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T h e exotic μ~ -> e" conversion in Nuclei: An 

Interplay of Atomic, Nuclear a n d Particle 

Physics. 

T.S. Kosmas 

Theoretical Physics Division, University of Ioannina, GR-45110 Ioannina, Greece. 

Abstract 

The partial rates of all kinematically accessible channels (for coherent and incoher­
ent processes) of the exotic μ~ —» e~ conversion in the currently interesting nuclei 
27Al, 4 8Ti, and 2 0 8 P b are investigated. The assumed muon-number violation involves 
exchange of various particles in conventional extentions of the standard model and 
in minimal supersymmetric models with R-parity conserving and R-parity violating 
interactions. The transition matrix elements obtained are used to extract very severe 
constraints for the flavor violation parameters entering the effective Lagrangians re­
sulting in the framework of specific particle models. 

1 Introduction 

The anomalous conversion of a bound negative muon (μ^) to an electron, 

( A , Z ) + / i b - - > e - + (A,Zr, (1) 

is a lepton flavor violating process predicted to occur in a plethora of new-physics 
extenstions of the standard model [1-5]. In additon, experimentally it is accessible 
with incomparable sensitivity, a feature which has established it as one of the best 
probes to search for lepton flavor violation beyond the standard model. 

Recently, in view of the indications for neutrino oscillations in super-Kamiokande 
and LSND data, new hope has revived among the experimentalists of nuclear and 
particle physics to detect other signals for physics beyond the standard model. The 
fact that the upper limits of the branching ratio of the μ~ —¥ e~ conversion relative 
to the ordinary muon capture, Rße- = Τ(μ~ —>• ε~)/Τ(μ~ —¥ uß), offer the lowest 
constraints compared to any purely leptonic rare process motivated a new μ~ —• e~ 
conversion experiment, the so called MECO experiment at Brookhaven [6-8], which 
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got recently scientific approval and is planned to start soon. The MECO experiment 
is going to use a new very intense μ~ beam and a new detector operating at the 
Alternating Gradient Synchrotron (AGS). The basic feature of this experiment is 
the use of a pulsed μ~ beam to significantly reduce the prompted background from 
π~ and e~ contaminations. For technical reasons the MECO target has been chosen 
to be the light nucleus 27A1. 

Traditionally the μ —e conversion process was searched by employing medium heavy 
(like 4 8 Ti and 6 3Cu) [9] or very heavy (like 2 0 8 Pb and 197Au) [10,11] targets (for a 
historical review on such experiments see Ref. [12]). The best upper limits on Rße-
set up to the present have been extracted at PSI by the SINDRUM II experiments 
resulting in the values 

RT
ßl- < 6.1 χ IO" 1 3 [9], Rp

ß
h
e- < 4.6 χ IO" 1 1 [10]. 

The experimental sensitivity of the Brookhaven experiment on 27A1 will be roughly 
2 x 10_1~ [7,8], i.e. three to four orders of magnitude below the existing experimental 
limits. 

The purpose of this work is to offer theoretical support primarily for the Brookhaven 
experiment by investigating state-by-state all the accessible μ~ —¥ e~ conversion 
channels for the MECO target. To this aim we performed a full s-d shell-model 
calculation for the transition matrix elements of the relevant μ~ -» e~ operators 
[6,13-16]. Furthermore, we use these matrix elements and the sensitivity of the 
MECO experiment to constrain the values of the parameters of several extentions 
of the standard model which exibit the process (1). These parameters are involved 
in lepton flavor violating Lagrangians predicting this exotic process (e.g. couplings 
of scalar, vector etc. current components, neutrino mixing angles and masses, su-
persymmetric couplings etc.). The above limits are compared with those resulting 
from other experiments [9,10]. 

2 The particle- and nuclear-physics background of μ —> e con­
version 

On the theoretical side, it is well known that process (1) is a very good example 
of the interplay between particle and nuclear physics. From the underlying particle 
physics point of view, the family lepton quantum numbers Le. Lß, LT are conserved 
within the standard model (SM) in all orders of perturbation theory but this is 
an accidental consequence of the SM field content and gauge invariance. Processes 
like the μ — e conversion, which violates the muon and electron quantum-number 
conservation, play an important role in the study of flavor-changing neutral currents. 
Nowadays, there are many mechanisms beyond the standard model leading to the 
μ-e conversion [1-5]. They are mediated by various particles, like virtual photons, 
Wr-boson or Z-particle exchange [1,3,4], exotic particles like Higgs scalars etc. 
[2,4], supersymmetric particles (squarks, sleptons, gauginos, higgsinos etc.) with 
and without involving Ä-parity violation [12,17,18]. Some Feynman diagrams are 
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Fig. 1. Photonic and nonphotonic mechanisms exhibiting the μ~ —» e~ process 

within the context of conventional extensions of the standard model (a-c), as weel as 

supesymmetric theories (d,e). The hadronic vertex is mediated by photon exchange 

(a,d), Z-particle exchange (a,b,d,e), and W^-boson exchange (c). 

