
  

  HNPS Advances in Nuclear Physics

   Vol 10 (1999)

   HNPS1999

  

 

  

  The 3-Dimensional g-Deformed Harmonic
Oscillator and a Unified Description of Magic
Numbers of Metal Clusters 

  N. Karoussos, Dennis Bonatsos, P. P. Raychev, R. P.
Roussev   

  doi: 10.12681/hnps.2192 

 

  

  

   

To cite this article:
  
Karoussos, N., Bonatsos, D., Raychev, P. P., & Roussev, R. P. (2019). The 3-Dimensional g-Deformed Harmonic
Oscillator and a Unified Description of Magic Numbers of Metal Clusters. HNPS Advances in Nuclear Physics, 10,
215–230. https://doi.org/10.12681/hnps.2192

Powered by TCPDF (www.tcpdf.org)

https://epublishing.ekt.gr  |  e-Publisher: EKT  |  Downloaded at: 17/04/2025 13:04:57



The 3-Dimensional g-Deformed Harmonic 
Oscillator and a Unified Description of Magic 

Numbers of Metal Clusters 

N. Karoussosa, Dennis Bonatsosa, P. P. Raychev6 

and R. P. Roussev6 

a Institute of Nuclear Physics, NCSR iiDemokritosv, GR-153 10 Aghia Paraskevi, 
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Abstract 

Magic numbers predicted by a 3-dimensional (/-deformed harmonic oscillator with 
u9(3) D soq(3) symmetry are compared to experimental data for atomic clusters 
of alkali metals (Li, Na, K, Rb, Cs), noble metals (Cu, Ag, Au), divalent metals 
(Zn, Cd), and trivalent metals (Al, In), as well as to theoretical predictions of 
jellium models, Woods-Saxon and wine bottle potentials, and to the classification 
scheme using the 3n + / pseudo quantum number. In alkali metal clusters and noble 
metal clusters the 3-dimensional çr-deformed harmonic oscillator correctly predicts 
all experimentally observed magic numbers up to 1500 (which is the expected limit 
of validity for theories based on the filling of electronic shells), while in addition it 
gives satisfactory results for the magic numbers of clusters of divalent metals and 
trivalent metals, thus indicating that ug(3), which is a nonlinear extension of the 
u(3) symmetry of the spherical (3-dimensional isotropic) harmonic oscillator, is a 
good candidate for being the symmetry of systems of several metal clusters. 

1 I n t r o d u c t i o n 

Metal clusters have been recently the subject of many investigations (see [1-4] for 
relevant reviews). One of the first fascinating findings in their study was the ap
pearance of magic numbers, analogous to but different from the magic numbers 
appearing in the shell structure of atomic nuclei [5], Different kinds of metallic 
clusters [alkali metals (Na [6-9], Li [10,11], Κ [12], Rb [13], Cs [7,14,15]), noble 

metals (Cu [16,17], Ag [16.18], Au [16]), divalent metals of the IIB group (Zn, Cd) 

[19], trivalent metals of the III group (Al, In) [20] ] exhibit different sets of magic 
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numbers. The analogy between the magic numbers observed in metal clusters and 
the magic numbers observed in atomic nuclei led to the early description of metal 
clusters in terms of the Nilsson-Clemenger model [21], which is a simplified version 
of the Nilsson model [22,23] of atomic nuclei, in which no spin-orbit interaction 
is included. Further theoretical investigations in terms of the jellium model [24,25] 
demonstrated that the mean field potential in the case of simple metal clusters bears 
great similarities to the Woods-Saxon potential of atomic nuclei, with a slight modi
fication of the "wine bottle" type [26]. The Woods-Saxon potential itself looks like a 
harmonic oscillator truncated at a certain energy value and flattened at the bottom. 
It should also be recalled that an early schematic explanation of the magic numbers 
of metallic clusters has been given in terms of a scheme intermediate between the 
level scheme of the 3-dimensional harmonic oscillator and the square well [l]. Again 
in this case the intermediate potential resembles a harmonic oscillator flattened at 
the bottom. 

