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Abstract

It is shown that the recently observed Al = 2 staggering seen in superdeformed
nuclear bands is also occurring in certain electronically excited rotational bands of
diatomic molecules, in which it is attributed to interband interactions (bandcross-
ings). In addition, a Al = 1 staggering effect (i.e. a relative displacement of the
levels with even angular momentum [ with respect to the levels of the same band
with odd 7) is seen in molecular bands free from Al = 2 staggering (i.e. free from
interband interactions/bandcrossings). The magnitude of the Al = 1 staggering
is found to be constant as a function of I, in agreement with the predictions of
algebraic models (u(11) model, u(16) model, Vector Boson Model) used for the de-
scription of octupole nuclear bands, i.e. bands corresponding to pear-like shapes,
suggesting that the presence of Al = 1 staggering in rotational bands of diatomic
molecules could be attributed in general to the inequality of the masses of the two
atoms of which the molecule is composed. The existence of the AJ = 1 staggering
effect is corroborated by the fact that separate Dunham expansions for the even
levels and the odd levels of such bands give similar but different parameter sets.

1 Introduction

Several staggering effects are known in nuclear spectroscopy [1]:
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1) In rotational 7 bands of even nuclei the energy levels with odd angular momentum
I(I=3,5,7,9,...) are slightly displaced relatively to the levels with even I (I=2,
4, 6, 8, ...), i.e. the odd levels do not lie at the energies predicted by an E(I) =
AI(I + 1) fit to the even levels, but all of them lie systematically above or all of
them lie systematically below the predicted energies [2].

2) In octupole bands of even nuclei the levels with odd I and negative parity (/™=1",
37,57,77,...) are displaced relatively to the levels with even I and positive parity
(I"=0%, 2%, 4%, 6%, ...) [3].

3) In odd nuclei, rotational bands (with K = 1/2) separate into signature partners,
i.e. the levels with [=3/2, 7/2, 11/2, 15/2, ...are displaced relatively to the levels
with I=1/2,5/2, 9/2, 13/2, ... [4].

In all of the above mentioned cases each level with angular momentum I is displaced
relatively to its neighbours with angular momentum 7 + 1. The effect is then called
Al = 1 staggering. In all cases the effect has been seen in several nuclei and its
magnitude is clearly larger than the experimental errors. In cases 1) and 3) the
relative displacement of the neighbours increases in general as a function of the
angular momentum 7 [2,4], while in case 2) {octupole bands), the relevant models
[5-9] predict constant displacement of the odd levels with respect to the even levels
as a function of 7, i.e. all the odd levels are raised (or lowered) by the same amount
of energy.

A new kind of staggering (A] = 2 staggering) has been recently observed [10,11]
in superdeformed nuclear bands [12-14]. In the case in which AI = 2 staggering
is present, the levels with /=2, 6, 10, 14, ..., for example, are displaced relatively
to the levels with /=0, 4, 8, 12, ..., i.e. the level with angular momentum I is
displaced relatively to its neighbours with angular momentum 7 + 2.

Although AJ = 1 staggering of the types mentioned above has been observed in
several nuclei and certainly is an effect larger than the relevant experimental uncer-
tainties, AJ = 2 staggering has been seen in only a few cases [10,11,15.16] and. in
addition, the effect is not clearly larger than the relevant experimental errors.

There have been by now several theoretical works related to the possible physical
origin of the AT = 2 staggering effect [17-23], some of them [24-29] using symmetry
arguments which could be of applicability to other physical systems as well.

On the other hand, rotational spectra of diatomic molecules [30] are known to show
great similarities to nuclear rotational spectra, having in addition the advantage
that observed rotational bands in several diatomic molecules [31-34] are much longer
than the usual rotational nuclear bands. We have been therefore motivated to make a
search for A7 = 1 and AJ = 2 staggering in rotational bands of diatomic molecules.
The questions to which we have hoped to provide answers are:

1) Is there A7 = 1 and/or AI = 2 staggering in rotational bands of diatomic
molecules?
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2) If there are staggering effects, what are their possible physical origins?

