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The exotic 4~ — e~ conversion in Nuclei: An
Interplay of Atomic, Nuclear and Particle
Physics.

T.S. Kosmas

Theoretical Physics Division, University of lIoannina, GR-45110 Ioannina, Greece.

Abstract

The partial rates of all kinematically accessible channels (for coherent and incoher-
ent processes) of the exotic u~ — e~ conversion in the currently interesting nuclei
27 Al *8Ti, and 208Pb are investigated. The assumed muon-number violation involves
exchange of various particles in conventional extentions of the standard model and
in minimal supersymmetric models with R-parity conserving and R-parity violating
interactions. The transition matrix elements obtained are used to extract very severe
constraints for the flavor violation parameters entering the effective Lagrangians re-
sulting in the framework of specific particle models.

1 Introduction

The anomalous conversion of a bound negative muon (y, ) to an electron,

(A, Z) +py, = e + (A, 2), (1)

is a lepton flavor violating process predicted to occur in a plethora of new-physics
extenstions of the standard model [1-5]. In additon, experimentally it is accessible
with incomparable sensitivity, a feature which has established it as one of the best
probes to search for lepton flavor violation beyond the standard model.

Recently, in view of the indications for neutrino oscillations in super-Kamiokande
and LSND data, new hope has revived among the experimentalists of nuclear and
particle physics to detect other signals for physics beyond the standard model. The
fact that the upper limits of the branching ratio of the u~ — e~ conversion relative
to the ordinary muon capture, R .- = ['(u~ — e7)/[(g~ — v,), offer the lowest
constraints compared to any purely leptonic rare process motivated a new g4~ — e~
conversion experiment, the so called MECO experiment at Brookhaven [6-8], which
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got recently scientific approval and is planned to start soon. The MECO experiment
is going to use a new very intense u~ beam and a new detector operating at the
Alternating Gradient Synchrotron (AGS). The basic feature of this experiment is
the use of a pulsed =~ beam to significantly reduce the prompted background from
7~ and e~ contaminations. For technical reasons the MECO target has been chosen
to be the light nucleus 27Al

Traditionally the u—e conversion process was searched by employing medium heavy
(like *Ti and ®3Cu) [9] or very heavy (like 2°®Pb and '°7Au) [10,11] targets (for a
historical review on such experiments see Ref. [12]). The best upper limits on R,,.-
set up to the present have been extracted at PSI by the SINDRUM II experiments
resulting in the values

T -13 Pb -11
RTI_ <6.1x107% [9),  RF’. <4.6x107" [10].

The experimental sensitivity of the Brookhaven experiment on 2”Al will be roughly
2% 10717 [7,8],i.e. three to four orders of magnitude below the existing experimental
limits.

The purpose of this work is to offer theoretical support primarily for the Brookhaven
experiment by investigating state-by-state all the accessible 4~ — e~ conversion
channels for the MECO target. To this aim we performed a full s-d shell-model
calculation for the transition matrix elements of the relevant = — e~ operators
(6,13-16]. Furthermore, we use these matrix elements and the sensitivity of the
MECO experiment to constrain the values of the parameters of several extentions
of the standard model which exibit the process (1). These parameters are involved
in lepton flavor violating Lagrangians predicting this exotic process {e.g. couplings
of scalar, vector etc. current components, neutrino mixing angles and masses, su-
persymmetric couplings etc.). The above limits are compared with those resulting
from other experiments [9,10].

2 The particle- and nuclear-physics background of y~ — e~ con-
version

On the theoretical side, it is well known that process (1) is a very good example
of the interplay between particle and nuclear physics. From the underlying particle
physics point of view, the family lepton quantum numbers L., L,, L, are conserved
within the standard model (SM) in all orders of perturbation theory but this is
an accidental consequence of the SM field content and gauge invariance. Processes
like the u — e conversion, which violates the muon and electron quantum-number
conservation, play an important role in the study of flavor-changing neutral currents.
Nowadays, there are many mechanisms beyond the standard model leading to the
u—e conversion [1-5]. They are mediated by various particles, like virtual photons,
W-boson or Z-particle exchange [1,3,4], exotic particles like Higgs scalars etc.
[2,4], supersymmetric particles (squarks, sleptons, gauginos, higgsinos etc.) with
and without involving R-parity violation [12,17,18]. Some Feynman diagrams are
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Fig. 1. Photonic and nonphotonic mechanisms exhibiting the u= — e~ process
within the context of conventional extensions of the standard model (a-c), as weel as
supesymmetric theories (d,e). The hadronic vertex is mediated by photon exchange
(a,d), Z-particle exchange (a,b,d.e), and W-boson exchange (c).