shown in Fig. 1 (one-loop-level diagrams) and Ref. [18] (tree-level diagrams). In 

Fig. 1 mixing of intermediate neutrinos (i/,-) including possible heavy species (JV,·) 

and gauge bosons or mixing of sleptons (/,·) in supersymmetric models with R-

parity conservation is involved. The lepton-flavor violation in the case of R-parity 

violating diagrams of Fig. 2 is mediated.by the exchange of Ζ bosons, sneutrinos 

9, up ui and down <1R squarks as explained in Ref. [18]. The effective μ~ —¥ e" 

conversion Lagrangian in the above new-physics extentions of the standard model 

is given by means of a set of lepton-flavor-violating parameters. In the context 

of these models the {μ~ ,e~) conversion operators are constructed first at nucléon 
and then at nuclear level by writing down the hadronic and leptonic currents. The 
aim of the nuclear physics calculations is to provide us with the necessary nuclear 
transition matrix elements of these operators which are essential to constrain the 
family lepton violating parameters by making use of the existing experimental limits 
or the expected sensitivity of ongoing experiments. 

For the mechanisms involving vector and axial-vector interactions in the effective 
Hamiltonian density the hadronic current at nucléon level, needed for the nuclear-
physics aspects of the process can be parametrized in a general manner as [1-3,17] 

j» = Nr m + # * * ) + ( Λ + ^ r 3 ) T 5 l Ν, (2) 

where the coefficients βγ, for the vector, and ßr
A, for the axial vector, contain the 

corresponding couplings for isoscalar (r = 0) and isovector (r = 1) components, re­
spectively. In models where the μ —e conversion occurs due to the exchange of scalar 

particles like exotic Higgs scalars etc.. the hadronic current can be parametrized ac­

cordingly as 
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Fig. 2. Leading R-parity violating diagrams contributing to μ — e conversion at 

tree-level, (i) (upper diagrams): Trilinear terms mediated by the sneutrino ν, up 

ÙL and down dft squarks in the intermediate states, (n) (lower diagrams): Bilinear 
terms madiated via the chargino-lepton mixing (schematically denoted by crosses 
(X) on the lepton lines). The intermediate states of the diagrams are Z-bosons and 
squarks di. 

J = Ν {(ß°s + ßl
srt) + ψ°Ρ + βι

Ρτ3)κ] Ν, (3) 

where now /3£, α — 5, Ρ involve the corresponding couplings for the scalar (S) and 

pseudoscalar (P) components, respectively. Apparently, the values of the parameters 

ßl with a = V, A, S, Ρ and r = 0, 1 of Eqs. (2) and (3), depend on the specific 

elementary model assumed for the μ — e-éònversion. Some special cases are discussed 
in Refs. [4,18,21] and used in xnir>previous works [6,18-22]. 

(.", b'.vs { '; 
The Hamiltonians of Eqs. (2) and (3) give rise to both coherent and incoherent 
μ — e conversion channels. For the class of models where the coupling βν is not 

very small the coherent process, i.e. when the nucleus remains in its ground state, 
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dominates the rate [12,19]. Equation (2) shows that for the vector and axial vector 
currents the branching ratio Rße-, which is one of the most interesting quantities 
of the μ~ —» e~ process both theoretically and experimentally, can be expressed 
phenomenologically as a sum of isoscalar and isovector terms, arising from different 
couplings of the up and down quark. This holds also for the scalar and pseudoscalar 
current, see Eq. (3), in models where the structure of the corresponding nuclear 
current (ignoring the tensor components) is similar to that of the vector current 
but with different strength parameters ßs' [2,18]. 

