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Abstract

Parafermions are used for creating an exact mapping of the two-colour delta model
of interacting quarks, used in nuclear physics.

1 Introduction

The derivation of the nuclear properties starting from the quark structure of
the nucleons is an open problem. In a widely used approach, the quarks inside
the nucleus form clusters, the nucleons, in a prescribed manner, which should
ideally be explained by the strong interaction in the framework of QCD. In
this kind of clustering, triplets of quarks are formed. This effect bears certain
similarities with the pairing of nucleons in a closed nuclear shell [1,2], in which
the clustering is associated with the formation of pairs of nucleons. In the
quark case triplets of fermions are formed, while in the case of pairing pairs
of fermions are involved in the interaction. Although the properties of the
interactions in these two cases are very different, the effect of the clusterization
reveals certain similarities, which allow similar techniques to be used in both
cases.

One of the models created in the attempt to understand clusterization of
quarks, is the model of Koltun et al. [3,4,5], in which the quarks move in
one dimension and interact through a residual attractive delta-function po-
tential. In the general case the quarks possess three colours, but a simplified
version in which the quarks can only have two colours has also been devel-
oped. It is hoped that these models can give considerable insight into the way
in which quarks condensate into nucleons. The two-colour form of the model
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has an additional advantage: it reveals several mathematical similarities with
the pairing of nucleons in a nuclear shell [1,2], allowing in this way techniques
developed for the latter case to be applied in the former.

In the description of pairing in a single-j nuclear shell model, correlated fermion
pairs are used (see [6] and references therein), which satisfy commutation re-
lations resembling boson commutation relations, including in addition correc-
tions due to the presence of the Pauli principle. This fact has been the cause
for the development of boson mapping techniques (see the reviews by Klein
and Marshalek [7] and Hecht [8] and references therein), by which the descrip-
tion of systems of fermions in terms of bosons is achieved. Some of the boson
mappings of the pairs of fermions are approximate, some others are exact but
involve relatively complicated square roots of operators in the relevant for-
mulas, these difficulties being caused by the presence of the Pauli principle.
The boson mapping approach has also been applied in the case of the above
mentioned quark models with two [9,10] or three [11,12] colours.

A simplified approach to these problems can be based on techniques making
use of quantum algebras (quantum groups) [13]. For the case of pairing in a
single-j nuclear shell it has been found that it is possible to construct a gen-
eralized deformed oscillator in such a way, that the spectrum of the oscillator
will exactly correspond to the pairing energy in the single-j shell model, while
the commutation relations of the relevant deformed bosons will exactly cor-
respond to the commutation relations of the correlated fermion pairs in the
single-j shell under discussion [14]. It has also been seen that the generalized
deformed bosons used in this case correspond to parafermions or deformed
parafermions [15].

In this paper we attempt to get exact mappings for the two-colour delta model
of interacting quarks mentioned above [3,4,5,9,10]. It turns out that an exact
mapping of this model can be-constructed through the use of parafermions.

In Section 2 of the present paper the algebraic structure of the two-colour delta
model of interacting quarks will be clarified, while in Section 3 a parafermionic
mapping of this model will be constructed. Finally Section 4 will contain
comments on the present results and plans for further work.

2 Algebraic structure of the two-colour delta model

In the two-colour delta model [3,4,5,9,10] one considers a system of N non-
relativistic quarks with colour ¢, which takes the two possible values +1 /2.
The quarks move in a one-dimensional box of size L and interact through an
attractive delta-function interaction.
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Let ¢}, and gx. be the creation and annihilation operators for a quark with
momentum k and colour ¢. The Hamiltonian of this toy model is assumed to

be (9]

H = Z equchc Y Z qch]—cql—chc6:+],k+l7

ke t]kl =

where €, = k?/2m and m is the mass of the quark.

The colourless “nucleons” are described by the operators [10]

Il =2 (-1)dka)_..

c

After introducing the operators

NU = Z qtthjc’

the Hamiltonian of Eq. (1) can be written in the following form:

H= Z €x Nk — Y Z DL TkiGiripsi-
13kl

The operators I'[;, [;, and N;; close a sp(2N) Lie algebra,

13

[ U?Fkl] = 6uTh + 6L,
[Fku Fg] = 0;iNki + 8k Nii + ik Nij + 6. Nk,

[ uaNkl]— ]kivzl_ WiV 3k

obeying to the constraint relations

(1)



3 Parafermionic mapping

As it is well known, the non-constrained sp(2N) algebra can in general be
realized exactly through a para-bosonic mapping using N parabosons of order
p (see [16] and references therein). This mapping is related to the infinite
dimensional representations of the sp(2N) algebra.

In the present special case, the constraints of Eq. (6) impose an exact mapping
using N parafermions of order p = 2. This mapping is extremely simple

Ffj = aT all =1 (a:-ra} + a}af) ;

] 2

[Vij =3 ([ai,a}-] + 25”) 5

The p-order parafermions a!,a;, where 1 = 1,2,..., N, satisfy the trilinear
commutation relations [17,18]

[ak, {af, m ] 20k,
[ak, [ag, al ]] = 2peal, — 25kmae, (8)

[akv [afa am” =0,

together with the nilpotent conditions [17,18]

(a:)"*! = (alyP** = 0. (9)

The number operators

IV,'J' = ([af,aj] + péi]) (10)

o

satisfy the commutation relations

[Nij,al]= wal, [N, ax] = —8ua;, (11)

as well as the relation

Ni;i (./Vi,' — 1) (Ivi;' — 2) R (Ni,- — p) = 0. (12)

After a little algebra we can show that the exact mapping of Eq. (7) on the
parafermions of order p = 2 satisfies the sp(2N) algebra of Eq. (5) obeying to
the constraints of Eq. (6).



4 Discussion

We have shown that in the case of the two-colour delta model of interacting
quarks (3,4,5,9,10] there is an exact mapping of quark pairs onto colourless
parafermions of order p = 2. The situation resembes earlier findings for the
single-j nuclear shell, in which nucleon pairs are mapped onto parafermions of
order related to the size of the nuclear shell [14].

The extreme simplicity of the present mapping has its roots in the trilinear
and nilpotent relations [17,18] satisfied by the parafermions used here.

The extention of the present results to the case of the three-colour delta model
of interacting quarks [3,4,5,11,12] is an obvious challenge. It is also of interest
the extention of the present method to the study of the pairing problem in a
multi-j shell configuration.
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