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Abstract

The position— and momentum-space information entropies of the electron distribu-
tions of atomic clusters are calculated using a Woods—Saxon single particle poten-
tial. The same entropies are also calculated for nuclear distributions according to
the Skyrme parametrization of the nuclear mean field. It turns out that a similar
functional form S = a+bln V for the entropy as function of the number of particles
N holds approximately for atoms, nuclei and atomic clusters. It is conjectured that
this is a universal property of a many-fermion system in a mean field.

Information—theoretical methods have played in recent years an important role in
the study of quantum mechanical systems [1~10] in two cases: first in the clarification
of fundamental concepts of quantum mechanics and second in the synthesis of prob-
ability densities in position and momentum spaces. In the first case an important
step was the discovery of an entropic uncertainty relation (EUR) by Bialynicki-
Birula and Mycielski [1] which for a three-dimensional system has the form:

S+ S >3(1+Inr), (R=1) (1)

(see also ref. [11] for the one-dimensional case). In (1) S, is the Shannon information
entropy in position-space:

Sp == [ () np(r) dr (2)

Sk is the corresponding entropy in momentum-space:

8 =5 — / n(k) ln n(k) dk (3)

and p(r), n(k) are the position- and momentum-space density distributions respec-
tively, which are normalized to one. However, for a normalization to the number of
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particles NV, the following EUR holds [4]:

S, + Sk >3N(1+1lnw)—2NIn N = 6.434N - 2NIn N (4)

Inequality (1), for the information entropy sum in conjugate spaces, is a joint mea-
sure of uncertainty of a quantum mechanical distribution, since a highly localized
p(r) is associated with a diffuse n(k), leading to low S, and high S; and vice—
versa. Expression (1) is an information—theoretical uncertainty relation stronger
than Heisenberg’s [1]. We also note that expression (1) does not depend on the unit
of length in measuring p(r) and n(k) i.e. the sum S, + Sk is invariant to uniform
scaling of coordinates, while the individual entropies S, S, are not. The bound (4)
is attained by Gaussian wavefunctions.

In [9] a different definition for the information entropy was employed. It is based on a
phase-space distribution associated with the ground-state density of a many fermion
system. Various phenomenological models for the density distribution were used for
a number of nuclei. Nuclear densities calculated within various microscopic mean
field approaches were also employed. It turned out that the entropy increases from
crude phenomenological models of the nucleus to more sophisticated (microscopic)
ones. It was concluded that the larger the information entropy, the better the quality
of the nuclear density distribution. It seems that the concept of information entropy
is useful for the study of quantum many body systems. In the present work we use
an alternative definition i.e. relations (2) and (3).

This paper addresses the problem of what are the values of S, + Sk for different
many fermion systems (atoms, nuclei, clusters). There is a growing belief in recent
years that information-theoretic methods will play an increasing role in the future
for the study of quantum mechanical systems. It is also interesting to find the extent
of p(r) and n(k) for differnt fermionic systems.

Gadre [2] derived the following approximate expression for the information entropies
of electron distributions in atoms:

Sy 4+ Sk >6.65N—-NInN (5)

using Thomas-Fermi theory and Gadre et al [3] derived :

S, + S ~ 6.25TN — 0.993N In N (6)

with Hartree-Fock calculations. Here, IV is the number of electrons.

Panos and Massen [8] found the following expression for nuclear distributions, em-
ploying the simple harmonic oscillator (HO) model of the nucleus:

S, + Sp ~5.287TN — 113N In N ()
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where N is the number of nucleons in nuclei. Relations of the same functional form
hold for S, and Sy, separately but the important quantity is S, + Si.

There is a striking similarity of (5), (6) and (7) with the EUR (4), indicating that
the functional form

S=aN+bNInN (8)

is universal for a many-fermion system in a mean field.

However, the above relations were derived for a normalization of p(r) and n(k) to
the number of particles V. In the following we find it more convenient to normalize
to one . There is a simple relationship between the two cases and we can easily
transform one case to the other according to the relations:

Sy{norm = N|

“V + 11’1 ]V

Sy[norm = 1] =

Sk[norm = N]
N

Hence, we have for normalization to one, the following expressions:

Sglnorm = 1] = +InN

Sy +Sr~6.65+1InN (atoms,Thomas — Fermi) (9)
Sy + Sk >~6.257T+1.007In N (atoms, Hartree — Fock) (10)
Sy + Sk ~5.287+0.870InN (nuclei — H.O.) (11)

In the present work we extend our calculations for two other cases: the distribution
of the valence electrons in atomic clusters using a Woods-Saxon single particle po-
tential and the nuclear distribution in nuclei employing the Skyrme parametrization
of the nuclear mean field.