The expression for the transition rate Γ (μ —> e~) under some reasonable assump­
tions [2,4] is written in terms of the matrix element 

Ml.A = \ßWv] + ßWA2 + IßW? + β\Μ^? (4) 

for the current of Eq. (2), and 

Ml.p = \ß°sM
{
s
0) + β\Μψγ + \βΡΜψ + βι

ΡΜ^Ϋ (5) 

for the current of Eq. (3). Usually, the rates for the μ-e conversion are calculated by 
neglecting the lower component of the nucléon spinor (non-relativistic approxima­
tion). Then, the transition matrix elements Ma entering Eqs. (4) and (5), which 
are referred to as the muon-nucleus overlap integrals, are written as 

M 0 ) = ( f ! E ^6-'^Φμ(Γ,·)|ΐ), (6) 

Μ υ = ( ί ΐ Σ ΘΊ ^- iq-r'*M(r;)|i> , (7) 

where the index j runs over all nucléons of the nucleus and q is the momentum 
transfer, Φμ(Γ;) denotes the upper component of the muon spinor (the small lower 
component is neglected) and 9J are given by 

1, a=S,V (scalar, vector components) 

αν,, a=A (axial vector component) (8) 

aj · q, a = P (pseudoscalar component) 

η = < 

For the ground-state-to-ground-state contributions |/) = \i) = \g.s.). In the case of 
light nuclear targets (.4 < 100) the μ — e rates are calculated by factorizing out of 
the muon-nucleus overlap integrals of Eqs. (6) and (7) a mean value of the muon 
wavefunction (factorization approximation) as 

M r ) « <*M> (WlT)\i) Ξ (Φμ> M(J\ a = 5, V, Λ, Ρ (9) 
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(see also Ref. [12]), where Ω£ denotes any of the six operators of Eqs. (6) and 
(7). The latter approximation permits the separate calculation of the nuclear ma­
trix elements M*. The radial part Φμ(τ) of the muon wavefunction can also be 
exactly obtained by solving numerically the Schrödinger (or Dirac) equation with 
the Coulomb potential [18] (see Sect. 4 below). This enables exact evaluation of 
the muon-nucleus overlap integrals of Eqs. (6) and (7). 

In some extensions of the standard model the expression which gives the branch­
ing ratio Rße~, especially for the dominant coherent channel, can be separated in 
two parts, the one which contains the nuclear-structure dependence and the one 
involving the elementary-particle-sector parameters as 

Rue- = PI · (io) 

The quantity ρ is independent of nuclear physics [17] and contains the flavor-
violating parameters which mainly describe the leptonic currents. Thus, e.g. for 
photon exchange, ρ contains the four electromagnetic form factors fgo, /si, IMO, 
IMI parametrized in a specific elementary model [17] as 

f = (4™) ( G ^ f p • ("> 

The function -y(A,Z) of Eq. (10) contains the nuclear information through the 
matrix elements M2 [4] as 

7 ( A , Z ) = 7 = _ _ _ _ _ _ ( 1 2 ) 

where Ee is the outgoing-electron energy and JGP is the Primakoff function [23]. 
We should note that in Eq. (12) the mean muon wave function has been cancelled 
out by applying the factorization approximation for the ^""-capture, i.e. in the 
denominator, too. 

As it becomes obvious from the above, the μ — e conversion experiments could be 
sensitive to the scalar interactions too. In this work, we focus on the calculatation 
of particle-model-independent nuclear matrix elements to be used in order to draw 
conclusions about the scalar contribution and extract constraints on the scalar cou­
plings which have not been explicitly included in our previous works. We apply our 
formalism in two cases: (i) assuming that the muon number violation occurs due to 
the exchange of scalar Higgs particles and (ii) in the R-parity violating mechanisms 
of Ref. [18]. 
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3 Nuclear m a t r i x e l e m e n t s in t h e factor izat ion a p p r o x i m a t i o n 

The in this work performed state-by-state calculations refer to both coherent and 
incoherent processes and use the method we have formulated in our previous works 
[6,13]. The relevant μ — e conversion operators are adjusted to the odd-A 27AI target 
employed by the Brookhaven experiment. We afterwards compare these results with 
those for the nuclei 4 8 Ti and 2 0 8 Pb, i.e. the targets of the SINDRUM II experiment 
[9,10], obtained with different methods. 

