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Abstract

Magic numbers predicted by a 3-dimensional g-deformed harmonic oscillator with
u,(3) D s04(3) symmetry are compared to experimental data for atomic clusters
of alkali metals (Li, Na, K, Rb, Cs), noble metals (Cu, Ag, Au), divalent metals
(Zn, Cd), and trivalent metals (Al, In), as well as to theoretical predictions of
jellium models, Woods-Saxon and wine bottle potentials, and to the classification
scheme using the 3n +! pseudo quantum number. In alkali metal clusters and noble
metal clusters the 3-dimensional g-deformed harmonic oscillator correctly predicts
all experimentally observed magic numbers up to 1500 (which is the expected limit
of validity for theories based on the filling of electronic shells), while in addition it
gives satisfactory results for the magic numbers of clusters of divalent metals and
trivalent metals, thus indicating that uy(3), which is a nonlinear extension of the
u(3) symmetry of the spherical (3-dimensional isotropic) harmonic oscillator, is a
good candidate for being the symmetry of systems of several metal clusters.

1 Introduction

Metal clusters have been recently the subject of many investigations (see [1-4] for
relevant reviews). One of the first fascinating findings in their study was the ap-
pearance of magic numbers, analogous to but different from the magic numbers
appearing in the shell structure of atomic nuclei [5]. Different kinds of metallic
clusters [alkali metals (Na [6-9], Li [10,11], K [12], Rb [13], Cs [7,14,15]), noble
metals (Cu [16,17], Ag [16,18], Au [16]), divalent metals of the IIB group (Zn, Cd)
[19], trivalent metals of the III group (Al, In) [20] ] exhibit different sets of magic
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numbers. The analogy between the magic numbers observed in metal clusters and
the magic numbers observed in atomic nuclei led to the early description of metal
clusters in terms of the Nilsson—Clemenger model [21], which is a simplified version
of the Nilsson model [22,23] of atomic nuclei, in which no spin-orbit interaction
is included. Further theoretical investigations in terms of the jellium model [24,25]
demonstrated that the mean field potential in the case of simple metal clusters bears
great similarities to the Woods—Saxon potential of atomic nuclei, with a slight modi-
fication of the “wine bottle” type [26]. The Woods-Saxon potential itself looks like a
harmonic oscillator truncated at a certain energy value and flattened at the bottom.
It should also be recalled that an early schematic explanation of the magic numbers
of metallic clusters has been given in terms of a scheme intermediate between the
level scheme of the 3-dimensional harmonic oscillator and the square well [1]. Again
in this case the intermediate potential resembles a harmonic oscillator flattened at
the bottom.

On the other hand, modified versions of harmonic oscillators [27,28] have been
recently investigated in the novel mathematical framework of quantum algebras
[29,30], which are nonlinear generalizations of the usual Lie algebras. The spectra
of g-deformed oscillators increase either less rapidly {for 4 being a phase factor. i.e.
q = €™ with 7 being real) or more rapidly (for ¢ being real, i.e. ¢ = e” with 7 being
real) in comparison to the equidistant spectrum of the usual harmonic oscillator [31],
while the corresponding (WKB-equivalent) potentials [32] resemble the harmonic
oscillator potential, truncated at a certain energy (for ¢ being a phase factor) or
not (for ¢ being real), the deformation inflicting an overall widening or narrowing
of the potential, depending on the value of the deformation parameter q.

Very recently, a ¢-deformed version of the 3-dimensional harmonic oscillator has
been constructed [33], taking advantage of the u,(3) D so,(3) symmetry [34,35]. The
spectrum of this 3-dimensional ¢-deformed harmonic oscillator has been found [33]
to reproduce very well the spectrum of the modified harmonic oscillator introduced
by Nilsson [22.23], without the spin-orbit interaction term. Since the Nilsson model
without the spin orbit term is essentially the Nilsson—Clemenger model used for
the description of metallic clusters [21], it is worth examining if the 3-dimensional
g-deformed harmonic oscillator can reproduce the magic numbers of simple metallic
clusters. This is the subject of the present investigation.

