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Abstract 

A successful analytical formula for the proton momentum distribution in all nuclei 

with A>4 accounting for nucleon-nucleon correlation effects, is presented. In this 

formula the Isomorphic Shell Model wave functions are employed, which are readily 

available for all nuclei all the way up to 2 0 8 P b . However, other wave functions (e.g., 

shell model or Hartree-Fock) could be used with almost equivalent results. Available 

experimental data for 4 He, 1 2 C and 5 6 Fe and predictions of other theories, e.g., for 
4 0 C a , are used for comparison of the predictions of the present formula. A reservation 

is kept concerning the validity of this formula for the momentum distribution of 

exotic nuclei. 

1 I n t r o d u c t i o n 

In a recent publication [1] it was pointed out that the knowledge of the experimen

tal proton momentum distribution for 4 He is enough information for an estimation 

of the proton momentum distribution (including high momentum components) of 

nuclei beyond 4 H e . This is possible due to the fact that proton momentum distri

butions of nuciei with k<2 f m - 1 follow, in a good approximation, the shell model 

predictions [1-3], while these distributions with k>2 f m _ 1 (i.e., their high momen

tum components) are approximately the same with that of 4 H e [4-6]. This possibility 

is very valuable since the experimental momentum distribution is known only for 

a few nuclei [4], i.e.. for 4 He, 1 2 C , and 5 6 Fe, and the theoretical calculations are 
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limited as well [7-17]. At the same time, the knowledge of momentum distribution 
is important for calculations of cross sections for various kinds of nuclear reactions. 

The present work constitutes a substantial improvement of Ref.[l] in the sense that, 
in contrast to what happens in this reference, no experimental information is needed 
for an estimation of the proton momentum distribution of any nucleus with A>4. 
In other words, a parameter-free analytical formula is provided, valid for the proton 
momentum distribution of any nucleus beyond 4He. This formula could be approx
imated by using Ref.[18], where an analytical expression for the approximation of 
the proton momentum distribution of 4He was obtained simultaneously with an an
alytical expression for the approximation of the proton density distribution of this 
nucléons. However, it has here been found that, for a much better approximation of 
the experimental momentum distribution alone of 4He, another set of parameters 
is needed in the analytical expression of the momentum distribution of 4He intro
duced in Ref.[18]. Specifically, the parameters (i.e.,Ais = 0.93, ηω\3 = 15 MeV, ηω^ 
= 72 MeV, where 2λι5 + lOXu = 2) used here lead to results for the momentum 
distribution alone of 4He much better than those coming from the parameters used 
in Ref.[18] (i.e.,Als = 0.86, ηωί3 = 22,5 MeV, ηωιά = 150 MeV, where 2AU + ΙΟλ^ 
= 2) which aimed to a simultaneous reproduction of both the momentum distribu
tion and the density distribution of 4He. Thus, as will become apparent shortly, the 
parameter-free analytical formula here provided comes combining Ref.[l] and the 
analytical expression for the proton momentum distribution of 4He corresponding 
to the aforementioned new parameters, instead of those from Ref.[18]. 

The formula suggested in the present work uses the transparency of the single-
particle picture, being within the framework of a given correlation method by means 
of the natural orbital representation [19]. Specifically, in the applications here pro
vided, the wave functions of the Isomorphic Shell Model [1, 20-24] are employed 
which have been proved very successful in predicting several observables in many 
nuclei. 

