 1 we have a central charge density p0 = 
7.68 (e/ßo) I* which gives an even larger core density than the constant density, 
assumption. An alternative approach would be to consider the value po equal 
to the corresponding hydrogen-like one and then calculate the screening radius 
using Eq, (6). The latter treatment gives a screening radius 

a — 
15 

$Z?7T 

1/3 

ÜQ (8) 

which is independent of the charge of the projectile. For hydrogen isotopes 
Eq. (8) gives a radius of a = 0.842ao 

We can calculate the electrostatic energy by solving the equation of Poisson 
for the above charge distribution with the appropriate boundary conditions, 
so that 

, ν 15 Z i e Ì-(L)\±(L 
2 W 10 Va 

(9) 

Whenever a bare nucleus Z2e impinges on the target nuclei surrounded by 
the electron cloud of Eq.(5) the total interaction potential in the atom-nucleus 
reaction channel is 

V(r) = 
ZiZ2e

2 l5Z1Z2e
: 

12 
'l-(L)\±(l)4' 
2 W 10 W 

(10) 

Although the above potential energy is more plausible than the constant 
charge density one, a more reliable charge distribution should be considered 
which could account for various other atomic effects as well as for the atom-
atom reaction channel. 



Let us consider a hydrogen-like atom with atomic number Z\. When the wave 
function of the electron is given by Φη/ (r, Θ) then the charge density around 
the point-like nucleus is 

^ Μ ) = - β | Φ η / Μ ) | 2 ( i i) 

by which it is obvious that both the previous screening model and that of Ref. 
[7] are imperfect. If we solve the equation of Poisson for hydrogen atoms (or 
hydrogen-like ions) whose electron is in its ground (Is) state we obtain 

Φοο (r) = -jf + jf ( l + 2 ^ ) exp (-r/r 0 ) (12) 

where the screening radius is 

If a positive projectile Z2e interacts with the above screened nucleus then the 
total potential energy is 

τ/ t\ Z A e 2 ^ 2

± V A r\ f r\ . 

Voo ( r ) = _ _ + _ ( i + _ J exp ( - - J (14) 

On the other hand if we assume that the electron is in an excited state (2s) 
then the potential energy is found to be: 

H o M — p - - — + — (l + - - + _ + _ J e x p ( - - ) ( 1 5 ) 

It should be emphasized that in the derivation of the above potentials we 
have assumed an unperturbed wavefunction of the target nuclei, throughout 
the tunnelling process. In fact at astrophysical energies the electron cloud 
responds rapidly and by the time tunneling begins the nuclei are so close 
that the wavefunction is actually that of a hydrogen-like atom with charge 
Ζ* = (Ζχ + Z2) and a screening radius Γ£ = a0/2Z* 

3 Nuclear reactions at astrophysical energies 

At astrophysical energies reactions between light nuclei take place via s-
interactions, thus enabling us to investigate them by means of the WKB. 

If we assume that a bare nucleus Z2e collides at very low energy E with 
a screened nucleus whose electron,is in its ground state then the tunneling 



probability according to the WKB method is: 

P(E) = exp 
2ν/2μ 

rc(E) 

f yJVQ0(r)-Edr 
R 

(16) 

We can assume that the lower limit of the WKB integral is given in terms 
of the mass number A of the reacting nuclei : R = 1.4 (A{' + Al'3J . For 
most practical purposes this lower bound is set equal to zero as all the nuclear 
effects of the fusion reaction are included in the cross section factor. 

The classical turning point can be obtained by equating the relative collision 
energy E with the potential energy of the interaction. The collision energy is 
set equal to the Gamow peak of the corresponding reaction in the plasma so 
that: 

1/3 
Voo (r e) = 1.220 · [zlZ\ATf) ' keV (17) 

where A the reduced mass number and Te the temperature in million degrees 
kelvin. For a wide range of light nuclei we have performed extensive numerical 
solutions for Eq. (17) as well as numerical integrations of Eq. (16). At astro-
physical energies, just as is the case with the Debye-Hückel model in plasma 
conditions [13], the results indicate that throughout the potential barrier the 
potential energy VQQ (r) oi Eq. (14) can be safely replaced by the much simpler 
formula: 

Voo (r) ~ 
ZAe2 Z\Z2é 

<2θ 

Therefore the WKB penetration factor can be written as: 

Ρ (E) = exp 
2 y ^ ' ψ jZ&é* ZiZte* li -Edr 

CLQ 

The equation for the classical turning point is modified accordingly: 