In Section 2 the 3-dimensional g-deformed harmonic oscillator will be briefly de-
scribed, while in Section 3 the magic numbers provided by this oscillator will be
compared with the experimental data for Na and Li clusters, as well as with the
predictions of other theories (jellium model, Woods-Saxon and wine bottle poten-
tials, classification scheme using the 3n + [ pseudo quantum number). Additional
comparisons of magic numbers predicted by the 3-dimensional ¢g-deformed harmonic
oscillator to experimental data and to the results of other theoretical approaches
will be made in Section 4 (for other alkali metal clusters and noble metal clusters),
Section 5 (for divalent group [IB metal clusters), and Section 6 {for trivalent group
IIT metal clusters), while Section 7 will contain discussion of the present results and
plans for further work.
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2 The 3-dimensional g-deformed harmonic oscillator

The space of the 3-dimensional g-deformed harmonic oscillator consists of the com-
pletely symmetric irreducible representations of the quantum algebra u,(3). In this
space a deformed angular momentum algebra, so,(3), can be defined [33]. The
Hamiltonian of the 3-dimensional ¢g-deformed harmonic oscillator is defined so that
it satisfies the following requirements:

a) It is an so4(3) scalar, i.e. the energy is simultaneously measurable with the ¢-
deformed angular momentum related to the algebra so,(3) and its z-projection.

b) It conserves the number of bosons, in terms of which the quantum algebras u,(3)
and s04(3) are realized.

c) In the limit ¢ — 1 it is in agreement with the Hamiltonian of the usual 3-
dimensional harmonic oscillator.

It has been proved [33] that the Hamiltonian of the 3-dimensional ¢g-deformed har-
monic oscillator satisfying the above requirements takes the form

H, = hwo {[N]q*”“ R [’2]q—1)€£2’} » &Y

where [V is the number operator and 0,52) is the second order Casimir operator of
the algebra so4(3), while

SO il .
el =2 (2)

is the definition of g-numbers and g-operators.

The energy eigenvalues of the 3-dimensional g-deformed harmonic oscillator are then

(33]

Eand) = o {[n]qnﬂ Lk i

g+ 11}, 3)

where n is the number of vibrational quanta and [ is the eigenvalue of the angular
momentum, obtaining the values [ =n,n—-2,...,0 or 1.

In the limit of ¢ — 1 one obtains limg—; E¢(n,!) = hwgn, which coincides with the
classical result. For small values of the deformation parameter 7 (where ¢ = ") one
can expand Eq. (3) in powers of T obtaining [33]

Ey(n, 1) = hwon — hwor (I(14+ 1) — n(n+ 1))

N
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~hupr? (1(1 +1) = zn(n+ )20+ 1)) +0(7). ()

Eq. (4) to leading order bears great similarity to the modified harmonic oscillator
suggested by Nilsson [22,23] (with the spin-orbit term omitted)

M
V= %ﬁwpz — hwr!(L2- < L? >p), p=ry/ %d—, (5)

where

N(N +:
<L?>y= —E{_—Q (6)

The energy eigenvalues of Nilsson’s modified harmonic oscillator are [22,23]

Foi = hwn — hwy! (l(l +1) - }z—n(n + 3)> s (7)

It has been proved [33] that the spectrum of the 3-dimensional ¢g-deformed harmonic
oscillator closely reproduces the spectrum of the modified harmonic oscillator of
Nilsson. In both cases the effect of the I({ + 1) term is to flatten the bottom of
the harmonic oscillator potential, thus making it to resemble the Woods-Saxon
potential.

The level scheme of the 3-dimensional ¢-deformed harmonic oscillator (for fiwg = 1
and 7 = 0.038) is given in Table 1, up to a certain energy. Each level is characterized
by the quantum numbers n (number of vibrational quanta) and ! (angular momen-
tum). Next to each level its energy, the number of particles it can accommodate
(which is equal to 2(2/ + 1)) and the total number of particles up to and including
this level are given. If the energy difference between two successive levels is larger
than 0.39, it is considered as a gap separating two successive shells and the energy
difference is reported between the two levels. In this way magic numbers can be
easily read in the table: they are the numbers appearing above the gaps. written in
boldface characters.

Calculating additional level schemes of the 3-dimensional ¢-deformed harmonic os-
cillator (for different values of the parameter 7) we remark that the small magic

numbers do not change much as the parameter 7 is varied. while large magic num-
bers get more influenced by the parameter modification.