In Section 2 of the present work the Al = 2 staggering in superdeformed nuclear
bands will be briefly reviewed. In Section 3 the formalism of the Al = 2 staggering
in molecular spectra will be given (in Subsection 3.1) and the interpretation of
the relevant empirical observations will be discussed (in Subsection 3.2). In Section
4 the formalism of the Al = 1 staggering in nuclear and molecular spectra will
be given (in Subsection 4.1) and the relevant empirical information will be shown
(in Subsection 4.2). In addition, relevant algebraic models will be discussed (in
Subsection 4.3) and an interpretation of the empirical observations will be given (in
Subsection 4.4). Finally, Section 5 will contain the conclusions of the present study
and plans for further work.

2 AJ =2 staggering in superdeformed nuclear bands

In nuclear physics the experimentally determined quantities are the y-ray transition
energies between levels differing by two units of angular momentum (A7 = 2). For
these the symbol

Ey(I)=E(I+2)- E(]) (1)

is used, where F(I) denotes the energy of the level with angular momentum /. The
deviation of the <-ray transition energies from the rigid rotator behavior can be
measured by the quantity [11]

1
AE3(I) = = (6E(I) — 4E3 (I — 2) — 4E5 (I +2)

16
+E2,Y(I - 4) + EQY.Y([ + 4)) (2)

Using the rigid rotator expression F(f) = AI({ + 1), one can easily see that in this
case AF; . (I) vanishes. In addition the perturbed rigid rotator expression E([) =
AI(I+1)+ B(I(I+1))?, gives vanishing AF, (). These properties are due to the
fact that Eq. (2) is a (normalized) discrete approximation of the fourth derivative
of the function E;(I), i.e. essentially the fifth derivative of the function E(I).

In superdeformed nuclear bands the angular momentum of the observed states is in
most cases unknown. To avoid this difficulty, the quantity AE;  is usually plotted
not versus the angular momentum /, but versus the angular frequency

dE(I)

W= e

o )
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which for discrete states takes the approximate form

"o E(I+2)-E() (@)
T VTF)UT+3) - JIT+1)

For large I one can take the Taylor expansions of the square roots in the denomi-
nator, thus obtaining

E(I+2)-E(I) _ Ez,(I) 3
2 =72 )

Superdeformed nuclear bands exhibiting A/ = 2 staggering have been seen in 9Gd
[10] and '9%Hg [11]. Related AT = 2 staggering plots can be seen in Figs 1-2 of Ref.
[35]. We say that A = 2 staggering is observed if the quantity AE,(/) exhibits
alternating signs with increasing w (i.e. with increasing /. according to Eq. {5)).
The following observations have been made:

1) The magnitude of AF,(I) is of the order of 10741077 times the size of the
gamma transition energies.

2) The best example of Al = 2 staggering is given by the first superdeformed band
of 19Gd, shown in Fig. 1a of Ref. [35]. In this case the effect is almost larger than
the experimental error.

3) In most cases the Al = 2 staggering is smaller than the experimental error (see
Figs 1b, 2a, 2b of Ref. [35]), with the exception of a few points in Fig. 1b of Ref.
[35].

3 Al =2 staggering in rotational bands of diatomic molecules
3.1 Formalism

In the case of molecules [36] the experimentally determined quantities regard the R
branch ((viower, I) = (Vupper. I +1)) and the P branch ((viewer. I) = (Vupper, [ — 1)),
where vjyer is the vibrational quantum number of the initial state. while vyppe, is
the vibrational quantum number of the final state. They are related to transition
energies through the equations [36]

ERN)-EP()=E

Vupper

(I+1)-E

Vupper

({1 = 1) = DE2p e (1), (6)

ER([ - l) - EP(I + 1) = E"-'Iower(l = 1) - Eulower(l - L)
= DEZ«’v’low—;r(])' (T

~—

234



where in general

DEy(I) = Ey(I +1) — By(I - 1). (8)

AJ = 2 staggering can then be estimated by using Eq. (2), with E; () replaced
by DE; ,(I):

1
AEZUtI) = E(GDEZ,U(I) - 4DE‘2,U(I - 2) - 4DE2,11(I F 2)
+DEy (I —4) + DEy (1 +4)). 9)

3.2 Interpretation of observations

Results for several rotational bands in different electronic and vibrational states of
various diatomic molecules have been given in Figs 3-9 of Ref. [35]. We say that
AJ = 2 staggering is observed if the quantity AE;(/) exhibits alternating signs
with increasing I ([ is increased by 2 units each time). The magnitude of AE;(7) is
usually of the order of 1073~107" times the size of the interlevel separation energy.