On the other hand, modified versions of harmonic oscillators [27,28] have been 
recently investigated in the novel mathematical framework of quantum algebras 
[29,30], which are nonlinear generalizations of the usual Lie algebras. The spectra 
of ç-deformed oscillators increase either less rapidly (for q being a phase factor, i.e. 
q = etr with τ being real) or more rapidly (for q being real, i.e. q = er with r being 

real) in comparison to the equidistant spectrum of the usual harmonic oscillator [31], 

while the corresponding (WKB-equivalent) potentials [32] resemble the harmonic 

oscillator potential, truncated at a certain energy (for q being a phase factor) or 

not (for q being real), the deformation inflicting an overall widening or narrowing 

of the potential, depending on the value of the deformation parameter q. 

Very recently, a ç-deformed version of the 3-dimensional harmonic oscillator has 
been constructed [33], taking advantage of the u?(3) D so?(3) symmetry [34,35]. The 
spectrum of this 3-dimensional r/-deformed harmonic oscillator has been found [33] 
to reproduce very well the spectrum of the modified harmonic oscillator introduced 
by Nilsson [22,23], without the spin-orbit interaction term. Since the Nilsson model 
without the spin orbit term is essentially the Nilsson-Clemenger model used for 
the description of metallic clusters [21], it is worth examining if the 3-dimensional 
^-deformed harmonic oscillator can reproduce the magic numbers of simple metallic 
clusters. This is the subject of the present investigation. 

In Section 2 the 3-dimensional ç-deformed harmonic oscillator will be briefly de
scribed, while in Section 3 the magic numbers provided by this oscillator will be 
compared with the experimental data for Na and Li clusters, as well as with the 
predictions of other theories (jellium model, Woods-Saxon and wine bottle poten
tials, classification scheme using the 3rc + I pseudo quantum number). Additional 
comparisons of magic numbers predicted by the 3-dimensional ç-deformed harmonic 
oscillator to experimental data and to the results of other theoretical approaches 
will be made in Section 4 (for other alkali metal clusters and noble metal clusters), 
Section 5 (for divalent group IIB metal clusters), and Section 6 (for trivalent group 
III metal clusters), while Section 7 will contain discussion of the present results and 
plans for further work. 
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2 T h e 3 - d i m e n s i o n a l q -de formed h a r m o n i c o s c i l l a t o r 

The space of the 3-dimensional g-deformed harmonic oscillator consists of the com
pletely symmetric irreducible representations of the quantum algebra ug(3). In this 
space a deformed angular momentum algebra, so,(3), can be defined [33]. The 
Hamiltonian of the 3-dimensional çr-deformed harmonic oscillator is defined so that 
it satisfies the following requirements: 

a) It is an so,(3) scalar, i.e. the energy is simultaneously measurable with the q-
deformed angular momentum related to the algebra so?(3) and its z-projection. 

b) It conserves the number of bosons, in terms of which the quantum algebras ug(3) 
and sOq(3) are realized. 

c) In the limit ç —̂  1 it is in agreement with the Hamiltonian of the usual 3-
dimensional harmonic oscillator. 

It has been proved [33] that the Hamiltonian of the 3-dimensional ç-deformed har
monic oscillator satisfying the above requirements takes the form 

H, = su» {[*],"+> - « i l | p c f >}, (i; 

(2) 
where Ν is the number operator and C\ is the second order Casimir operator of 

the algebra so7(3), while 

M = £^Ç (2) 
q- q 

is the definition of g-numbers and ç-operators. 

The energy eigenvalues of the 3-dimensional ç-deformed harmonic oscillator are then 

[33] 

Eq(nJ) = hu0i[n}qn+1 - ? ( ? " ^ [/][/ + 1 ] | , (3) 

where η is the number of vibrational quanta and / is the eigenvalue of the angular 

momentum, obtaining the values / = η, η — 2 , . . . , 0 or 1. 

In the limit of q —» 1 one obtains limg_).i£'g(n,/) = hojQn, which coincides with the 

classical result. For small values of the deformation parameter r (where q = eT) one 

can expand Eq. (3) in powers of r obtaining [33] 

Eq(n,l) — hujQîi - hüjQT (1(1 + 1) - n(n + 1)) 
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-Τιω0τ
2 (l{l + 1) - ì n ( n + 1)(2η + 1)) + ö ( r 3 ) . (4) 

Eq. (4) to leading order bears great similarity to the modified harmonic oscillator 
suggested by Nilsson [22,23] (with the spin-orbit term omitted) 

where 

V = iftwp2 - %ωκ'{12- < L 2 > v ) , ρ = r J ^ , (5) 

< ν >N= m±*>. (6) 

The energy eigenvalues of Nilsson?s modified harmonic oscillator are [22,23] 

Eni = Λωη- Ηωμ' (/(/ + 1) - -n(n + 3) J . (7) 

It has been proved [33] that the spectrum of the 3-dimensional «/-deformed harmonic 

oscillator closely reproduces the spectrum of the modified harmonic oscillator of 

Nilsson. In both cases the effect of the /(/ -j- 1) term is to flatten the bottom of 

the harmonic oscillator potential, thus making it to resemble the Woods-Saxon 

potential. 