2 The M o d e l 

We start from the natural orbital representation [19], where the proton momentum 
distribution of a nucleus with Ζ protons, normalized to unity, has the form [3] 

»(*) = ̂ Σ ^ ' + l)AnAi(fc)!2, (1) 
n£j 

where Xn£j is the natural orbital occupation number for the state with quantum 
numbers (n,£,j) and 

E ( 2 j + l)An^ = Z. (2) 
ntj 
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We call hole-state (h) natural orbitals those natural orbitale for which the numbers 
are significantly larger than the remaining ones called particle-state (p) natural 
orbitals [25]. It has been shown by the Jastrow correlation method [12,13] that the 
high-momentum components of the total , caused by the short-range correlations, 
are almost completely determined by the contributions of the particle-state natural 
orbitals. That is, 

n(k) = rih(k) +np(k), (3) 

-where the equation 

, F.L. 

nh(k) = ^ £ ( 2 j + 1 ) λ η ^ | £ η ^ ( * ) | 2 , (4) 
n£j 

with F.L. meaning Fermi Level, stands (almost totally for the Hartree-Fock or, 
similarly, for the shell model case) for the hole-state wave functions contribution 
and the equation 

, F.L. 

nP(k) = — Σ (2J + l)Kt3\Rntj{k)\2, (5) 
nij 

stands (almost totally) for the high-momentum components due to particle-state 
wave functions contribution. 

From Ref.[18] for 4He we have for n(k) 

!(A) = nh

He(A) + np

He(fc) 

= ^ [ 2 A ; ? e | i ? ; ? e ( * ) | 2 + lOX\f\R\¥(k)\% (6) 

Approximating the particle part of the momentum distribution of (A, Z)-nucleus, 
Eq.(5), by the particle part np

He(A;) from Eq.(6), Eq.(l) for the correlated proton 
momentum distribution of anv nucleus mav be written as 

n(k) = ^ ( 2 A 2 - | Ä * ( t ) | » + jlQXlfìR'^ik^ 

F.L.(A.Z) 

+ Σ 2(2i+l)X^Z\R^Z(k)\'), (7) 
ni(^ls) 
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where λ' ; ~ 1 and 

F.L.(A.Z) 

Ν0 = Ζ/[2λ\ψ + -ΙΟΧ4

ιψ+ £ 2 ( 2 * + 1 ) λ £ ζ ] . (8) 

Eq.(7) expresses the proton momentum distribution for any nucleus with A > 4 un

der the assumption (experimentally verified [4-6]) that beyond 4 H e all nuclei have 

similar (almost equal) tail of their proton momentum distribution [4-6]. 

As shown in Refs.[12-13], the hole-state natural orbitals are almost unaffected by 

the short-range correlations and, therefore, the functions Rne{k) in Eq.(7) can be 

replaced by the corresponding Hartree-Fock single-particle wave functions or by any 

shell-model wave functions Rnej{k) [1]. 

3 Calculations and discussion 

In Fig. l(a)-(d) the proton momentum distributions for the nuclei 4 He, 1 2 C , 4 0 C a 

and o 6 F e coming from Eq.(7) are shown. For the proton momentum distribution 

of 4 He the parameters given in the introduction [namely, λ χ ^ β = 0.930, X^e = 

0.014 (where 2\\** + 1 0 λ ^ β = 2). and ηωΐ3 = 15 MeV, ηωιά = 72 MeV] and not 

those from Ref.[18], are employed. That is, the parameters leading to the best fit 

of the momentum distribution alone of 4 H e are utilized, instead of those leading 

to the best simultaneous fit of momentum and density distribution of this nucleus 

as in Ref.[18]. Semi-experimental data (called so since their analysis is based on 

certain assumptions) for comparison (available only [4] for 4 He, 1 2 C and 5 6 Fe) are 

also shown, together with the predictions of other models (where available) and 

with those of Ref.[l]. The comparison for 4 0 C a , where no experimental data exist, 

is made solely with respect to existing calculations of other correlated methods [10-

16]. As seen from this figure our predictions for 4 He, 1 2 C and o 6 Fe are very good and 

better than the predictions by any other method [1]. For 4 0 C a no similar comment 

can be made, since there is no experimental data for comparison. In our calculations 

of Fig. l(a)-(d) we use the multiharmonic oscillator potential single-particle wave 

functions from Ref.[21] as it was the case in Ref. [1]. 