shown in Fig. 1 (one-loop-level diagrams) and Ref. [18] (tree-level diagrams). In
Fig. 1 mixing of intermediate neutrinos (v;) including possible heavy species (N;)
and gauge bosons or mixing of sleptons (l;) in supersymmetric models with R-
parity conservation is involved. The lepton-flavor violation in the case of R-parity
violating diagrams of Fig. 2 is mediated.by the exchange of Z bosons, sneutrinos
7, up @y and down dp squarks as explained in Ref. [18]. The effective p= — e~
conversion Lagrangian in the above new-physics extentions of the standard model
is given by means of a set of lepton-flavor-violating parameters. In the context
of these models the (1™, e™) conversion operators are constructed first at nucleon
and then at nuclear level by writing down the hadronic and leptonic currents. The
aim of the nuclear physics calculations is to provide us with the necessary nuclear
transition matrix elements of these operators which are essential to constrain the
family lepton violating parameters by making use of the existing experimental limits
or the expected sensitivity of ongoing experiments.

For the mechanisms involving vector and axial-vector interactions in the effective
Hamiltonian density the hadronic current at nucleon level, needed for the nuclear-
physics aspects of the process can be parametrized in a general manner as [1-3,17]

Je = Ny [(8% + Bbme) + (8% + B4ma) s N, (2)

where the coefficients 37, for the vector, and 3%, for the axial vector, contain the
corresponding couplings for isoscalar (7 = 0) and isovector (7 = 1) components, re-
spectively. In models where the p—e conversion occurs due to the exchange of scalar
particles like exotic Higgs scalars etc., the hadronic current can be parametrized ac-
cordingly as
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Fig. 2. Leading R-parity violating diagrams contributing to ¢ — e conversion at
tree-level. (i) (upper diagrams): Trilinear terms mediated by the sneutrino 7, up
iy, and down dp squarks in the intermediate states. (ii) (lower diagrams): Bilinear
terms madiated via the charginb—lepton' mixing (schematically denoted by crosses
(X) on the lepton lines). The intermediate states of the diagrams are Z-bosons and

squarks dj,.
J = N [(8% + 85ms) + (8% + Bbrs)s| N, (3)

where now 37, @ = S, P involve the corresponding couplings for the scalar (S) and
pseudoscalar (P) components, respectively. Apparently, the values of the parameters
3T witha=V, A, S, Pand 7 =0, 1 of Egs. (2) and (3), depend on the specific
elementary model assumed for the j1-¢'¢onversion. Some special cases are discussed
in Refs. [4,18,21] and used in-ouriptevious works [6,18-22].
o Do (o

The Hamiltonians of Eqgs. (2) and (3) give rise to both coherent and incoherent
@ — e conversion channels. For the class of models where the coupling 3) is not
very small the coherent process, i.e. when the nucleus remains in its ground state,
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dominates the rate [12,19]. Equation (2) shows that for the vector and axial vector
currents the branching ratio R,,.-, which is one of the most interesting quantities
of the u= — e~ process both theoretically and experimentally, can be expressed
phenomenologically as a sum of isoscalar and isovector terms, arising from different
couplings of the up and down quark. This holds also for the scalar and pseudoscalar
current, see Eq. (3), in models where the structure of the corresponding nuclear
current (ignoring the tensor components) is similar to that of the vector current
but with different strength parameters %" [2,18].

The expression for the transition rate I'(u — e~) under some reasonable assump-
tions [2,4] is written in terms of the matrix element

Mi_y = 185 ME + 8L MPP2 +185MD + g M PP 4)

for the current of Eq. (2), and

Mi_p = 18IMQ + MY + 183 M D 4+ s MY (5)

for the current of Eq. (3). Usually, the rates for the u—e conversion are calculated by
neglecting the lower component of the nucleon spinor (non-relativistic approxima-
tion). Then, the transition matrix elements MmO entering Egs. (4) and (5), which
are referred to as the muon-nucleus overlap integrals, are written as '

A

MP = (£ 6% e B, (xj)i) (6)
=1
A i

MDD = (]S> 63 75567 B, (r))i) (7)
=1

where the index j runs over all nucleons of the nucleus and q is the momentum
transfer, ®,(r;) denotes the upper component of the muon spinor (the small lower
component is neglected) and 65 are given by