The level scheme of the 3-dimensional «/-deformed harmonic oscillator (for huo = 1 

and τ — 0.038) is given in Table 1, up to a certain energy. Each level is characterized 

by the quantum numbers η (number of vibrational quanta) and / (angular momen

tum). Next to each level its energy, the number of particles it can accommodate 

(which is equal to 2(2/+ 1)) and the total number of particles up to and including 

this level are given. If the energy difference between two successive levels is larger 

than 0.39, it is considered as a gap separating two successive shells and the energy 

difference is reported between the two levels. In this way magic numbers can be 

easily read in the table: they are the numbers appearing above the gaps, written in 

boldface characters. 

Calculating additional level schemes of the 3-dimensional «/-deformed harmonic os

cillator (for different values of the parameter r) we remark that the small magic 

numbers do not change much as the parameter τ is varied, while large magic num

bers get more influenced by the parameter modification. 

3 Sodium and l ithium clusters 

The magic numbers provided by the 3-dimensional «//-deformed harmonic oscillator 

in Table 1 are compared to available experimental data for Na clusters [6-9] and Li 
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Table 1 
Energy spectrum. Eq(n. / ) , of the 3-dimensional ç-deformed harmonie oscillator (Eq. 
(3)), for huiQ = 1 and q = eT with r = 0.038. Each level is characterized by η (the 

number of vibrational quanta) and / (the angular momentum). 2(2/+ 1) represents 

the number of particles each level can accommodate, while under "total" the total 

number of particles up to and including this level is given. Magic numbers, reported 

in boldface, correspond to energy gaps larger than 0.39, reported between the rele

vant couples of energy levels. 

η 

0 

1 

2 

2 

3 

3 

4 

4 

4 

5 

5 

6 

5 

6 

7 

6 

6 

/ 

0 

1 

2 

0 

3 

1 

4 

2 

0 

5 

3 

6 

1 

4 

7 

2 

0 

Eq(nJ) 

0.000 

1.000 

1.000 

1.006 

2.006 

2.243 

0.780 

3.023 

0.397 

3.420 

0.638 

4.058 

0.559 

4.617 

4.854 

5.116 

0.724 

5.841 

6.204 

6.238 

0.860 

7.098 

7.328 

7.657 

7.895 

2(2/+1) 

2 

6 

10 

2 

14 

6 

18 

10 

2 

22 

14 

26 

6 

18 

30 

10 

2 

total 

2 

8 

18 

20 

34 

40 

58 

68 

70 

92 

106 

132 

138 

156 

186 

196 

198 

η 

7 

8 

7 

7 

9 

8 

8 

10 

9 

8 

8 

9 

11 

10 

9 

9 

12 

10 

11 

/ 

5 

8 

3 

1 

9 

6 

4 

10 

7 

2 

0 

5 

11 

8 

3 

1 

12 

6 

9 

Eq{n,l) 

0.502 

8.396 

8.494 

0.627 

9.121 

0.397 

9.518 

9.709 

9.743 

0.894 

10.637 

10.980 

11.146 

11.196 

11.434 

0.781 

12.215 

12.315 

12.614 

12.939 

0.397 

13.336 

13.721 

13.863 

14.154 

2(2/+1) 

22 

34 

14 

6 

38 

26 

18 

42 

30 

10 

2 

22 

46 

34 

14 

6 

50 

26 

38 

total 

220 

254 

268 

274 

312 

338 

356 

398 

428 

438 

440 

462 

508 

542 

556 

562 

612 

638 

676 
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clusters [10,11] in Table 2 (columns 2-7). The following comments apply: 

i) Only magic numbers up to 1500 can be considered, since it is known that filling of 
electronic shells is expected to occur only up to this limit [6]. For large clusters be
yond this point it is known that magic numbers can be explained by the completion 
of icosahedral or cuboctahedral shells of atoms [6]. 

ii) Up to 600 particles there is consistency among the various experiments and 
between the experimental results in one hand and our findings in the other. 

iii) Beyond 600 particles the results of the four experiments, which report magic 
numbers in this region, are quite different. However, the results of all four experi
ments are well accommodated by the present model. In addition, each magic number 
predicted by the model is supported by at least one experiment. This holds not only 
up to the magic number 1012. included in Table 2, but up to the magic number 
1500, not shown in Table 2 because of space limitations. 