The staggering patterns appearing in Figs 3-9 of Ref. [35] can be explained by
the assumption that the staggering observed is due to the presence of one or more
bandcrossings [37,38]. The following points support this assumption:

1) It is known [39] that bandcrossing occurs in cases in which the interband in-
teraction is weak. In such cases only the one or two levels closest to the crossing
point are affected [40]. However, if one level is influenced by the crossing, in the
corresponding staggering figure six points get influenced. For example, if E(16) is
influenced by the crossing, the quantities DE5(15) and DE5(17) are influenced (see
Eq. (8) ), so that in the corresponding figure the points AE,(I) with I = 11, 13,
15, 17, 19, 21 are influenced, as seen from Eq. (9). This fact explains why points
showing appreciable staggering appear in the figures of Ref. [35] in groups of 6 at a
time.

2) It is clear that if bandcrossing occurs, large staggering should appear in approx-
imately the same angular momentum regions of both even levels and odd levels. In
the figures of Ref. [35] this is indeed the case.

3) It is clear that when two bands cross each other, maximum staggering will appear
at the angular momentum for which the energies of the relevant levels of each band
are approximately equal [40]. If this angular momentum value happens to be odd,
then AE,(]) for even values of I in this region (the group of 6 points centered
at this I) will show larger staggering than the AE5(I) for odd values of [ in the
corresponding region, and vice versa. For example, if the closest approach of two
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bands occurs for I = 31, then AEy(I) for even values of I in the I = 26-36 region
will show larger staggering than AFE5([) for odd values of I in the same region.
This is in agreement with the empirical observation in the figures of Ref. [35] that
in some cases the odd levels show larger staggering than the even levels, while in
other cases the opposite holds.

4) The presence of staggering in the “upper” (electronically excited) bands and the
lack of staggering in the “lower” (electronic ground state) bands, observed in the
figures of Ref. [35], can be attributed to the fact that the electronically excited
bands have several neighbours with which they can interact, while the bands built
on the electronic ground state are relatively isolated, and therefore no bandcrossings
occur in this case. In the case of the CrD molecule, in particular, it is known [32]
that there are many strong Cr atomic lines present, which frequently overlap the
relatively weaker (electronically excited) molecular lines. In addition, Ne atomic
lines are present [32]. Similarly, in the case of the YD molecule the observed spectra
are influenced by Y and Ne atomic lines [31], while in the case of the CrH molecule
there are Ne and Cr atomic lines influencing the molecular spectra [33].

5) The fact that consistency between results for the same band calculated from
two different sets of data is observed in the figures of Ref. [35] only in the cases in
which the staggering is much larger than the experimental error, corroborates the
bandcrossing explanation. The fact that the results obtained in areas in which the
staggering is of the order of the experimental error, or even smaller, appear in the
figures of Ref. [35] to be random, points towards the absence of any real effect in
these regions.

It should be noticed that bandcrossing has been proposed [41-43] as a possible
explanation for the appearance of Al = 2 staggering effects in normally deformed
nuclear bands [23,41,43] and superdeformed nuclear bands [42].

The presence of two subsequent bandcrossings can also provide an explanation for
the effect of mid-band disappearance of AJ = 2 staggering observed in superde-
formed bands of some Ce isotopes [15]. The effect seen in the Ce isotopes is very
similar to the mid-band disappearance of staggering seen, for example, in Fig. 3a
of Ref. [35].

In conclusion, several examples of AT = 2 staggering in electronically excited bands
of diatomic molecules have been found. The details of the observed effect are in
agreement with the assumption that it is due to one or more bandcrossings. In
these cases the magnitude of the effect is clearly larger than the experimental error.
In cases in which an effect of the order of the experimental error appears, it has been
seen that this is an artifact of the method used, since different sets of data from the
same experiment and for the same molecule lead to different staggering results for
the same rotational band. The present work emphasizes the need to ensure in all
cases (including staggering candidates in nuclear physics) that the effect is larger
than the experimental error and, in order to make assumptions about any new
symmetry, that it is not due to a series of bandcrossings.

236



4 Al =1 staggering in rotational bands of diatomic molecules
4.1 Formalism

We have seen that AJ = 2 staggering appears in several rotational bands of di-
atomic molecules, and that this effect can be attributed to interband interactions
(bandcrossings). In what follows we are going to look for Al = 1 staggering in
molecular bands free from AJ = 2 staggering, in order to make sure that Al =1
staggering is not an effect due to the same cause as Al = 2 staggering.