15 a=S,V  (scalar, vector components)

97 =< oy, a=A (axial vector component) (8)

0;-q, a=P (pseudoscalar component)

For the ground-state-to-ground-state contributions |f) = |¢) = |g.s.). In the case of
light nuclear targets (A < 100) the p — e rates are calculated by factorizing out of
the muon-nucleus overlap integrals of Egs. (6) and (7) a mean value of the muon
wavefunction (factorization approximation) as

M = (@,) (flQ0) = (8,) M), a=S5,V,A4,P (9)

124



(see also Ref. [12]}), where Q] denotes any of the six operators of Egs. (6) and
(7). The latter approximation permits the separate calculation of the nuclear ma-
trix elements M7. The radial part ®,(r) of the muon wavefunction can also be
exactly obtained by solving numerically the Schrodinger {(or Dirac) equation with
the Coulomb potential [18] (see Sect. 4 below). This enables exact evaluation of
the muon-nucleus overlap integrals of Egs. (6) and (7).

In some extensions of the standard model the expression which gives the branch-
ing ratio R,.-, especially for the dominant coherent channel, can be separated in
two parts, the one which contains the nuclear-structure dependence and the one
involving the elementary-particle-sector parameters as

Rue" = P’Y E (10)

The quantity p is independent of nuclear physics [17] and contains the flavor-
violating parameters which mainly describe the leptonic currents. Thus, e.g. for
photon exchange, p contains the four electromagnetic form factors fgo, fe1, fmo,
fa1 parametrized in a specific elementary model [17] as

a)zlfMl + feol* + | fE1 + frol? '

p=(4r Grmd)? (11)

The function y(A, Z) of Eq. (10) contains the nuclear information through the
matrix elements M? [4] as

E.q M?
m2 G*Z fep(A,Z)’

74, Z)=y=

where E. is the outgoing-electron energy and fgp is the Primakoff function [23].
We should note that in Eq. (12) the mean muon wave function has been cancelled
out by applying the factorization approximation for the p~-capture, i.e. in the
denominator, too.

As it becomes obvious from the above, the yu — e conversion experiments could be
sensitive to the scalar interactions too. In this work, we focus on the calculatation
of particle-model-independent nuclear matrix elements to be used in order to draw
conclusions about the scalar contribution and extract constraints on the scalar cou-
plings which have not been explicitly included in our previous works. We apply our
formalism in two cases: (i) assuming that the muon number violation occurs due to
the exchange of scalar Higgs particles and (ii) in the R-parity violating mechanisms
of Ref. [18].



3 Nuclear matrix elements in the factorization approximation

The in this work performed state-by-state calculations refer to both coherent and
incoherent processes and use the method we have formulated in our previous works
[6,13]. The relevant p—e conversion operators are adjusted to the odd-A 27Al target
employed by the Brookhaven experiment. We afterwards compare these results with
those for the nuclei *®Ti and 2°8Pb, i.e. the targets of the SINDRUM II experiment
[9,10], obtained with different methods.

For the coherent rate in light nuclei, like 27Al, the factorization approximation
of Eq. (9) is very good. Then the contributions of the vector- and scalar-current
components in Mo}, are

Mys = B} 5(ZFz + NFy) + By s(ZFz — NFy) . (13)

This means that they can be expressed in terms of the nuclear form factors Fz(q?)
(for protons) and Fy(g%) (for neutrons) defined as

Fz= 2 3 j(llio(an)id) (7)) (14)
J

Fy = 5 X 3Gllis(ar)ll) (v7)” (15)

These form factors are easily estimated (for this channel only the ground-state wave
function of the studied nucleus is required) and contain the single-particle-orbit
occupancies (Vj)2 for the evaluation of which one must use in the proton-neutron
representation a nuclear model as e.g. the QRPA (see calculations for *8Ti and 2°®Pb
in Ref. [17]), shell-model (see calculations for 2"Al in Refs. [6,13]) etc.