3 Sodium and lithium clusters

The magic numbers provided by the 3-dimensional ¢-deformed harmonic oscillator
in Table 1 are compared to available experimental data for Na clusters [6-9] and Li
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Table 1

Energy spectrum. Eg4(n.l), of the 3-dimensional ¢-deformed harmonic oscillator (Eq.
(3)), for hwg =1 and q = ¢” with 7 = 0.038. Each level is characterized by n (the
number of vibrational quanta) and [ (the angular momentum). 2(2! 4+ 1) represents
the number of particles each level can accommodate, while under “total” the total
number of particles up to and including this level is given. Magic numbers, reported
in boldface, correspond to energy gaps larger than 0.39, reported between the rele-
vant couples of energy levels.

n | Eg(n,l) 2(214+1) total | n [ E,(n,d) 2(204+1) total
0 0 0.000 2 2 0.502

1.000 7 5 8.396 22 220
1 1 1.000 6 8 8 8 8.494 34 254

1.006 0.627
2 2 2.006 10 18 T 3 9.121 14 268
20 2.243 2 20 0.397

0.780 7T 1 9.518 6 274
3 3 3.023 14 34| 9 9 9.709 38 312

0.397 8 6 9.743 26 338
31 3.420 6 40 0.894

0.638 8 4 10.637 18 356
4 4 4.058 18 58 || 10 10 10.980 42 398

0.559 9 7 11.146 30 428
4 2 4.617 10 68 8 2 11.196 10 438
4 0 4.854 2 70 8 0 11.434 2 440
5 5 5.116 22 92 0.781

0.724 9 5 12215 22 462
5 3 5.841 14 106 || 11 11 12.315 46 508
6 6 6.204 26 132 | 10 8  12.614 34 542
5 1 6.238 6 138 9 3 12939 14 556

0.860 0.397
6 4 7.098 18 156 9 1 13.336 6 562
T T 7.328 30 186 || 12 12 13.721 50 612
6 2 7.657 10 196 || 10 6  13.863 26 638
6 0 7.895 2 198 || 11 9 14.154 38 676
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clusters [10,11] in Table 2 (columns 2-7). The following comments apply:

i) Only magic numbers up to 1500 can be considered, since it is known that filling of
electronic shells is expected to occur only up to this limit [6]. For large clusters be-
yond this point it is known that magic numbers can be explained by the completion
of icosahedral or cuboctahedral shells of atoms [6].

ii) Up to 600 particles there is consistency among the various experiments and
between the experimental results in one hand and our findings in the other.

iii) Beyond 600 particles the results of the four experiments, which report magic
numbers in this region, are quite different. However, the results of all four experi-
ments are well accommodated by the present model. In addition, each magic number
predicted by the model is supported by at least one experiment. This holds not only
up to the magic number 1012, included in Table 2, but up to the magic number
1500, not shown in Table 2 because of space limitations.

In Table 2 the predictions of a simple theoretical model [5], the rounded square well
potential which is intermediate between the non-deformed 3-dimensional harmonic
oscillator and the square well potential, are also reported (in column 8) for compar-
ison. It is clear that the predictions of this model are in partial agreement with the
experimental data up to the magic number 138, since the model fails by predicting
magic numbers at 68, 70, 106, 112, 156, which are not observed.

It should be noticed at this point that the first few magic numbers of alkali clusters
(up to 92) can be correctly reproduced by the assumption of the formation of shells of
atoms instead of shells of delocalized electrons [36], this assumption being applicable
under conditions not favoring delocalization of the valence electrons of alkali atoms.

Comparisons among the present results, experimental data for Na clusters (by Mar-
tin et al. [6] (column 2) and Pedersen et al. [9] {column 3)), experimental data for
Li clusters (Bréchignac et al. [10] (column 4) ), and theoretical predictions more
sophisticated than these reported in Table 2, can be made in Table 3, where magic
numbers predicted by various jellium model calculations (columns 5 and 6, [2,37]),
Woods-Saxon and wine bottle potentials (column 7, [38]), as well as by a classifica-
tion scheme using the 3n +{ pseudo quantum number (column 8, [6]) are reported.
The following observations can be made:

i) All magic numbers predicted by the 3-dimensional g-deformed harmonic oscillator
are supported by at least one experiment, with no exception.

ii) The jellium models, as well as the 3n + [ classification scheme, predict magic
numbers at 186, 540/542, which are not supported by experiment. The jellium
models also predict a magic number at 748 or 758, again without support from
experiment. The Woods-Saxon and wine bottle potentials of Ref. [38] predict a
magic number at 68, for which no experimental support exists. The present scheme
avoids problems at these numbers. It should be noticed, however. that in the cases
of 186 and 542 the energy gap following them in the present scheme is 0.329 and
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Table 2