In analogy with Eq. (2), Al = 1 staggering in nuclei can be measured by the
quantity

1
AEL—Y(I) = E(&Elﬂ(]) - 4E1Y7(I - 1) - 4E1,7(I + 1)
+E1,(I = 2) + E14(1 + 2)), (10)

where

Evo(I) = E(I +1) - E(I). (11)

The transition energies E; (/) are determined directly from experiment.

As we have already seen, in the case of molecules [36] the experimentally determined
quantities regard the R branch ((viower;I) = (Vupper, I + 1)) and the P branch
{((viowers I) = (Vupper, I — 1)), which are related to transition energies through Eqs
(6) and (7). In order to be able to use an expression similar to that of Eq. (10) for the
study of A/ = 1 staggering in molecular bands we need transition energies similar
to those of Eq. (11), i.e. transition energies between levels differing by one unit of
angular momentum. However, Eqs (6) and (7} can provide us only with transition
energies between levels differing by two units of angular momentum. Assuming for
a band E(0) = 0 we can determine from Eqs (6) or (7) all of its levels with even [/

Eyopper (2) = ER(1) - EP(1), (12)
Eyozper(4) = Euppper (2) + ER(3) - EZ(3),... (13)
Eypu..(2) = EX0) - EP(2), (14)
Evper () = By, (2) + ER(2) - EP(4), ... (15)

v

In order to be able to determine the levels with odd I from Eqs (6) and (7) in an
analogous way, one needs £{1). Then

Eyupper (3) = By, (1) + ER(2) = EP(2), (16)

Vupper (
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Eyupper () = Eupppar (3) + ER(4) — EF(4),... (17)
By, (3) = By, (1) + ER(1) — EF(3), (18)

Eyper(8) =E +ER(3) - EF(5),... (19)

Ulowcr(

For the determination of E(1) one could use the overall fit of the experimental data
(for the R and P branches) by a Dunham expansion [44]

E(I) =T, + B, I(I +1) = D,[I(I +1)]?
+H,U(I+ )P + LI+ 1)), (20)

which is usually given in the experimental papers. We found, however, that it is
more accurate to fit by a Dunham expansion separately the transition energies for
the even levels, as they are obtained from the experimental data through Eqgs (6)
and (7), and separately the transition energies for the odd levels, obtained from the
same equations. The two sets of parameters (one for the even levels and one for the
odd levels) obtained in this way are slightly different, as we shall see below, a fact
that is an additional indication of some kind of relative displacement between the
even and the odd levels, i.e. a fingerprint of AT = 1 staggering. We then determine
E(1) from the Dunham expansion obtained for the odd levels.

The separate Dunham expansions just mentioned are also useful from another view-
point. In several cases the experimental data for the R and P branches are “bro-
ken”, i.e. for certain values of the angular momentum the relevant measurements are
missing. Then the Dunham expansions can be used for “mending” the sequence of
experimental data, as shown in the following example. Suppose that in some exper-
iment EF(18) is missing. The energies E,,_, (I) with I = 2-18 can be determined
in the way described by Egs (18), (19), ...In the next step, however, which is

B, (20) = By, (18) + ER(18) — EP(20), (21)

the problem shows up, since Ef(18) is unknown. In this case we have made the
following choice: We determine E,,_,_ (20) from the Dunham expansion for the
even levels of this band and then use Eq. (21) in order to determine the “missing”
value Ef(18).

After determining the energy levels by the procedure described above, we estimate
AJ =1 staggering by using the following analogue of Eq. (10),

AEy (I) = Ilg(eDEL,U(J) —4DE; (I - 1) — 4DE; (I +1)
+DEy (I = 2) + DEy (I +2)), (22)
where
DE,, = E,(I) - E,(I - 1). (23)

(8]
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Table 1

Dunham coefficients (Eq. 20) in cm~! for various v = 0 bands in the ground X6+
state of CrD. In the first column the source of the data (taken from Ref. [32]), which
regard the 0-0 band of the ASTT-X6%T+ system of CrD, is given, while in the last
column the angular momentum Ip,;, up to which the fitting has been performed is
indicated. In the last line of the table the parameters resulting from the overall fit
performed in Ref. [32] are shown for comparison.

