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Department of Theoretical Physics, Aristotle University of Thessaloniki, GR 
54OO6 Thessaloniki, Greece 

Abstract 

The position- and momentum-space information entropies of the electron distribu­
tions of atomic clusters are calculated using a Woods-Saxon single particle poten­
tial. The same entropies are also calculated for nuclear distributions according to 
the Skyrme parametrization of the nuclear mean field. It turns out that a similar 
functional form S = α + Μη Ν for the entropy as function of the number of particles 
Ν holds approximately for atoms, nuclei and atomic clusters. It is conjectured that 
this is a universal property of a many-fermion system in a mean field. 

Information-theoretical methods have played in recent years an important role in 
the study of quantum mechanical systems [1-10] in two cases: first in the clarification 
of fundamental concepts of quantum mechanics and second in the synthesis of prob­
ability densities in position and momentum spaces. In the first case an important 
step was the discovery of an entropie uncertainty relation (EUR) by Bialynicki-
Birula and Mycielski [1] which for a three-dimensional system has the form: 

5Γ + 5 ^ > 3 ( 1 + 1ηττ), (ft = 1) (1) 

(see also ref. [11] for the one-dimensional case). In (1) Sr is the Shannon information 
entropy in position-space: 

Sr = -Jp(v)\np(r)dr (2) 

Sk is the corresponding entropy in momentum-space: 

Sk = - f n(k)\nn(k)dk (3) 

and p(r), n(k) are the position- and momentum-space density distributions respec­
tively, which are normalized to one. However, for a normalization to the number of 
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particles TV, the following EUR holds [4]: 

Sr + Sk > 37V (1 + In TT) - 27V In TV = 6.4347V - 2iVln TV (4) 

Inequality (1), for the information entropy sum in conjugate spaces, is a joint mea­
sure of uncertainty of a quantum mechanical distribution, since a highly localized 
p(r) is associated with a diffuse ra(k), leading to low Sr and high Sk and vice-
versa. Expression (1) is an information-theoretical uncertainty relation stronger 
than Heisenberg's [1]. We also note that expression (1) does not depend on the unit 
of length in measuring p(r) and n(k) i.e. the sum Sr + Sk is invariant to uniform 
scaling of coordinates, while the individual entropies Sk, Sr are not. The bound (4) 
is attained by Gaussian wavefunctions. 

In [9] a different definition for the information entropy was employed. It is based on a 
phase-space distribution associated with the ground-state density of a many fermion 
system. Various phenomenological models for the density distribution were used for 
a number of nuclei. Nuclear densities calculated within various microscopic mean 
field approaches were also employed. It turned out that the entropy increases from 
crude phenomenological models of the nucleus to more sophisticated (microscopic) 
ones. It was concluded that the larger the information entropy, the better the quality 
of the nuclear density distribution. It seems that the concept of information entropy 
is useful for the study of quantum many body systems. In the present work we use 
an alternative definition i.e. relations (2) and (3). 

This paper addresses the problem of what are the values of 5 r + Sk for different 
many fermion systems (atoms, nuclei, clusters). There is a growing belief in recent 
years that information-theoretic methods will play an increasing role in the future 
for the study of quantum mechanical systems. It is also interesting to find the extent 
of p(r) and n(k) for differnt fermionic systems. 

Gadre [2] derived the following approximate expression for the information entropies 
of electron distributions in atoms: 

Sr + Sk ^ 6.657V - TV In TV (5) 

using Thomas-Fermi theory and Gadre et al [3] derived : 

Sr + 5 f c ~ 6.257TV - 0.993TV In TV (6) 

with Hartree-Fock calculations. Here, TV is the number of electrons. 

Panos and Massen [8] found the following expression for nuclear distributions, em­
ploying the simple harmonic oscillator (HO) model of the nucleus: 

Sr + Sk^ 5.287TV - 1.137V In TV (7) 
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where Ν is the number of nucléons in nuclei. Relations of the same functional form 
hold for Sr and Sk separately but the important quantity is Sr + Sk-

There is a striking similarity of (5), (6) and (7) with the EUR (4), indicating that 
the functional form 

S = aN + bN In Ν (8) 

is universal for a many-fermion system in a mean field. 

However, the above relations were derived for a normalization of p(r) and ra(k) to 

the number of particles N. In the following we find it more convenient to normalize 

to one . There is a simple relationship between the two cases and we can easily 

transform one case to the other according to the relations: 

η r ,, SJnorm = Ν] , ΛΓ Sr[norm = 11 = - ^ ]- + 1η Ν 
Ν 

e r η Sk[norm = Ν] 
Sk[norm = 1J = — - — + In Ν 

Ν 

Hence, we have for normalization to one, the following expressions: 

Sr + Sk — 6.65 + In Ν (atoms, Thomas — Fermi) (9) 

Sr + Sk^ 6.257 + 1.007 In ΛΓ (atoms, Hartree - Fock) (10) 

Sr + 5 f c ~ 5.287 + 0.870 In Ν (nuclei - Η.0.) (11) 

In the present work we extend our calculations for two other cases: the distribution 

of the valence electrons in atomic clusters using a Woods-Saxon single particle po­

tential and the nuclear distribution in nuclei employing the Skyrme parametrization 

of the nuclear mean field. 