Magic numbers provided by the 3-dimensional ¢-deformed harmonic oscillator (Ta-
ble 1), reported in column 1, are compared to the experimental data for Na clusters
by Martin et al. [6] (column 2), Bjernholm et al. [7] (column 3), Knight et al. [§]
(column 4), and Pedersen et al. [9] (column 5), as well as to the experimental data
for Li clusters by Bréchignac et al. ([10] in column 6, [11] in column 7). The magic
numbers provided [5] by a rounded square well potential intermediate between the
(non-deformed) 3-dimensional harmonic oscillator and the square well potential are
also shown (in column 8) for comparison. See text for discussion.

th. exp. exp. exp. exp. exp. exp. th.
present Na Na Na Na Li Li int.
Tab. 1 Ref.[6] Ref.[7] Ref.[8] Ref.9] Ref.[10] Ref.[11] Ref.[5]
2 2 2 2 2 2
8 8 8 8 8 8
(18) 18 18
20 20 20 20 20 20
34 34 34
40 40 40 40 40 40 40
38 58 58 58 58 58 58
68,70
92 90.92 92 92 92 93 92 92
106,112

138 138 138 138 134 138 138
198 198+2 196 198 191 198 156
254 26044 258

268 263+5 264 262

338 34115 34444 344 342 336

440 44315  440%2 442 442 440

556 357+£5  558+£8 554 352 546

676 680

694 70015 695 710

832 840+15 800 822 820

912 902

1012 1040£20 970 1025 1065
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Table 3

Magic numbers provided by the 3-dimensional ¢-deformed harmonic oscillator (Ta-
ble 1), reported in column 1, are compared to the experimental data for Na clusters
by Martin et al. [6] (column 2), and Pedersen et al. [9] (column 3), as well as to the
experimental data for Li clusters by Bréchignac et al. [10] (column 4) and to the
theoretical predictions of various jellium model calculations reported by Brack [2]
(column 5) and Bulgac and Lewenkopf [37] (column 6), the theoretical predictions
of Woods-Saxon and wine bottle potentials reported by Nishioka et al. [38] (column
7), as well as to the magic numbers predicted by the classification scheme using the
3n + ! pseudo quantum number, reported by Martin et al. [6] (column 8). See text
for discussion.

th. exp. exp. exp. th. th. th. th.
present Na Na Li jell. jell. WS 3n+1
Tab. 1 Ref.[6] Ref.[9] Ref.[10] Ref.[2] Ref.[37] Ref.[38] Ref.[6]
2 2 2 2 2
8 8 8 8 8
(18) 18 18
20 20 20 20
34 34 34 34 34
40 40 40 40
58 58 58 58 58 58 58
68
92 90,92 92 93 92 92 92 90
138 138 138 134 138 138 138 132
186 186 186
198 198+2 198 191 198
254 254 254 254 252
268 263+5 264 262 268
338 341+£5 344 342 338 338 338 332
440 443+5 442 442 438,440 440 440 428
542 542 540
556 5575 554 552 556 556 562
676 680 676 676 670
694 700£15 695 694
58 748




0.325 respectively (see Table 1), i.e. quite close to the threshold of 0.39 which we
have considered as the minimum energy gap separating different shells. One could
therefore qualitatively remark that 186 and 542 are “built in” the present scheme
as “secondary” (not very pronounced) magic numbers.

4 Other alkali metals and noble metals

Experimental data for various additional alkali metal clusters [K [12], column 2),
Rb ([13], column 3), Cs [7,14], column 4)] and for various noble metal clusters [Cu
([16], column 3), Ag [18] in column 6 and [16] in column T), Au ([16], column 8)]
are reported in Table 4, along with the theoretical predictions of the 3-dimensional
g-deformed harmonic oscillator given in Table 1. The following comments apply:

i) In the cases of Rb [13], Cu [16], Ag [16], Au [16], what is seen experimentally is
cations of the type Rbf\',, Cuf;, Agj(,, Auj{,, which contain N atoms each, but N —1
electrons. The magic numbers reported in Table 6 are electron magic numbers in
all cases.

ii) All alkali metals and noble metals shown in Tables 2 and 4 give the same magic
numbers, at least within the ranges reported in the tables. For most of these metals
the range of experimentally determined magic numbers is rather limited, with Na
[6], Cs [7,14], Li [10], and Ag [18] being notable exceptions.

iii) The magic numbers occuring in Na [6], Cs [7,14], Li [10], and Ag [18] are almost
identical, and are described very well by the oscillator of Table 1. The limited data
on K, Rb, Cu, Au, also agree with the magic numbers of Table 1.