In Table 2 the predictions of a simple theoretical model [5], the rounded square well 
potential which is intermediate between the non-deformed 3-dimensional harmonic 
oscillator and the square well potential, are also reported (in column 8) for compar
ison. It is clear that the predictions of this model are in partial agreement with the 
experimental data up to the magic number 138, since the model fails by predicting 
magic numbers at 68, 70, 106, 112, 156, which are not observed. 

It should be noticed at this point that the first few magic numbers of alkali clusters 
(up to 92) can be correctly reproduced by the assumption of the formation of shells of 
atoms instead of shells of delocalized electrons [36], this assumption being applicable 
under conditions not favoring derealization of the valence electrons of alkali atoms. 

Comparisons among the present results, experimental data for Na clusters (by Mar
tin et al. [6] (column 2) and Pedersen et al. [9] (column 3)), experimental data for 
Li clusters (Bréchignac et al. [10] (column 4) ), and theoretical predictions more 
sophisticated than these reported in Table 2, can be made in Table 3, where magic 
numbers predicted by various jellium model calculations (columns 5 and 6. [2.37]), 
Woods-Saxon and wine bottle potentials (column 7, [38]), as well as by a classifica
tion scheme using the in +1 pseudo quantum number (column 8, [6]) are reported. 
The following observations can be made: 

i) All magic numbers predicted by the 3-dimensional ç-deformed harmonic oscillator 
are supported by at least one experiment, with no exception. 

ii) The jellium models, as well as the 3n + / classification scheme, predict magic 
numbers at 186. 540/542, which are not supported by experiment. The jellium 
models also predict a magic number at 748 or 758, again without support from 
experiment. The Woods-Saxon and wine bottle potentials of Ref. [38] predict a 
magic number at 68, for which no experimental support exists. The present scheme 
avoids problems at these numbers. It should be noticed, however, that in the cases 
of 186 and 542 the energy gap following them in the present scheme is 0.329 and 
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Table 2 
Magic numbers provided by the 3-dimensional çr-deformed harmonic oscillator (Ta
ble 1), reported in column 1, are compared to the experimental data for Na clusters 
by Martin et al. [6] (column 2), Bjornholm et al. [7] (column 3), Knight et al. [8] 
(column 4). and Pedersen et al. [9] (column 5), as well as to the experimental data 
for Li clusters by Bréchignac et al. ([10] in column 6, [11] in column 7). The magic 
numbers provided [5] by a rounded square well potential intermediate between the 
(non-deformed) 3-dimensional harmonic oscillator and the square well potential are 
also shown (in column 8) for comparison. See text for discussion. 

th. exp. exp. exp. exp. exp. exp. th. 

present Na Na Na Na Li Li int. 

Tab. 1 Ref. [6] Ref.[7] Ref. [8] Ref. [9] Ref. [10] Ref. [11] Ref. [5] 

2 2 2 2 2 2 

8 8 8 8 8 8 

18 

20 20 

34 

40 40 

58 58 

68,70 

92 90.92 92 92 92 93 92 92 

106,112 

138 134 138 138 

198 191 198 156 

258 

264 262 

344 342 336 

442 442 440 

554 552 546 

680 

695 710 

800 822 820 

902 

970 1025 1065 

(18) 

20 

34 

40 

58 

18 

20 

34 

40 

58 

20 

40 

58 

20 

40 

58 

40 

58 

138 

198 

254 

268 

338 

440 

556 

676 

694 

832 

912 

1012 

138 

198±2 

263±5 

341 ±5 

443±5 

557±5 

700±15 

840±15 

1040±20 

138 

196 

260±4 

344±4 

440±2 

558±8 



Table 3 
Magic numbers provided by the 3-dimensional (/-deformed harmonic oscillator (Ta
ble 1), reported in column 1, are compared to the experimental data for Na clusters 
by Martin et al. [6] (column 2), and Pedersen et al. [9] (column 3), as well as to the 
experimental data for Li clusters by Bréchignac et al. [10] (column 4) and to the 
theoretical predictions of various jellium model calculations reported by Brack [2] 
(column 5) and Bulgac and Lewenkopf [37] (column 6), the theoretical predictions 
of Woods-Saxon and wine bottle potentials reported by Nishioka et al. [38] (column 
7), as well as to the magic numbers predicted by the classification scheme using the 
3n -f / pseudo quantum number, reported by Martin et al. [6] (column 8). See text 
for discussion. 

th. exp. exp. exp. th. th. 

present Na Na Li jell. jell. 