In the general case the target nucleus of Eq. (1) is excited and then, in the nuclear
matrix elements M? of Eq. (12), in addition to the My, ¢ part there is also a con-
tribution coming from the axial-vector operators of Egs. (6) and (7) (we neglect
the small pseudoscalar term). In this case, all the matrix elements of the operators
(6), {7) can be usually obtained via the corresponding multipole-expansion tensor
operators T;LI['S)J (J is the operator angular-momentum rank and M its projection)
obtained by expanding the exponential €% [19] which for the spin independent
component (S=0), Fermi type operator, and the spin dependent component (S=1),
the Gamow-Teller-type operator, have been defined in Ref. [19]. In the factorization
approximation, the matrix elements M? of Eq. (12) for the inclusive process are
given by

MMWWMEJ, (16)




(i) [ (17)

2
=% T (%)
f,J 1=J,J+1 b

where the values of J are restricted to |J; — J¢| < J < J; + Js. For the odd-A
nucleus 27Al J; = (5/2)*. The reduced matrix elements of the multipole operators
TS5V appearing in Egs. (16) and (17) are defined as

(AT ) = 3 mE (j50) [B3 D(agus J, T = 0) + B4 D(jajn; J, T = 1)] ,(18)

J172

where m(*$) include the angular-momentum-coupling coefficients [19]. The coef-
ficients 37 essentially select the specific (photonic, W-boson exchange, etc.) reac-
tion mechanism and current component as we have stated before. The functions

D(jj'; J,T) are the one-body transition densities.

4 Results and Discussion.

For the reliability of the investigated u — e conversion rates we first tested our
method as follows. We have calculated the energy spectrum and the eigenvectors
of the nucleus ?"Al in the full sd shell-model space in isospin formalism. We used
Wildenthal’s set of fitted, mass-dependent two-body matrix elements and single-
particle energies, the so-called USD interaction [14], with the code OXBASH [16].
For each spin-isospin combination we calculated the first 1000 states reaching up
to about 45 MeV in excitation energy. The low-energy spectrum of 27Al is well
reproduced, thus qualifying the structure of the states involved. The momentum
transfer q involved in the matrix elements of Eqgs. (6) and (7),

q=|q|=m, — & — Ei, (19)

with E, being the excitation energy of the final nuclear state, is equal to ¢ =
m, — € = 0.53 fm~! for the coherent channel of 27 Al. The atomic ls-muon binding
energy is €5 = 0.47 MeV and m, = 105.6 MeV. For the values of ¢ in the other nuclei
discussed here see Table 1. The single-particle orbit occupancies ( ‘/:,-)2 needed to
evaluate the nuclear form factors Fz(¢?) and Fiv(q?) were evaluated by performing
a shell-model calculation of the 2”Al ground state in the proton-neutron formalism
too. The shell-model form factors found are in very good agreement (see Ref. [6])
with the experimental form factors obtained from electron scattering (for proton
form factors) [24] or from pionic atom data (for neutron form factors) [25].

As it has been seen in Sect. 2, the pure transition-rate calculations needed for
the p — e conversion studies involve mainly the integrals of Eqgs. (6) and (7). For
the coherent process, in the case of *®Ti and ?°8Pb for which the factorization
approximation is not very good, these integrals have been exactly calculated using
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experimental proton densities p, from Ref. [24] and neutron densities p, from Ref.
[25]. The results for M(® and M) are shown in Table 1.

Table 1
Isoscalar and isovector transition matrix elements for the coherent u — e process,

i.e. muon-nucleus overlap integrals M(VT)S, 7 =0,1 of Egs. (6) and (7). Other useful
quantities (see text) are also included.

Nucleus |q| (fm™)) & (MeV) MP%(fm=3/%) MUk (fm=2/2)

Al 0.531 -0.470 0.046 0.001
By 0.529 -1.264 0.115 0.012
208 pp 0.482 -10.516 0.490 0.076

The wave function of the muon at the atomic level was obtained by solving the
Schrédinger equation using the Coulomb potential produced by the charge densities
discussed before. The nucleon finite size was taken into consideration and vacuum
polarization corrections were included as in Ref. [22]. In this way we constructed
an analytical form for the muon wave function (given in terms of sigmoid functions)
which was advantegeous for our numerical integrations.

For explicit calculations of the incoherent transition matrix elements of Egs. (16)
and (17) one can combine the single-particle matrix elements of Ref. [19] with the
one-body transition densities of OXBASH [15]. Our state-by-state calculations of
the excited states show that the incoherent rate contributions in 27Al are rather
small. For Sy s the incoherent strength is concentrated in the first few excited
states. For Sp the situation is different, but its contribution to the total strength is
much smaller than that of the vector matrix elements Sy.

Table 2

Isoscalar and isovector contributions to the inclusive u — e conversion rate in 27 Al,
i.e. the matrix elements S7 of Egs. (16) and (17). These quantities do not depend
on the specific elementary model assumed for the u — e conversion (see text).