For the coherent rate in light nuclei, like 27A1, the factorization approximation 
of Eq. (9) is very good. Then the contributions of the vector- and scalar-current 
components in Mcoh are 

Mv,s = ßvAZFz + NF") + ßvAZFz - NFN) • (13) 

This means that they can be expressed in terms of the nuclear form factors Fz{q2) 
(for protons) and FJV^ 2 ) (for neutrons) defined as 

Fz = ̂ j(JWJoM\\j)(vf)\ (14) 
3 

F" = TrEHj\\Mqr)\\j) (V?)2 . (15) 
Ν 

These form factors are easily estimated (for this channel only the ground-state wave 
function of the studied nucleus is required) and contain the single-particle-orbit 
occupancies (Vj) for the evaluation of which one must use in the proton-neutron 
representation a nuclear model as e.g. the QRPA (see calculations for 4 8 Ti and 2 0 8 Pb 
in Ref. [17]), shell-model (see calculations for 27A1 in Refs. [6,13]) etc. 

In the general case the target nucleus of Eq. (1) is excited and then, in the nuclear 
matrix elements M2 of Eq. (12), in addition to the My a part there is also a con­
tribution coming from the axial-vector operators of Eqs. (6) and (7) (we neglect 
the small pseudoscalar term). In this case, all the matrix elements of the operators 
(6), (7) can be usually obtained via the corresponding multipole-expansion tensor 
operators T^ {J is the operator angular-momentum rank and M its projection) 
obtained by expanding the exponential e i q r [19] which for the spin independent 
component (S=0). Fermi type operator, and the spin dependent component (S=l). 
the Gamow-Teller-type operator, have been defined in Ref. [19]. In the factorization 
approximation, the matrix elements M2 of Eq. (12) for the inclusive process are 
given by 

^-gfe) a |(^w iw)V i i 
(16) 
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SA = Σ Σ frV (jf\\TiW\W,) 
f,j I=JJ±I \ m ^ J 

2 

(11 

where the values of J are restricted to |J,· — Jj\ < J < J\ + J/. For the odd-A 
nucleus 27A1 J, = (5/2)+. The reduced matrix elements of the multipole operators 
ji(l,s)J a pp e a r j n g \n jPqSi (ig) a n ( j (17) a re defined as 

( / l | T ^ J | | i ) a = Σ m^J{j2h) [ß°a DUMJ, T = 0)+ßi DU2J1 ; </, Τ = 1)] ,(18) 

where m''·5 '"7 include the angular-momentum-coupling coefficients [19]. The coef­
ficients /?£ essentially select the specific (photonic, W-boson exchange, etc.) reac­
tion mechanism and current component as we have stated before. The functions 
D(jj': J, T) are the one-body transition densities. 

4 Results and Discussion. 

For the reliability of the investigated μ — e conversion rates we first tested our 
method as follows. We have calculated the energy spectrum and the eigenvectors 
of the nucleus 27A1 in the full sd shell-model space in isospin formalism. We used 
Wildenthal's set of fitted, mass-dependent two-body matrix elements and single-
particle energies, the so-called USD interaction [14], with the code OXBASH [16]. 
For each spin-isospin combination we calculated the first 1000 states reaching up 
to about 45 MeV in excitation energy. The low-energy spectrum of 27A1 is well 
reproduced, thus qualifying the structure of the states involved. The momentum 
transfer q involved in the matrix elements of Eqs. (6) and (7), 

q = \q\ = πιμ - eb - Ex, (19) 

with Ex being the excitation energy of the final nuclear state, is equal to g = 
τημ — €b = 0-53 fm -1 for the coherent channel of 27A1. The atomic ls-muon binding 
energy is €;, = 0.47 MeV and τηβ = 105.6 MeV. For the values of g in the other nuclei 
discussed here see Table 1. The single-particle orbit occupancies (Vj) needed to 
evaluate the nuclear form factors Fz[q2) and Fj^{q2) were evaluated by performing 
a shell-model calculation of the 27A1 ground state in the proton-neutron formalism 
too. The shell-model form factors found are in very good agreement (see Ref. [6]) 
with the experimental form factors obtained from electron scattering (for proton 
form factors) [24] or from pionic atom data (for neutron form factors) [25]. 

As it has been seen in Sect. 2, the pure transition-rate calculations needed for 
the μ — e conversion studies involve mainly the integrals of Eqs. (6) and (7). For 
the coherent process, in the case of 4 8Ti and 2 0 8 P b for which the factorization 
approximation is not very good, these integrals have been exactly calculated using 
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experimental proton densities pp from Ref. [24] and neutron densities pn from Ref. 
[25]. The results for M^ and M^ are shown in Table 1. 