Tab. 1 Ref. [6] Ref. [9] Ref. [10] Ref. [2] Ref. [3'. 

th. th. 

WS 3π + / 

Ref. [38] Ref. [6] 

2 

(18) 

20 

34 

40 

58 

92 

138 

198 

254 

268 

338 

440 

556 

676 

694 

18 

20 

34 

40 

58 

90,92 

138 

198±2 

263±5 

341 ±5 

443±5 

557±5 

700±15 

40 

58 

92 

138 

198 

264 

344 

442 

554 

680 

93 

134 

191 

262 

342 

442 

552 

695 

20 

34 

58 

92 

138 

186 

254 

338 

438,440 

542 

556 

676 

758 

34 

58 

92 

138 

186 

254 

338 

440 

542 

556 

676 

748 

20 

40 

58 

68 

92 

138 

198 

254 

268 

338 

440 

562 

694 

18 

34 

58 

90 

132 

186 

252 

332 

428 

540 

670 

•?'•>·-> 



0.325 respectively (see Table 1), i.e. quite close to the threshold of 0.39 which we 
have considered as the minimum energy gap separating different shells. One could 
therefore qualitatively remark that 186 and 542 are "built in'1 the present scheme 
as "secondary" (not very pronounced) magic numbers. 

4 Other alkali metals and noble metals 

Experimental data for various additional alkali metal clusters [K [12], column 2), 
Rb ([13], column 3), Cs [7,14], column 4)] and for various noble metal clusters [Cu 
([16], column 5), Ag [18] in column 6 and [16] in column 7), Au ([16], column 8)] 
are reported in Table 4, along with the theoretical predictions of the 3-dimensional 
ç-deformed harmonic oscillator given in Table 1. The following comments apply: 

i) In the cases of Rb [13], Cu [16], Ag [16], Au [16], what is seen experimentally is 
cations of the type Rb^}, C u ^ , Ag^ , Aujy, which contain Ν atoms each, but Ν - 1 

electrons. The magic numbers reported in Table 6 are electron magic numbers in 

all cases. 

ii) All alkali metals and noble metals shown in Tables 2 and 4 give the same magic 

numbers, at least within the ranges reported in the tables. For most of these metals 

the range of experimentally determined magic numbers is rather limited, with Na 

[6], Cs [7,14], Li [10], and Ag [18] being notable exceptions. 

iii) The magic numbers occuring in Na [6], Cs [7.14], Li [10], and Ag [18] are almost 

identical, and are described very well by the oscillator of Table 1. The limited data 

on K, Rb, Cu, Au, also agree with the magic numbers of Table 1. 

5 Divalent metals of the I I B group 

For these metals the quantities determined experimentaly [19] are numbers of atoms 

exhibiting "magic" behaviour. Each atom has two valence electrons, therefore the 

magic numbers of electrons are twice the magic numbers of atoms. The magic num

bers of electrons for Zn and Cd clusters [19] are reported in Table 5 (in columns 4 

and 5 respectively), along with the magic numbers predicted by the 3-dimensional q-

deformed harmonic oscillator for two different parameter values (reported in columns 

1 and 2 respectively), and the magic numbers given by a potential intermediate be

tween the simple harmonic oscillator and the square well potential ([19], column 3). 

