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Abstract

A successful analytical formula for the proton momentum distribution in all nuclei
with A>4 accounting for nucleon-nucleon correlation effects, is presented. In this
formula the Isomorphic Shell Model wave functions are employed, which are readily
available for all nuclei all the way up to 2%8Pb. However, other wave functions (e.g.,
shell model or Hartree-Fock) could be used with almost equivalent results. Available
experimental data for ‘He, 2C and ¢Fe and predictions of other theories, e.g., for
40Ca, are used for comparison of the predictions of the present formula. A reservation
is kept concerning the validity of this formula for the momentum distribution of
exotic nuclei.

1 Introduction

In a recent publication [1] it was pointed out that the knowledge of the experimen-
tal proton momentum distribution for *He is enough information for an estimation
of the proton momentum distribution (including high momentum components) of
nuclei beyond *He. This is possible due to the fact that proton momentum distri-
butions of nuclei with k<2 fm~1! follow, in a good approximation, the shell model
predictions [1-3], while these distributions with k>2 fm~! (i.e., their high momen-
tum components) are approximately the same with that of *He [4-6]. This possibility
is very valuable since the experimental momentum distribution is known only for
a few nuclei [4], i.e., for *He, 12C, and °°Fe, and the theoretical calculations are
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limited as well [7-17]. At the same time, the knowledge of momentum distribution
is important for calculations of cross sections for various kinds of nuclear reactions.

The present work constitutes a substantial improvement of Ref.[1] in the sense that,
in contrast to what happens in this reference, no experimental information is needed
for an estimation of the proton momentum distribution of any nucleus with A>4.
In other words, a parameter-free analytical formula is provided, valid for the proton
momentum distribution of any nucleus beyond *He. This formula could be approx-
imated by using Ref.[18], where an analytical expression for the approximation of
the proton momentum distribution of *He was obtained simultaneously with an an-
alytical expression for the approximation of the proton density distribution of this
nucleons. However, it has here been found that, for a much better approximation of
the experimental momentum distribution alone of *He, another set of parameters
is needed in the analytical expression of the momentum distribution of *He intro-
duced in Ref.[18]. Specifically, the parameters (i.e.,A1; = 0.93, nwy; = 15 MeV, pwig
= 72 MeV, where 2A\;1; + 10A;4 = 2) used here lead to results for the momentum
distribution alone of *He much better than those coming from the parameters used
in Ref.[18] (i.e.,A15 = 0.86, nw;, = 22,5 MeV, nwg = 150 MeV, where 2A;;+ 10A 4
= 2) which aimed to a simultaneous reproduction of both the momentum distribu-
tion and the density distribution of “He. Thus, as will become apparent shortly, the
parameter-free analytical formula here provided comes combining Ref.[1] and the
analytical expression for the proton momentum distribution of *He corresponding
to the aforementioned new parameters, instead of those from Ref.[18].

The formula suggested in the present work uses the transparency of the single-
particle picture, being within the framework of a given correlation method by means
of the natural orbital representation [19]. Specifically, in the applications here pro-
vided, the wave functions of the Isomorphic Shell Model [1, 20-24] are employed
which have been proved very successful in predicting several observables in many
nuclei.

2 The Model

We start from the natural orbital representation [19], where the proton momentum
distribution of a nucleus with Z protons, normalized to unity, has the form [3]

1) = = T2 + Dhws B () (1)

néy

where A,; is the natural orbital occupation number for the state with quantum
numbers (n, ¢, 7) and

725 + DA = Z. (2)
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We call hole-state (h) natural orbitals those natural orbitals for which the numbers
are significantly larger than the remaining ones called particle-state (p) natural
orbitals [25]. It has been shown by the Jastrow correlation method [12,13] that the
high-momentum components of the total , caused by the short-range correlations,
are almost completely determined by the contributions of the particle-state natural
orbitals. That is,

n(k) = nn(k) + np(k), 3)
—where the equation
1 FL
mn (k) = — D (25 + 1)Ants | Bongs (R) %, (4)
nlj

with F.L. meaning Fermi Level, stands (almost totally for the Hartree-Fock or,
similarly, for the shell model case) for the hole-state wave functions contribution
and the equation

FE.Lx

np(k) = T 3 (2 + DAty Bt (R, g
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stands (almost totally) for the high-momentum components due to particle-state
wave functions contribution.

From Ref.[18] for *He we have for n(k)

n (k) = myHe (k) + n Mo (k)

____1__‘ qu 2 4]‘[? 2
= AR + MR () )

Approximating the particle part of the momentum distribution of (A, Z)-nucleus,
Eq.(5), by the particle part n:,H"(lc) from Eq.(6), Eq.(1) for the correlated proton
momentum distribution of any nucleus may be written as

N ’ z ’
n(k) = — (A1 Ry (k )|2+510A1 °| Ry (k)
F.L.(A4,2)
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where /\‘:l’z ~1 and

F.L.(A.Z)
No = Z/[2AHe + 10,\‘H° 3 2020+ )M (8)
né(#l1s)

Eq.(7) expresses the proton momentum distribution for any nucleus with A>4 un-
der the assumption (experimentally verified [4-6]) that beyond *He all nuclei have
similar (almost equal) tail of their proton momentum distribution [4-6].