B, 107D, 107°H, Iner
R1,P1 even 3.14377 8.28450 —15.2168 18
R1,P1 odd 3.14537 9.21941 0.416427 19
R2,P2 even 3.14332 9.10426 15.9856 40
R2,P2 odd 3.14344 9.11832 1.64908 41
R3,P3 even 3.14312 9.14380 1.75501 36
R3,P3odd 3.14326 9.16420 1.88112 35
Ref. [32] 3.14249 9.08803  1.5934

4.2 Observations

The formalism described above has been applied [45] to the 0-0 bands of the A®T+-
X8+ system of CrD [32]. Attention has been focused on the ground XL state,
which is known to be free from A7 = 2 staggering effects [35], while the A®S+ state
is known to exhibit Al = 2 staggering effects, which are fingerprints of interband
interactions (bandcrossings) [35]. The Dunham coefficients obtained from the (R1,
P1), (R2, P2), (R3, P3) branches for the even levels and for the odd levels of the
corresponding bands are given in Table 1, while in Fig. 1 of Ref. [45] the corre-
sponding Al = 1 staggering patterns, calculated through Eq. (22) have been given.
The following comments apply:

1) The Dunham coefficients obtained in each case for the even levels are very similar
but not identical to the coefficients obtained for the odd levels, indicating that a
relative displacement of the even levels with respect to the odd levels is present.

2) In Figs la, lc, 1d of Ref. [45] almost constant Al = 1 staggering (of different
magnitude in each case) is seen. No interpolations of missing experimental data
have been used in these figures. E(1) in all figures (and E(2) in Figs 1lc, 1d, for
which the experimental value of E£(0) is missing) have been calculated using the
Dunham expansion (Eq. (20)). The experimental errors are very small (of the order
of 0.001 cm~! for the R and P branches) and thus cannot be seen in the figures.
It is clear that AJ = 1 staggering is an effect much larger than the experimental
errors.

3) Concerning the error in the determination of E(1), the following observations can
be made: From the numerical values of the Dunham coefficients reported in Table 1
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and the form of Eq. (20) it is clear that for 7 = 1 most of the error will come from
the B,I(I + 1) term, which in this case is 2B,. From the differences between the
values of B, reported in Table 1 we see that the error of B, will be of the order of
0.002 cm™!. Therefore the error of F(1) will be of the order of 0.004 cm™!, which
is much smaller than the Al =1 staggering seen in Figs la, 1c, 1d of Ref. [45].

4) Fig. 1b of Ref. [45] is an extension of Fig. la, in which the missing experimental
value of R(18) has been determined in the way indicated by Eq. (21). The observed
“jump” in the staggering at the point corresponding to the interpolation shows the
sensitivity of the staggering to small errors in the transition energies. In fact, as we
see from Eq. (21), the “jump” is due to the fact that E(20) has been determined
from the relevant Dunham expansion. It is easily seen that an error of the order of
0.002 cm~! in B, (as estimated in 3) ) can cause an error of the order of 0.84 cm™!
in E(20), for which the first term in the Dunham expansion is 420B,. Indeed, the
“jump” in Fig. 1b is of the order of 1 cm~1.

4.3 Algebraic models

As we have seen in the previous subsection, there is evidence for Al = 1 staggering
of constant magnitude in the v = 0 bands of the ground X®Z* state of the molecule
CrD. It is useful at this point to recall algebraic models used in nuclear structure,
which predict constant Al = 1 staggering. As we have already mentioned, these
models are related to the description of octupole degrees of freedom, which are
responsible for the presence of octupole bands, i.e. bands with a sequence of levels
with I™ = 0%, 17, 2+, 3=, 4%, 5=, ...[46]. These bands are thought to be present
in cases in which the nucleus acquires a shape with octupole deformation, i.e. a
pear-like shape [47].

4.3.1 The u(11) model

In the u(11) model [5], s, p and f bosons are used. Octupole bands are described
in the su(3) limit, which corresponds to the chain

u(11) > u(10) > su(3) D o(3) D o(2). (24)

The relevant basis is

|N7 1Vb7wbv (/\b,,l.lb),[(b,[,["f >, (25)

where N is the total number of bosons labelling the irreps of u(11), N, is the
total number of negative parity bosons (p and f) labelling the irreps of u(10), ws
is the “missing” quantum number in the decomposition u(10)Dsu(3), (s, us) are
the Elliott quantum numbers [48] labelling the irreps of su(3), K, is the “missing”
quantum number in the decomposition su(3)Do(3), I is the angular momentum
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quantum number labelling the irreps of o(3), M is the z-component of the angular
momentum labelling the irreps of o(2). The energy eigenvalues are given by

E(Ny, Ay, oo, I) = o+ BNy + yNJ + kC(Jo, p3) + £'1(I + 1), (26)

where

C(Am) =N+ 4% + Ap+3X + 3p. (27)

It is clear that positive parity states occur when N is even, while negative parity
states occur when N, is odd. In the case of N being even, the ground state band is
sitting in the (3N, 0) irrep, while the odd levels of negative parity are sitting in the
(3N —3,0) irrep. Then from Eq. (22) one obtains

(B4 (2N — 1) + 18xN), for I =even,

_J+
AE(I) = {*(’3+7(2N_ 1) + 18«N), for I =odd.