The following comments can be made: 

i) The experimental magic numbers for Zn and Cd [19] are almost identical. Magic 

numbers reported in parentheses are "secondary" magic numbers, while the magic 

numbers without parentheses are the "main" ones, as indicated in [1]. 

ii) In column 1 of Table 5 magic numbers of the 3-dimensional (/-deformed harmonic 
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Table 4 
Magic numbers provided by the 3-dimensional ç-deformed harmonic oscillator (Ta
ble 1), reported in column 1, are compared to the experimental data for clusters of 
Κ [12] (column 2), Rb [13] (column 3), Cs [7.14] (column 4), Cu [16] (column 5), Ag 

([18] in column 6, [16] in column 7), and Au [16] (column 8). See text for discussion. 

th. exp. exp. exp. exp. exp. exp. exp. 

present Κ Rb Cs Cu Ag Ag Au 

Tab.l Ref.[12] Ref. [13] Ref. [7,14] Ref. [16] Ref. [18] Ref. [16] Ref. [16] 

2 

8 

(18) 

20 

34 

40 

58 

92 

138 

198 

254 

268 

338 

440 

556 

676 

694 

832 

912 

1012 

2 

8 

20 

40 

58 

2 

8 

18 

20 

34 

40 

2 

8 

18 

20 

34 

40 

58 

92 

138 

198±2 

263±5 

341±5 

443±5 

557±5 

700±15 

840±15 

1040±15 

2 

8 

20 

34 

40 

58 

92 

138 

8 

20 

34 

(40) 

58 

92 

138 

186±4 

268±5 

338±15 

440±15 

2 

8 

20 

34 

40 

58 

92 

138 

198 

2 

8 

20 

34 

58 

92 

138 

oscillator with τ = 0.038 and energy gaps larger than 0.26 are reported. Decreasing 

the energy gap considered as separating different shells from 0.39 (used in Table 1) 

to 0.26 (used in Table 5) has as a result that the numbers 70 and 106 become magic, 

in close agreement with the experimental data. Similar but even better results are 

gotten from the 3-dimensional ç-deformed harmonic oscillator reported in column 
2 of Table 5. This oscillator is characterized by r = 0.020, while the energy gap 
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Table 5 
Magic numbers provided by the 3-dimensional çr-deformed harmonic oscillator of 
Table 1 with energy gap equal to 0.26 (column 1) and by a 3-dimensional ^-deformed 
harmonic oscillator characterized by τ = 0.020 and energy gap equal to 0.20 (column 
2), are compared to the experimental data for Zn clusters [19] (column 4) and Cd 
clusters [19] (column 5), as well as to the theoretical predictions of a potential 
intermediate between the simple harmonic oscillator and the square well potential 
[19] (column 3). In addition, the magic numbers provided by a 3-dimensional q-
deformed harmonic oscillator charactrized by r = 0.050 and energy gap equal to 
0.38 (reported in column 6) are compared to the experimental data for Al [20] 
(column 7) and In [20] (column 8). See text for discussion. 

th. 

present 

r=0.038 

2 

8 

20 

34 

40 

58 

70 

92 

106 

138 

th. 

present 

7-=0.02 

2 

8 

20 

34 

40 

58 

70 

92 

106 

112 

138 

th. 

Ref. [19] 

20 

34 

40 

58 

68 

70 

92 

102 

112 

138 

exp. 

Zn 

Ref. [19] 

20 

(36) 

40 

56 

(60) 

(64) 

70 

(80) 

(82) 

92 

108 

(114) 

(120) 

138 

exp. 

Cd 

Ref. [19] 

20 

(36) 

40 

56 

(60) 

(64) 

70 

(80) 

92 

108 

(120) 

138 

th. 

present 

r=0.05 

138 

186 

254 

338 

398 

440 

486 

542 

612 

676 

748 

832 

890 

912 

1006 

1074 

1100 

1206 

exp. 

Al 

Ref. [20] 

138 

164 

198 

336 

438 

468±6 

534±6 

594±6 

688±6 

742±6 

832±10 

918±10 

lOOOilO 

1112±10 

1224±10 

exp. 

In 

Ref. [20] 

138 

198 

252 

225 



between different shells is set equal to 0.20 . We observe that the second oscillator 
predicts an additional magic number at 112, in agreement with experiment, but 
otherwise gives the same results as the first one. We remark therefore that the gen
eral agreement between the results given by the 3-dimensional ç-deformed harmonic 
oscillator and the experimental data is not sensitively dependent on the parameter 
value, but, in contrast, quite different parameter values (r = 0.038, τ = 0.020) pro

vide quite similar sets of magic numbers (at least in the region of relatively small 

magic numbers). 

iii) Both oscillators reproduce all the "main" magic numbers of Zn and Cd, while the 

intermediate potential between the simple harmonic oscillator and the square well 

potential, reported in column 3, reproduces all the "main" magic numbers except 

108. 