In atomic (metallic) clusters the effective radial electronic potential was derived by
Ekardt [12] in his spherical-jellium—background-model study of the self-consistent
charge density and the self-consistent effective one-particle potential, using the
local density approximations. Ekardt’s potentials for neutral sodium clusters were
parametrized in ref. [13] by a Woods—Saxon potential of the form:

Vo
1+ exp[r'R]

a

sz(r) = (12)

with Vo = 6 eV, R = rgN'/3, ryg = 2.25 A and @ = 0.74 A. For a detailed study
regarding the parametrization of Ekardt’s potentials see ref. [14].

We solved numerically the Schrédinger equation for atomic clusters with Z = 8, 18,
20, 34, 40, 58, 68, 70, 82, 92, 126 and 168 valence electrons in the potential (12) and
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found the wave functions of the single-particle states in configuration space and
by Fourier transform the corresponding ones in momentum space. Using the above
wave functions, we calculated the electron density p(r) in position space and n(k) in
momentum space, which were inserted into equations (2), (3) and gave us the values
of the information entropies S, and Si. Then we fitted the form S =a + blnV to
these values and obtained the expressions:

S, ~4.185+0.924In N (13)
Sk ~ 1.706 — 0.0751n N (14)
S, + Sk ~ 5.891 + 0.849 In N (15)

The above relations hold for 8 < N < 168.

Next the nuclear densities p(r) and n(k) for several nuclei ( in the region 4 <
N < 208, where N is the number of nucleons) were obtained with Hartree—Fock
calculations using the Skyrme parametrization of the nuclear mean field. There
are various parametrizations of the Skyrme interaction, but they affect slightly the
information entropies [9]. Thus we used the SKIII interaction [15]. Finally, we fitted
the form S = a+bIn N to the values obtained with SKIII interaction and we found
the expressions:

S, ~3.865+0.6591n NV (16)
Sk~ 1.460 +0.199In N (17)
Sr + Sr~5.325+0.858In NV (18)

The fit is in reasonably good agreement with its H.O. counterpart (comparison of
relation (18) to (11)), though the individual entropies S, and Sk do not match with
the respective HO ones [8] that well. It seems that there is a delicate balance between
the coordinate and momentum spaces, so that the interesting quantity is the sum
S = S, + Sk (the net information content of the system) and not the individual
entropies S, and Sy.

In figure 1 we plot our fitted form S = S, + S; = a + bIn N for atoms (with
Hartree-Fock, relation (10), upper curve), atomic neutral Na clusters (relation (15),
middle curve) and nuclei (with Skyrme, relation (18), lower curve). These lines
correspond to our fitted expressions, while the corresponding values of our numerical
calculations are denoted by solid circles (clusters) and open circles (nuclei with SKIII
interaction). The region of values of NV is wider for nuclei, because in nuclei there
are two kinds of particles (neutrons and protons), which fill separate potential wells,
while in clusters there is only one kind of particles (electrons). Thus in clusters we
go up to higher states than in nuclei.

A few comments seem appropriate: it is seen that formulas (7) and (18) violate the
lower limit set in EUR (4) for the limit N — 1. In fact relations (7) and (18) hold
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Fig. 1. Information entropy S as function of the number of particles N according to
our fitted expression S = a+bln N for atoms, clusters and nuclei. The corresponding
values of our numerical calculations are denoted by solid circles (clusters) and open
circles (nuclei). The limiting line corresponding to the lower bound, S, + S5 = 6.434,
is also shown.

only for the region ¥V > 4, where the fitting has been performed. The case N =1
has no meaning for nuclei. The same holds in the case of clusters, where relation
(15) has been derived for the region N > 8. It is also noted that the right-hand-side
of relation (4) gives a lower bound for S, + Sk. The values of this sum calculated
from relations (6), (7), which were derived from a specific model of the atom or
nucleus, are greater than this lower bound as expected. It is also seen that in all
examples the slope with In /V is substantially larger than the limiting slope of the
EUR (4). This comes from the fact that this uncertainty relation underestimates

the values of S for large systems i.e. formula (4) is not asymptotically correct [2].

Concluding, in the present paper we derive an interesting characteristic of infor-
mation entropies S, and Sy for various systems i.e. atoms (Thomas-Fermi the-
ory, Hartree-Fock), nuclei (Harmonic Oscillator model, Skyrme force) and atomic
clusters(Woods-Saxon potential). For all of these systems the entropies can be rep-
resented well by a function, which incorporates In N linearly i.e. § = a+ bIn N
where N is the number of electrons in atoms or nucleons in nuclei or electrons in
atomic clusters. We may conjecture that this is a universal property of a many-
fermion system in a mean field. As stated in ref. [3], the information entropies seem
to be a hidden treasure, as yet remains mostly unexplored.

Although it is not quite clear why S depends linearly on In N and how to relate
S with experimental properties of the different fermionic systems, we hope that
the present work will stimulate further research on this matter. In atomic systems
a connection with experiment has already been established. In this case S, and
Sk show a close relationship with fundamental and/ or experimentally measurable
quantities such as e.g. the kinetic energy and the magnetic susceptibility [16]. Both
characteristics have been used in the study of the dynamics of atomic and molecular
systems [17].
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