5 Divalent metals of the IIB group

For these metals the quantities determined experimentaly [19] are numbers of atoms
exhibiting “magic” behaviour. Each atom has two valence electrons, therefore the
magic numbers of electrons are twice the magic numbers of atoms. The magic num-
bers of electrons for Zn and Cd clusters [19] are reported in Table 5 (in columns 4
and 5 respectively), along with the magic numbers predicted by the 3-dimensional ¢-
deformed harmonic oscillator for two different parameter values (reported in columns
1 and 2 respectively), and the magic numbers given by a potential intermediate be-
tween the simple harmonic oscillator and the square well potential ([19], column 3).
The following comments can be made: '

i) The experimental magic numbers for Zn and Cd [19] are almost identical. Magic
numbers reported in parentheses are “secondary” magic numbers, while the magic

numbers without parentheses are the “main” ones, as indicated in [1].

ii) In column 1 of Table 5 magic numbers of the 3-dimensional ¢g-deformed harmonic

o
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Table 4

Magic numbers provided by the 3-dimensional g-deformed harmonic oscillator (Ta-
ble 1), reported in column 1, are compared to the experimental data for clusters of
K [12] (column 2), Rb [13] (column 3), Cs [7,14] (column 4), Cu [16] (column 5), Ag
([18] in column 6, [16] in column 7), and Au [16] (column 8). See text for discussion.

th. exp. exp. exp. exp. exp. exp. exp.
present K Rb Cs Cu Ag Ag Au
Tab.l  Ref.[12] Ref.[13] Ref.[7,14] Ref.[16] Ref.[18] Ref.[16] Ref.[16]
2 2 2 2 2 2 2
8 8 8 8 8 8 b 8
(18) 18 18
20 20 20 20 20 20 20 20
34 34 34 34 34 34 34
40 40 40 40 40 (40) 40
58 58 58 58 58 58 58
92 92 92 92 92 92
138 138 138 138 138 138
198 198+2 186x4 198
254
268 263£5 268+5
338 341+£5 338<£15
440 44345 440%15
556 557£5
676
694 70015
832 840£15
912
1012 1040+15

oscillator with 7 = 0.038 and energy gaps larger than 0.26 are reported. Decreasing
the energy gap considered as separating different shells from 0.39 (used in Table 1)
to 0.26 (used in Table 5) has as a result that the numbers 70 and 106 become magic,
in close agreement with the experimental data. Similar but even better results are
gotten from the 3-dimensional g-deformed harmonic oscillator reported in column
2 of Table 5. This oscillator is characterized by 7 = 0.020, while the energy gap
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Table 5

Magic numbers provided by the 3-dimensional g-deformed harmonic oscillator of
Table 1 with energy gap equal to 0.26 (column 1) and by a 3-dimensional ¢-deformed
harmonic oscillator characterized by 7 = 0.020 and energy gap equal to 0.20 (column
2), are compared to the experimental data for Zn clusters [19] (column 4) and Cd
clusters [19] (column 5), as well as to the theoretical predictions of a potential
intermediate between the simple harmonic oscillator and the square well potential
[19] (column 3). In addition, the magic numbers provided by a 3-dimensional ¢-
deformed harmonic oscillator charactrized by r = 0.050 and energy gap equal to
0.38 (reported in column 6) are compared to the experimental data for Al [20]
(column 7) and In [20] (column 8). See text for discussion.

th. th. th. exp. exp. th. exp. exp.
present  present Zn Cd present Al In
7=0.038 7=0.02 Ref.[19] Ref.[19] Ref.[19] | 7=0.05 Ref.[20] Ref.[20]
2 2 138 138 138
8 8 164
20 20 20 20 20 186
34 34 34 (36) (36) 198 198
40 40 40 40 40 254 252
58 38 58 56 56 338 336
(60) (60) 398
68 (64) (64) 440 438
70 70 70 70 70 486 468+6
(80) (80) 542 53416
(82) 612 594+6
92 92 92 92 92 676 688+6
106 106 102 108 108 748 74216
112 112 (114) 832 832+10
(120) (120) 890
138 138 138 138 138 912 918410
1006 100010
1074
1100 1112410
1206 1224410

o
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between different shells is set equal to 0.20 . We observe that the second oscillator
predicts an additional magic number at 112, in agreement with experiment, but
otherwise gives the same results as the first one. We remark therefore that the gen-
eral agreement between the results given by the 3-dimensional g-deformed harmonic
oscillator and the experimental data is not sensitively dependent on the parameter
value, but, in contrast, quite different parameter values (7 = 0.038, 7 = 0.020) pro-
vide quite similar sets of magic numbers (at least in the region of relatively small
magic numbers).

iii) Both oscillators reproduce all the “main” magic numbers of Zn and Cd, while the
intermediate potential between the simple harmonic oscillator and the square well
potential, reported in column 3, reproduces all the “main” magic numbers except
108.