0 1 0 1
s s sy

110.50 2.849 9.117 6.745

Table 2 shows the individual isoscalar (Sc(,,o) ) and isovector (S&l) ) matrix elements of
Egs. (16) and (17) for the inclusive u—e conversion process in 27Al. In practice these
are obtained by setting either 30 (for isoscalar contribution) or g (for isovector
contribution) to zero and dividing by the square of the non-zero model-dependent
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Table 3

Upper limits on the elementary sector part of the exotic p — e conversion branching
ratio (quantity p of Eq. (11) and quantity Q of Eq. (4)) extracted by using the sen-
sitivity of the MECO experiment for the 27 Al target [7] and the recent experimental
data for the nuclear targets *®Ti and 2°®Pb [10].

Mechanism 27 Al BTy 208 pp,

Photonic p<4.6x10718  p<71x107%  p<3.2x10712
W-boson exchange p < 5.8 x107!1° p <26 x107 p<11 x10712
SUSY sleptons p<1.8x10718  p <26 %1071 p<11x10712
SUSY Z-exchange p < 7.3 x107'° p<0.6x107'* p<0.2x10"12
SUSY R-par. Viol. Q <5.10-107'°* Q< 1.10-107* Q < 2.27.10713

coefficient 37. From Table 2 we see that the particle-model independent isoscalar
matrix elements of the scalar and vector operators are much larger than those of the
isovector ones. Thus, in the approximation of neglecting the isovector contribution
one can constrain the isoscalar parameters 9. In general, the evaluation of the
isoscalar (M E,o)) and isovector (M.(,”) transition matrix elements enables one to put
bounds separately on the isoscalar and isovector parameters of the hadronic currents
if, in the specific model, the = — ¢~ Hamiltonian is characterized by isoscalar or
isovector dominance (see below).

The results of Tables 1 and 2 can be exploited for setting constraints on the param-
eters of a specific gauge model predicting the u — e process. One can extract upper
limits on the individual lepton flavor violation parameters (couplings of scalar, vec-
tor currents, neutrino masses etc. [1,4,17,18]) under certain assumptions. The most
common assumption is the dominance of only one component of the x— e conversion
Lagrangian which is equivalent to constrain one parameter. In some cases we can
write the branching ratio R,.- as (2]

_Ch 9 B My (20)
#T T 2 G?Zfep(A,Z) T

where
Q ~ (B +BVRI" + (5 + BRI,
with B = M(1)/M(© being the ratio of the isovector to isoscalar matrix elements.

In general, especially for light nuclei, R is very small. As an example see the case
of R-parity violating SUSY mechanisms in Ref. [18].

In Table 3 we quote the upper bounds for the quantities p and Q derived by using the
expected experimental sensitivity of the Brookhaven experiment, R,.- < 2 x 1047
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for 27 Al and the recent experimental data on the branching ratio R, for 487 and
208Ph given in the introduction. The limits of p and Q for the 27Al target quoted in
Table 3 improve by about four orders of magnitude over the previous ones. Using
the upper limits for Q given in this table we can derive, by assuming isoscalar
dominance, constraints on the scalar current couplings 3. In the R-parity violating
Lagrangian for the 27Al target [6,13] we obtain |8%| < 7 x 1071°. The limit for 3%
obtained with the data of Ti target [10] is |82 < 1.1 x 1077, i.e. more than two
orders of magnitude weaker than the limit of 27Al.

We should mention that significantly better improvement on these limits is expected
from the ongoing experiments at PSI [9]. The analysis of the data obtained with
the last run of the SINDRUM II experiment on the “3Ti target is expected to reduce
the best upper limit in the value R,,- =1 -2 x 10713 [9].

5 Summary and Conclusions.

The transition matrix elements of the flavor violating u~ — e~ ‘conversion are
of notable importance in computing accurately the corresponding rates for each
accessible channel of this exotic process. Such calculations provide useful nuclear-
physics inputs for the expected new data from the MECO and PSI experiments to
put severe bounds on the muon-number-changing parameters (isoscalar couplings,
etc.) determining the effective currents in various models that predict the exotic
U~ — e~ process.

From the existing data on R,.- in *®T% and °®Pb and the expected sensitivity of
the designed MECO experiment on 27Al [7] we obtained stringent upper limits on
the quantities p and Q introduced in Egs. (11) and (20).
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