6 Trivalent metals of the III group 

Magic numbers of electrons for the trivalent metals Al and In [20] are reported in Ta

ble 5 (in columns 7 and 8 respectively), along with the predictions of a 3-dimensional 

ç-deformed harmonic oscillator with r = 0.050 and energy gap separating different 
shells equal to 0.38 (column 6). The following comments can be made: 

i) It is known [1,20] that small magic numbers in clusters of Al and In cannot be 
explained by models based on the filling of electronic shells, because of symmetry 
breaking caused by the ionic lattice [20], while for large magic numbers this problem 
does not exist. 

ii) The magic numbers predicted by the 3-dimensional çr-deformed harmonic oscilla
tor reported in column 6 of Table 5 agree quite well with the experimental findings, 
with an exception in the region of small magic numbers, where the model fails to 
reproduce the magic numbers 164 and 198, predicting only a magic number at 186. 
In addition the oscillator predicts magic numbers at 398, 890, 1074, which are not 
seen in the experiment reported in column 7. 

7 Discussion 

The following general remarks can now be made: 

i) From the results reported above it is quite clear that the 3-dimensional «/-deformed 
harmonic oscillator describes very well the magic numbers of alkali metal clusters 
and noble metal clusters in all regions, using only one free parameter (q = er with 
τ = 0.038). It also provides an accurate description of the "main" magic num

bers of clusters of divalent group IIB metals, either with the same parameter value 

(r = 0.038) or with a different one (r = 0.020). In addition it gives a satisfactory 



description of the magic numbers of clusters of trivalent group III metals with a 
different parameter value (r = 0.050). 

ii) It is quite remarkable that the 3-dimensional çr-deformed harmonic oscillator 
reproduces long sequences of magic numbers (Na, Cs, Li, Ag) at least as accurately 
as other, more .ophisticated, models by using only one free parameter [q = eT). Once 
the parameter is fixed, the whole spectrum is fixed and no further manipulations 
can be made. This can be considered as evidence that the 3-dimensional ç-deformed 
harmonic oscillator owns a symmetry (the u7(3) D so9(3) symmetry) appropriate 
for the description of the physical systems under study. 

iii) It has been remarked [6] that if η is the number of nodes in the solution of the 

radial Schrödinger equation and / is the angular momentum quantum number, then 
the degeneracy of energy levels of the hydrogen atom characterized by the same n+l 
is due to the so(4) symmetry of this system, while the degeneracy of energy levels 
of the spherical harmonic oscillator (i.e. of the 3-dimensional isotropic harmonic 
oscillator) characterized by the same 2n + I is due to the su(3) symmetry of this 
system, 'in + I has been used [6] to approximate the magic numbers of alkali metal 
clusters with some success, but no relevant Lie symmetry could be determined (see 
also [39.40]). In view of the present findings the lack of Lie symmetry related to 
3n + l is quite clear: the symmetry of the system appears to be a quantum algebraic 
symmetry (ug(3)), which is a nonlinear extension of the Lie symmetry u(3). 

iv) An interesting problem is to determine a WKB-equivalent potential giving 
(within this approximation) the same spectrum as the 3-dimensional g-deformed 
harmonic oscillator, using methods similar to these of Ref. [32]. The similarity be
tween the results of the present model and these provided by the Woods-Saxon 
potential (column 7 in Table 3) suggests that the answer should be a harmonic 
oscillator potential flattened at the bottom, similar to the Woods-Saxon potential. 
If such a WKB-equivalent potential will show any similarity to a wine bottle shape, 
as several potentials used for the description of metal clusters do [24-26], remains 
to be seen. 

In summary, we have shown that the 3-dimensional g-deformed harmonic oscillator 
with u7(3) D sog(3) symmetry correctly predicts all experimentally observed magic 
numbers of alkali metal clusters and of noble metal clusters up to 1500, which is 
the expected limit of validity for theories based on the filling of electronic shells. 
In addition it gives a good description of the "main" magic numbers of group IIB 
(divalent) metal clusters, as well as a satisfactory description of group III (trivalent) 
metal clusters. This indicates that ug(3), which is a nonlinear deformation of the 
u(3) symmetry of the spherical (3-dimensional isotropic) harmonic oscillator, is a 
good candidate for being the symmetry of systems of several metal clusters. 
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