From Fig. l(a)-(d) it is apparent that the results of the present formula [Eq.(7)] 

are better than those of Ref.[l], and those obtained by using the parameters for the 

momentum distribution of 4 He employed in Ref.[18] (see Fig. 1(b) in this reference), 

particularly near the origin. In addition to the quality of fitting, of course, one 

should notice that Eq. (7) makes no use of semi-experimental data, while in Ref. 

[1] those of 4 He are employed. In both cases (Eq. (7) and Ref.fl]) no adjustable 

parameters are involved. 

251 



1.E+00 1.E+00 -

1.E-05 

0,00 0,50 1,00 1.50 2,00 2,50 3,00 3,50 4,00 

k(fm'1) 

0.00 0,50 1,00 1,50 2,00 2,50 3,00 3,50 4,00 

k(fm'1) 

1.E+00 

1.E-05 1.E-05 

0,00 0,50 1,00 1.50 2.00 2,50 3,00 3,50 4,00 

k(fm·1) 

0,00 0,50 1,00 1,50 2,00 2,50 3.00 3.50 4,00 

Fig. 1. Proton momentum distributions n(k) versus k. (a) of the 4He, (b) of the 
12C, (c) of the 40Ca, and (d) of the 56Fe. In all parts of the figure triangles stand 
for semi-experimental data from [4], thick solid lines for results coming from Eq.(7) 
with no use of experimental data, thin solid lines for results from [1] with use of 
experimental data for 4He, dash-dot lines for results of calculations from [9], dotted 
line for results from [12,13] based on the Jastrow correlation method, and dashed 
line for results of calculations from [15]. 

4 Conclusions 

In the present work a parameter-free analytical formula, Eq.(7), for calculating the 
proton momentum distribution of any nucleus with A>4 is introduced making no use 
of available semi-experimental data.. This formula combines the mean-field part of 
momentum distribution with its correlated part which is taken to be identical to that 
part of 4He [1,4-6]. The universal parameters in Eq.(7) describing the momentum 

252 



distribution of 4He are those given in the introduction which are different from those 
of Ref. [18]. 

While different single-particle models (e.g., Hartree-Fock or Shell Model) can be 
used for an estimation of the hole-state wave functions entering our formula, the use 
of the Isomorphic Shell Model wave functions [1, 20-24] employed here, besides the 
excellent results with respect to the data or the results from other correlated meth
ods as shown in Fig. l(a)-(d), has the additional advantages of being adjustable-
parameters free and well specified in advance (readily available) for any nucleus up 
to 2 0 8 Pb [21]. 

The formula here proposed offers an easy calculation of n(k) for any nucleus with 
A>4 and thus allows us to describe (as in Ref.[27]) quantities involved in processes 
of particle scattering by nuclei. 

It is apparent that the present work is a substantial improvement of Ref.fl] for 
two reasons. First, no experimental information is necessary for an application of 
the formula here proposed which has an analytical form and, second, the results 
provided are better both in the tail section and particularly in the region near the 
origin of the proton momentum distribution (Fig. l(a),(b),(d)). 

Finally, a reservation could be kept concerning the validity of Eq. (7) in exotic nu
clei, where at the moment no semi-experimental da ta are available, according to the 
following reasoning. Ref. [18] deals with a possible explanation of the high momen
tum components of 4He as a result of collective internal rotation of certain nucléons 
at the ground state in addition to the usual nucléon internal rotation of shell model 
type. That is, this additional internal rotation modifies (specifically increases) the 
high components of the momentum distribution. Also, according to Ref. [28] the 
appearance of the halo phenomenon in exotic nuclei could be understood as a result 
of collective internal rotation at the ground state of a group of nucléons, as in the 
aforementioned case of high momentum components in 4He. Hence, in exotic nuclei 
one could expect an additional increase of the high momentum components of their 
momentum distribution, due to an additional internal collective rotation of certain 
nucléons in their ground states. Thus, a deviation of the predictions of formula (7) 
in exotic nuclei could be expected. 

An effort, to search whether a parameter-free analytical formula for calculating 
the proton and the neutron density distributions of any nucleus (making no use of 
experimental data) can be obtained, is under way. 
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