ZxZ2é x l /3 
= 1.220 · [Z\ZlATl)' keV 

where we have ignored the screening shift given by: 

ZlZ2e
2 

Ue = 
do 

(18) 

(19) 

(20) 

(21) 

It is now obvious that the relative energy of the reaction has been increased 
by Ue. In that case the penetration factor can be easily found to be[10]: 

fis {E) ~ exp πη (E) -~ (22) 



where the subscripts indicate the excitation state of the target atom. If we 
follow the same methodology for the 25 state we obtain 

f2a (E) α exp irn(E) Si 
4 £ j 

The much simpler potential model of Eq. (10) gives a screening factor: 

/ο (Ε) ~ exp ™(£)§ 

with an energy shift of 

Ue~ 8 α 

where α is given either from Eq. (3) or Eq. (8) 

(23) 

(24) 

(25) 

4 Magnetically catalyzed fusion 

By now it is obvious that any shift Ue « E of the interaction potential 
energy V (r) 

v{T) = hb±-Ut (26) 

accelerates the fusion cross section of hydrogen isotopes by a factor fu (E) 
given by Eq. (22). That observation will prove very useful in the study of the 
effects of a superstrong magnetic field on laboratory hydrogen fusion reactions 
which follows. 

As a matter of fact under such extreme conditions the electron-screening cloud 
is deformed in the sense that it becomes compressed perpendicular and parallel 
to the magnetic field so that the screening potential energy for the strongly 
magnetized hydrogen atom is [14] 

e2 1 
Ue (p, z; a) = -x 

exp Ν 
ρ \/2π J (l + u j v ^ + u 

(27) 

where /?, ζ are the coordinates in a cylindrical frame of reference whose origin 
coincides with the point-like nucleus of the hydrogen atom. 

The natural length unit in the above formula is of course the cyclotron radius 
so that ρ = ρ/ρ, ζ = ζ/ρ , and α is a parameter which depends on the 
magnetic field and is determined by the variational method. The above formula 



was shown to be reliable for very strong fields whereas it becomes inaccurate 
below the threshold of the intense magnetic field regime given by: 

BIMF = 4.7 χ 109G. (28) 

In Ref. [14] potential (27) was applied at zero relative energies in order to 
obtain the mean-life times of hydrogen isotopes in neutron star surfaces. How­
ever, a more recent work[15] used that potential in a problem where the relative 
energies were of the order of keV showing that for energies E > O.òkeV and 
fields of the order of Bu = 0.047 (5 i 2 being the field measured in 1012(2) the 
classical turning point is so deep inside the cloud that the screening shift can 
be considered constant and equal to the value of the potential at the center of 
the cloud given in Ref. [14] 

e2 2 In fa + Va2 - l ) 

WM-7 vi? ν π w 
In the present work that approximation has been tested for various other 
fields and energies. The results show that for fields as high as Bu = 4.7 and 
interaction energies E > 0.5 keV the screening effect is independent of the" 
angle at which the projectile enters the electron cloud and can be considered 
equal to Eq. (29). 

Therefore if the target hydrogen nuclei are in such a magnetic field the reaction 
is going to be accelerated by a factor 

fu (E) ~ exp '*n &?·&%") 
E 

(30) 

Especially for the pp reaction numerical results show that even in such a strong 
field the cross section is still significantly small. Namely, as the corresponding 
zero energy astrophysical factor is Spp (0) a 4xl0~22keV—barns, the screening 
effect in a superstrong field B12 = 4.7 can only increase Spp (0) by roughly one 
order of magnitude compared to the unmagnetized case. 

The dd reaction, on the other hand, can be significantly affected by such 
a magnetic field as it is already much faster than the pp one. At very low 
energies the increase can be as high as two orders of magnitude compared to 
the unmagnetized case. 

5 The astrophysical factor of d — D nuclear reactions. 

Despite the fact that the reactions H2 {d,p) H3, H2 (d, n) He3 have been inves­
tigated since the early days of accelerators[16][17][18], the effect of screening 



on the associated astrophysical S (Ε), which will eventually be used in theo­
retical calculations, is still under investigation. In the discussion that follows 
we will show that our model is compatible with the experimental data of that 
reaction. 