As shown in Refs.[12-13], the hole-state natural orbitals are almost unaffected by
the short-range correlations and, therefore, the functions Rye(k) in Eq.(7) can be
replaced by the corresponding Hartree-Fock single-particle wave functions or by any
shell-model wave functions Rye;(k) [1].

3 Calculations and discussion

In Fig. 1(a)-(d) the proton momentum distributions for the nuclei *He, '2C, °Ca
and 6Fe coming from Eq.(7) are shown. For the proton momentum distribution
of *He the parameters given in the introduction [namely, )\IE" = 0.930, A‘He =
0.014 (where 2/\1*5{e + IOA”’Ie = 2), and nwys = 15 MeV, nwyy = 72 MeV] and not
those from Ref.[18], are emploved That is, the parameters leading to the best fit
of the momentum distribution alone of *He are utilized, instead of those leading
to the best simultaneous fit of momentum and density distribution of this nucleus
as in Ref.[18]. Semi-experimental data (called so since their analysis is based on
certain assumptions) for comparison (available only [4] for *He, '2C and ®Fe) are
also shown, together with the predictions of other models (where available) and
with those of Ref.[1]. The comparison for ‘“°Ca, where no experimental data exist,
is made solely with respect to existing calculations of other correlated methods [10-
16]. As seen from this figure our predictions for “He, '2C and >6Fe are very good and
better than the predictions by any other method [1]. For *°Ca no similar comment
can be made, since there is no experimental data for comparison. In our calculations
of Fig. 1(a)-(d) we use the multiharmonic oscillator potential single-particle wave
functions from Ref.[21] as it was the case in Ref. [1].

From Fig. 1(a)-(d) it is apparent that the results of the present formula [Eq.(7)]
are better than those of Ref.[1], and those obtained by using the parameters for the
momentum distribution of *He employed in Ref.[18] (see Fig.1(b) in this reference),
particularly near the origin. In addition to the quality of fitting, of course, one
should notice that Eq. (7) makes no use of semi-experimental data. while in Ref.
[1] those of “He are employed. In both cases (Eq. (7) and Ref.[1]) no adjustable
parameters are involved.
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Fig. 1. Proton momentum distributions n(k) versus k. (a) of the *He, (b) of the
12€, (c) of the 4°Ca, and (d) of the 5®Fe. In all parts of the figure triangles stand
for semi-experimental data from [4], thick solid lines for results coming from Eq.(7)
with no use of experimental data, thin solid lines for results from [1] with use of
experimental data for *He, dash-dot lines for results of calculations from [9], dotted
line for results from [12,13] based on the Jastrow correlation method, and dashed
line for results of calculations from [15].

4 Conclusions

In the present work a parameter-free analytical formula, Eq.(7), for calculating the
proton momentum distribution of any nucleus with A>4 is introduced making no use
of available semi-experimental data.. This formula combines the mean-field part of
momentum distribution with its correlated part which is taken to be identical to that

part of *He [1,4-6]. The universal parameters in Eq.(7) describing the momentum
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distribution of *He are those given in the introduction which are different from those
of Ref.[18].

While different single-particle models (e.g., Hartree-Fock or Shell Model) can be
used for an estimation of the hole-state wave functions entering our formula, the use
of the Isomorphic Shell Model wave functions [1, 20-24] employed here, besides the
excellent results with respect to the data or the results from other correlated meth-
ods as shown in Fig. 1(a)-(d), has the additional advantages of being adjustable-
parameters free and well specified in advance (readily available) for any nucleus up
to 208Pb [21].

The formula here proposed offers an easy calculation of n(k) for any nucleus with
A>4 and thus allows us to describe (as in Ref.[27]) quantities involved in processes
of particle scattering by nuclei.

It is apparent that the present work is a substantial improvement of Ref.[1] for
two reasons. First, no experimental information is necessary for an application of
the formula here proposed which has an analytical form and, second, the results
provided are better both in the tail section and particularly in the region near the
origin of the proton momentum distribution (Fig. 1(a),(b),(d)).

Finally, a reservation could be kept concerning the validity of Eq. (7) in exotic nu-
clei, where at the moment no semi-experimental data are available, according to the
following reasoning. Ref. [18] deals with a possible explanation of the high momen-
tum components of “He as a result of collective internal rotation of certain nucleons
at the ground state in addition to the usual nucleon internal rotation of shell model
type. That is, this additional internal rotation modifies (specifically increases) the
high components of the momentum distribution. Also, according to Ref. [28] the
appearance of the halo phenomenon in exotic nuclei could be understood as a result
of collective internal rotation at the ground state of a group of nucleons, as in the
aforementioned case of high momentum components in “He. Hence, in exotic nuclei
one could expect an additional increase of the high momentum components of their
momentum distribution, due to an additional internal collective rotation of certain
nucleons in their ground states. Thus, a deviation of the predictions of formula (7)
in exotic nuclei could be expected.

An effort, to search whether a parameter-free analytical formula for calculating
the proton and the neutron density distributions of any nucleus (making no use of
experimental data) can be obtained, is under way.
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