6 Trivalent metals of the III group

Magic numbers of electrons for the trivalent metals Al and In [20] are reported in Ta-
ble 5 (in columns 7 and 8 respectively), along with the predictions of a 3-dimensional
g-deformed harmonic oscillator with 7 = 0.050 and energy gap separating different
shells equal to 0.38 (column 6). The following comments can be made:

i) It is known [1,20] that small magic numbers in clusters of Al and In cannot be
explained by models based on the filling of electronic shells, because of symmetry
breaking caused by the ionic lattice [20], while for large magic numbers this problem
does not exist.

it) The magic numbers predicted by the 3-dimensional g-deformed harmonic oscilla-
tor reported in column 6 of Table 5 agree quite well with the experimental findings,
with an exception in the region of small magic numbers, where the model fails to
reproduce the magic numbers 164 and 198, predicting only a magic number at 186.
In addition the oscillator predicts magic numbers at 398, 890, 1074, which are not
seen in the experiment reported in column 7.

7 Discussion

The following general remarks can now be made:

i) From the results reported above it is quite clear that the 3-dimensional g-deformed
harmonic oscillator describes very well the magic numbers of alkali metal clusters
and noble metal clusters in all regions, using only one free parameter (¢ = e” with
T = 0.038). It also provides an accurate description of the “main” magic num-
bers of clusters of divalent group IIB metals, either with the same parameter value
(r = 0.038) or with a different one (7 = 0.020). In addition it gives a satisfactory
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description of the magic numbers of clusters of trivalent group III metals with a
different parameter value (7 = 0.050).

ii) It is quite remarkable that the 3-dimensional g-deformed harmonic oscillator
reproduces long sequences of magic numbers (Na, Cs, Li, Ag) at least as accurately
as other, more -ophisticated, models by using only one free parameter (g = €7). Once
the parameter is fixed, the whole spectrum is fixed and no further manipulations
can be made. This can be considered as evidence that the 3-dimensional ¢-deformed
harmonic oscillator owns a symmetry (the us(3) D so4(3) symmetry) appropriate
for the description of the physical systems under study.

iii) It has been remarked [6] that if n is the number of nodes in the solution of the
radial Schrodinger equation and [ is the angular momentum quantum number, then
the degeneracy of energy levels of the hydrogen atom characterized by the same n+/{
is due to the so(4) symmetry of this system, while the degeneracy of energy levels
of the spherical harmonic oscillator (i.e. of the 3-dimensional isotropic harmonic
oscillator) characterized by the same 2n + [ is due to the su(3) symmetry of this
system. 3n + | has been used [6] to approximate the magic numbers of alkali metal
clusters with some success, but no relevant Lie symmetry could be determined (see
also [39.40]). In view of the present findings the lack of Lie symmetry related to
3n+1is quite clear: the symmetry of the system appears to be a quantum algebraic
symmetry (u,(3)), which is a nonlinear extension of the Lie symmetry u(3).

iv) An interesting problem is to determine a WKB-equivalent potential giving
(within this approximation) the same spectrum as the 3-dimensional g-deformed
harmonic oscillator. using methods similar to these of Ref. [32]. The similarity be-
tween the results of the present model and these provided by the Woods-Saxon
potential (column 7 in Table 3) suggests that the answer should be a harmonic
oscillator potential flattened at the bottom, similar to the Woods—Saxon potential.
If such a WKB-equivalent potential will show any similarity to a wine bottle shape,
as several potentials used for the description of metal clusters do [24-26], remains
to be seen.

In summary, we have shown that the 3-dimensional ¢g-deformed harmonic oscillator
with u,(3) D so,4(3) symmetry correctly predicts all experimentally observed magic
numbers of alkali metal clusters and of noble metal clusters up to 1500, which is
the expected limit of validity for theories based on the filling of electronic shells.
In addition it gives a good description of the “main” magic numbers of group IIB
(divalent) metal clusters, as well as a satisfactory description of group III (trivalent)
metal clusters. This indicates that ug(3), which is a nonlinear deformation of the
u(3) symmetry of the spherical (3-dimensional isotropic) harmonic oscillator, is a
good candidate for being the symmetry of systems of several metal clusters.
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