The appropriate treatment of a low-energy experiment should take into ac­
count screening effects in order to calculate the respective values of S (E). As 
a matter of fact once a screening model and the associated screening energy Ue 

are adopted the corrected bare-nucleus astrophysical factor of the experiment 
is actually given by 

Sb (E) = Εσ (E) exp (2πη) exp f - i r n j ) (31) 

Then Eq. (2) is fitted to the data corrected through Eq. (31) in order to obtain 
the zero-energy coefficient S (0). 

Any effort to extrapolate from higher-energy data or fit all the uncorrected 
data with formula (2) is bound to induce errors. 

There are three different ways to analyze low energy fusion data [3] which 
must of course be consistent with each other. We will apply those methods on· 
the available data[19] for (ici reactions (E > 2keV) and compare them with the 
analytic model proposed in the present paper. First we note that for energies 
E > 20keV any screening correction is meaningless since the exponential term 
of Eq. (31) is very close to unity at such high energies. Therefore we can obtain 
the asymptotic behavior of the astrophysical factor by using the available high-
precision experimental data[20] for higher energies which yielded 

Sb (E) = 55.49 (0.46) + 0.094 (0.0054) E (32) 

We can now reasonably assume that this should be a fair approximation of 
the bare-nucleus astrophysical provided its use consistently describes the low-
energy experimental data. In fact the screened value of S (E) will now be given 
by 

S (E) = (55.49 + 0.094£) exp U n ^ - J (33) 

where the screening energy U*a is determined by fitting Eq. (33) to the un­
corrected data of Ref. [19], so that U™ - 0.019 (0.003) keV with χ2 = 0.028. 

The second method which will corroborate the validity of the proposed models 
entails fitting all four parameters S (0), S' (0), S" (0), Ue simultaneously to the 
uncorrected experimental data. Thus we obtain a screening energy of Ufl = 
0.017 (0.003) keVand a bare nucleus astrophysical factor: 

Sb (E) = 54.54 (1.39) + 0.608 (0.265) E - 0.026 (0.026) (34) 



with χ2 = 0.011. Obviously, the two previous approaches give results which 
are compatible with each other as expected. 

The third method is a straightforward application of the theoretical models 
derived in the present paper. However, in order to apply those models on 
the experimental data we have to take into account that the data refer to 
a molecular target while our models refer to atomic ones. Hence, we have to 
allow for the energy which will be carried away by the spectator nuclei plus the 
reduction due to the molecular binding energy. Although this assumption has 
been argued against[11], the actual energy reduction for a deuteron molecular 
target has been calculated[22] by a Coulomb explosion process to be of the 
order of 44 eV. Therefore modifying our models for a molecular deuteron target 
we derive a screening energy Ue = OMOkeV (Eq. (21)) and Ue = 0.016 keV 
(Eq. (25)) which are in reasonably good agreement with the experimentally 
obtained values. We can now fit the formula 

S (E) = [S (0) + S' (0) E + 0.55" (0) E2] exp ( ™ ~ ) (35) 

by using the screening shift of our models. The results are as follows 

Ue = 0.010 

Sb {E) = 57.3 (0.41) + 0.160 (0.125) E - 0.0056 (0.002) E2 (36) 

with χ2 = 0.013 and 

Ue = 0.016 

Sb (E) = 54.93 (0.38) + 0.537 (0.1149) E - 0.0225 (0.007) E2 (37) 

with χ2 = 0.011 

Although our models are fairly compatible with the experiment there is an 
inevitably degree of uncertainty in the associated astrophysical factors due to 
the actual amount of energy that is carried away by the spectator nuclei of the 
molecular target. In any case the models proposed here turn out to provide a 
simple and effective way of describing fusion reactions between hydrogen-like 
atoms. 

6 Conclusions 

This work proposes a simple and efficient model for the study of the screening 
enhancing effect on low-energy nuclear fusion reactions. In that model, the fus­
ing atoms are considered hydrogen-like atoms whose electron probability den­
sity is used in Poisson 's equation in order to derive the corresponding screened 



Coulomb potential energy. This way atomic excitations and deformations of 
the reaction participants can be taken into account. The derived mean-field 
potentials are then treated semiclassically, by means of the WKB, in order 
to derive the screening enhancement factor which is shown to be compatible 
with the experimentally obtained one for the H2 (d, p) H3 reaction, although 
some ambiguity remains regarding the molecular nature of the deuteron tar­
get. Moreover, by means of the proposed model the effect of a superstrong 
magnetic field on laboratory Hydrogen fusion reactions is investigated for the 
first time showing that despite the remarkable increase in the cross section of 
the dd reaction, the pp reaction is still too slow to justify experimentation. 
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