(28)

In the case of NV being odd, the ground state band is sitting in the (3.V — 3, 0) irrep,
while the odd levels of negative parity are sitting in the (3N, 0) irrep. Then from
Eq. (22) one has

—(8+7(2N — 1)+ 18xN), for I =even,

AE(I) = { +(B8+7(2N —1) +18&N), for I =odd. )

Since N is a constant for a given nucleus, expressing the number of valence nucleon
pairs counted from the nearest closed shells, we see that Al = 1 staggering of
constant amplitude is predicted.

This model could be used in molecular physics as an extension of the molecular
vibron model [49,50], in which rovibrational spectra of diatomic molecules are de-
scribed in terms of s and p bosons, the latter representing the degree of freedom
corresponding to the distance between the two atoms of which the molecule is com-
posed, while the boson number N indicates the number of excitation quanta. The f
boson will then correspond to the octupole degree of freedom, which could be due
to the fact that the diatomic molecule consists of two unequal atoms, therefore it
possesses a pear-like shape, which is a fingerprint of octupole deformation [47].

4.3.2 The u(16) model

In the u(16) model [5,6], s, p, d and f bosons are taken into account. Octupole
bands are described in the su(3) limit, which corresponds to the chain

u(16) O ua(6) ® up(10) D sua(3) @ sup(3) D su(3) D o(3) D o(2). (30)
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The relevant basis is

[N, Nay, No,wh, (Aas fa), (Ao, i), (A, ), K LM >, (31)

where N is the total number of bosons labelling the irreps of u(16), vV, is the
number of positive parity bosons labelling the irreps of u,(6), and V; is the number
of negative parity bosons labelling the irreps of uy(10). The rest of the quantum
numbers are analogous to those appearing in the basis of the u(11) model, described
above. su(3) is the algebra obtained by adding the corresponding generators of
su,(3) and sup(3). The energy eigenvalues are given by

E(*'Vb~ Ags Has by Hby )‘7 Hy [) =a+ 3Ny + 7‘\Tf;z
+K'aC(/\m,ua) + KbC(/\b, lub) + H‘C(’\'N) + KI[(.[ + l) (32)

The ground state band is sitting in the (2/V,0), irrep (which contains N bosons of
positive parity and no bosons of negative parity), while the odd levels of negative
parity are sitting in the (2N —2,0), (3.0), (2N +1,0) band (which contains V —1
bosons of positive parity and one boson of negative parity). Then from Eq. (22) one
has

—(B+ v — 2k, (4N + 1) + 18k, + 4k(N + 1)), [ =even,

(347 — 2ha(4N + 1) + 18ks + 4k(N +1)), [=odd. Y

AE(I) = {

Therefore AT = 1 staggering of constant amplitude is predicted.

In comparison with the molecular vibron model [49], which uses the bosons s and
p, the u(16) model contains in addition the bosons d and f, corresponding to
quadrupole and octupole deformations respectively. The constant A/ = 1 stag-
gering in rotational bands can be used as an argument in favour of the use of the
f boson, as we have already seen. The d boson could be added if an argument in
favour of its use is found. For the present needs the f boson suffices, i.e. one can
remain within the framework of the u(11) model.