In atomic (metallic) clusters the effective radial electronic potential was derived by 

Ekardt [12] in his spherical-jellium-background-model study of the self-consistent 

charge density and the self-consistent effective one-particle potential, using the 

local density approximations. Ekardt's potentials for neutral sodium clusters were 

parametrized in ref. [13] by a Woods-Saxon potential of the form: 

Vws(r) = - \ _ Η ι ^ 

1 + exp[^] 

with VQ - 6 eV, R - r0N
l/3, r0 - 2.25 A and α = 0.74 Â. For a detailed study 

regarding the parametrization of Ekardt's potentials see ref. [14]. 

We solved numerically the Schrödinger equation for atomic clusters with Ζ = 8, 18, 

20, 34, 40, 58, 68, 70. 82, 92, 126 and 168 valence electrons in the potential (12) and 
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found the wave functions of the single-particle states in configuration space and 

by Fourier transform the corresponding ones in momentum space. Using the above 

wave functions, we calculated the electron density p(r) in position space and w(k) in 

momentum space, which were inserted into equations (2), (3) and gave us the values 

of the information entropies Sr and Sk- Then we fitted the form S = a + 6 In Ν to 

these values and obtained the expressions: 

S r ~ 4.185 + 0.924 In Ν (13) 

5 j t ~ 1.706 - 0 . 0 7 5 In Ν (14) 

Sr + 5 f c ~ 5.891 + 0.849 In Ν (15) 

The above relations hold for 8 < Ν < 168. 

Next the nuclear densities p(r) and n(k) for several nuclei ( in the region 4 < 

Ν < 208, where Ν is the number of nucléons) were obtained with Hartree-Fock 
calculations using the Skyrme parametrization of the nuclear mean field. There 
are various parametrizations of the Skyrme interaction, but they affect slightly the 
information entropies [9]. Thus we used the SKIII interaction [15]. Finally, we fitted 
the form 5 = a + b In Ν to the values obtained with SKIII interaction and we found 

the expressions: 

S r ~ 3.865 + 0.659 In Ν (16) 

5 * ~ 1.460 +.0.199 In Ν (17) 

Sr + Sk^ 5.325 + 0.858 In Ν (18) 

The fit is in reasonably good agreement with its H.O. counterpart (comparison of 

relation (18) to (11)), though the individual entropies Sr and Sk do not match with 

the respective HO ones [8] that well. It seems that there is a delicate balance between 

the coordinate and momentum spaces, so that the interesting quantity is the sum 

5 = Sr + Sk (the net information content of the system) and not the individual 

entropies Sr and Sk­

in figure 1 we plot our fitted form S = Sr + Sk = a + b In Ν for atoms (with 

Hartree-Fock, relation (10), upper curve), atomic neutral Na clusters (relation (15), 

middle curve) and nuclei (with Skyrme, relation (18), lower curve). These lines 

correspond to our fitted expressions, while the corresponding values of our numerical 

calculations are denoted by solid circles (clusters) and open circles (nuclei with SKIII 

interaction). The region of values of Ν is wider for nuclei, because in nuclei there 

are two kinds of particles (neutrons and protons), which fill separate potential wells, 

while in clusters there is only one kind of particles (electrons). Thus in clusters we 

go up to higher states than in nuclei. 

A few comments seem appropriate: it is seen that formulas (7) and (18) violate the 

lower limit set in EUR (4) for the limit Ν -*· 1. In fact relations (7) and (18) hold 
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Fig. 1. Information entropy S as function of the number of particles Ν according to 

our fitted expression S = a+b In Ν for atoms, clusters and nuclei. The corresponding 

values of our numerical calculations are denoted by solid circles (clusters) and open 

circles (nuclei). The limiting line corresponding to the lower bound, Sr + Sk — 6.434, 

is also shown. 

only for the region Ν > 4, where the fitting has been performed. The case Ν = 1 

has no meaning for nuclei. The same holds in the case of clusters, where relation 

(15) has been derived for the region Ν > 8. It is also noted that the right-hand-side 

of relation (4) gives a lower bound for Sr + Sk- The values of this sum calculated 

from relations (6), (7), which were derived from a specific model of the atom or 

nucleus, are greater than this lower bound as expected. It is also seen that in all 

examples the slope with In Ν is substantially larger than the limiting slope of the 

EUR (4). This comes from the fact that this uncertainty relation underestimates 

the values of 5 for large systems i.e. formula (4) is not asymptotically correct [2]. 

Concluding, in the present paper we derive an interesting characteristic of infor­

mation entropies Sr and Sk for various systems i.e. atoms (Thomas-Fermi the­

ory. Hartree-Fock), nuclei (Harmonic Oscillator model, Skyrme force) and atomic 

clusters (Woods-Saxon potential). For all of these systems the entropies can be rep­

resented well by a function, which incorporates In Ν linearly i.e. S = a + bin Ν 

where Ν is the number of electrons in atoms or nucléons in nuclei or electrons in 
atomic clusters. We may conjecture that this is a universal property of a many-
fermion system in a mean field. As stated in ref. [3], the information entropies seem 
to be a hidden treasure, as yet remains mostly unexplored. 

Although it is not quite clear why S depends linearly on IniV and how to relate 
S with experimental properties of the different fermionic systems, we hope that 
the present work will stimulate further research on this matter. In atomic systems 
a connection with experiment has already been established. In this case Sr and 
Sk show a close relationship with fundamental and/ or experimentally measurable 
quantities such as e.g. the kinetic energy and the magnetic susceptibility [16]. Both 
characteristics have been used in the study of the dynamics of atomic and molecular 
systems [17]. 
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