4.3.3 The Vector Boson Model

In the Vector Boson Model (VBM) [7-9], the collective states are described in terms
of two distinct kinds of vector bosons, whose creation operators £+ and nt are o(3)
vectors and in addition transform according to two independent su(3) irreducible
representations (irreps) of the type (A, #) = (1,0). Octupole bands are described in
the su(3) limit of the VBM, which corresponds to the chain

u(6) O su(3) @ u(2) D so(3) @ u(l). (34)

The relevant basis is

IN, (A p), (N, T),K,1,To >, (35)
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where NV is the total number of bosons labelling the irreps of u(6), (A, x) are the
Elliott quantum numbers [48] labelling the irreps of su(3), N and T are the quantum
numbers labelling the irreps of u(2), K is the “missing” quantum number in the
su(3) Dso(3) decomposition, I is the angular momentum quantum number labelling
the irreps of so(3), and T is the pseudospin projection quantum number labelling
the irreps of u(1). The algebras su(3) and u(2) are mutually complementary [51],
their irreps (A, 4) and (N, T') being related by

N =X+ 2, T=M\2. (36)
The energy eigenvalues are given by

EN, M Mu,K,1,To=T) = aN + agN(N +5)
/\2
+azC (A, p) +b3I(I1+1) + a1 T (37)

The ground state band is sitting in the (0, z) = (0, %) irrep of su(3), while the odd

levels of negative parity are sitting in the (2,4 — 1) = (2, % - 1) irrep. Then from
Eq. (22) one obtains

—(6az + ay), for I = even,

+(6az + 1), for I =odd. L38)

Amnz{

Therefore AT = 1 staggering of constant amplitude is predicted.

The vector bosons of the VBM are interpreted as quanta of elementary collective
excitations, the boson number N counting the number of excitation quanta. There-
fore vector bosons are equally suitable for the description of collective effects both
in nuclei and in molecules.

4.4 Interpretation

We have shown evidence for a A/ = 1 staggering effect (i.e. a relative displace-
ment of the odd levels with respect to the even levels) in rotational bands of di-
atomic molecules (like the v = 0 bands of the ground X8+ state of CrD) which
are known to be free from AJ = 2 staggering (i.e. free from interband interac-
tions/bandcrossings). The magnitude of the AI = 1 staggering has been found to
be constant as a function of the angular momentum I, in agreement with the pre-
dictions of algebraic models including octupole degrees of freedom, suggesting a
possible explanation of the effect in terms of pear-like shapes, occuring in diatomic
molecules in general because of the inequality of the masses of the two atoms of
which the molecule is composed. The existence of the effect is corroborated by the
fact that Dunham fits of the even levels separately and the odd levels separately for
the same rotational band lead to similar but different parameter sets.
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Al = 1 staggering of constant magnitude has also been seen in several bands of
AgH [52]. If the explanation of the effect in terms of octupole (pear-like) shapes due
to the inequality of the masses of the two atoms composing the molecule is correct,
the effect should be detectable in several cases of bands of diatomic molecules free
from bandcrossing effects, while it should be absent in diatomic molecules consisting
of two identical atoms. A search for more examples of molecular bands exhibiting
constant A/ = 1 staggering is clearly needed, before final conclusions could be
made. A starting point for this search can be these of the bands of the molecules
YD, CrH, CoH, which have been found [35] to be free from AI = 2 staggering.

In the case of the AgH molecule, in addition to the bands showing constant Al =1
staggering, there are also bands showing Al = 1 staggering of varying amplitude
[52]. The physical origins of such variations are an interesting problem.

5 Conclusions

We have seen that the AT = 2 staggering observed in superdeformed nuclear bands is
also occuring in certain electronically excited rotational bands of diatomic molecules,
in which it is attributed to interband interactions (bandcrossings). (A preliminary
version of this work has been given in [53], while a complete version has appeared
in [35].) In addition, we have seen that a Al = 1 staggering effect (i.e. a relative
displacement of the levels with even angular momentum I with respect to the levels
of the same band with odd I) is observed in molecular bands free from Al = 2
staggering (i.e. free from interband interactions/bandcrossings). The magnitude of
the Al = 1 staggering is found to be constant as a function of /, in agreement with
the predictions of algebraic models (u(11) model, u(16) model, Vector Boson Model)
used for the description of octupole nuclear bands, i.e. bands corresponding to pear-
like shapes, suggesting that the presence of Al = 1 staggering in rotational bands
of diatomic molecules could be attributed in general to the inequality of the masses
of the two atoms of which the molecule is composed. The existence of the AT =1
staggering effect is corroborated by the fact that separate Dunham expansions for
the even levels and the odd levels of such bands give similar but different parameter
sets.

However, further work is called for on the following point: Non-constant Al = 1
staggering has been seen in some bands of AgH [52]. The physical reasons behind the
variations of the staggering amplitude should be clarified and possible improvements
of the relevant algebraic models, which will make them able to incorporate this effect,
should be searched for.
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