Table 1 
Isoscalar and isovector transition matrix elements for the coherent μ — e process, 
i.e. muon-nucleus overlap integrals MySi r — 0,1 of Eqs. (6) and (7). Other useful 
quantities (see text) are also included. 

Nucleus IqK/m" 1) eh (MeV) M^sU
m~Z'2) ^ v , s ( K 3 / 2 ) 

0.531 -0.470 0.046 0.001 

0.529 -1.264 0.115 0.012 

0.482 -10.516 0.490 0.076 

The wave function of the muon at the atomic level was obtained by solving the 
Schrödinger equation using the Coulomb potential produced by the charge densities 
discussed before. The nucléon finite size was taken into consideration and vacuum 
polarization corrections were included as in Ref. [22]. In this way we constructed 
an analytical form for the muon wave function (given in terms of sigmoid functions) 
which was advantegeous for our numerical integrations. 

For explicit calculations of the incoherent transition matrix elements of Eqs. (16) 
and (17) one can combine the single-particle matrix elements of Ref. [19] with the 
one-body transition densities of OXBASH [15]. Our state-by-state calculations of 
the excited states show that the incoherent rate contributions in 27A1 are rather 
small. For Sv,s the incoherent strength is concentrated in the first few excited 
states. For 5A the situation is different, but its contribution to the total strength is 
much smaller than that of the vector matrix elements Sy. 

Table 2 
Isoscalar and isovector contributions to the inclusive μ — e conversion rate in 27A1, 
i.e. the matrix elements 5£ of Eqs. (16) and (17). These quantities do not depend 
on the specific elementary model assumed for the μ — e conversion (see text). 

c(0) c( l ) c(0) ς(1) 
DV,S JV,S °A DA 

110.50 2.849 9.117 6.745 

Table 2 shows the individual isoscalar (S^1) and isovector (Sa}) matrix elements of 
Eqs. (16) and (17) for the inclusive μ-e conversion process in 27A1. In practice these 
are obtained by setting either β® (for isoscalar contribution) or β\ (for isovector 
contribution) to zero and dividing by the square of the non-zero model-dependent 

27Al 

4 8 T -

2 0 8 p 6 
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Table 3 
Upper limits on the elementary sector part of the exotic μ — e conversion branching 
ratio (quantity ρ of Eq. (11) and quantity Q of Eq. (4)) extracted by using the sen­
sitivity of the MECO experiment for the 27A1 target [7] and the recent experimental 
data for the nuclear targets 4 8 Ti and 2 0 8 P b [10]. 

Mechanism ™M ^ T i 2 0 8 P 6 

Photonic / > < 4 . 6 x l 0 - 1 8 ρ < 7.1 χ Ι Ο - 1 4 ρ < 3.2 χ I O - 1 2 

W-boson exchange ρ < 5.8 χ Ι Ο - 1 9 ρ < 2.6 χ Ι Ο - 1 4 ρ < 1.1 χ Ι Ο - 1 2 

SUSY sleptons ρ < 1.8 χ Ι Ο - 1 8 ρ < 2.6 χ Ι Ο - 1 4 ρ < 1.1 χ ΙΟ" 1 2 

SUSY Z-exchange ρ < 7.3 χ Ι Ο - 1 9 ρ < 0.6 χ Ι Ο - 1 4 ρ < 0.2 χ ΙΟ" 1 2 

SUSY R-par. Viol. Q < 5.10 ·10 - 1 9 Q < 1.10 ·10 - 1 4 Q < 2.27 ·10"1 3 

coefficient &τ

α. From Table 2 we see that the particle-model independent isoscalar 
matrix elements of the scalar and vector operators are much larger than those of the 
isovector ones. Thus, in the approximation of neglecting the isovector contribution 
one can constrain the isoscalar parameters /?£. In general, the evaluation of the 
isoscalar (Ma ) and isovector (Ma ) transition matrix elements enables one to put 
bounds separately on the isoscalar and isovector parameters of the hadronic currents 
if, in the specific model, the μ~ -» e~ Hamiltonian is characterized by isoscalar or 
isovector dominance (see below). 

The results of Tables 1 and 2 can be exploited for setting constraints on the param­
eters of a specific gauge model predicting the μ — e process. One can extract upper 
limits on the individual lepton flavor violation parameters (couplings of scalar, vec­
tor currents, neutrino masses etc. [1,4,17,18]) under certain assumptions. The most 
common assumption is the dominance of only one component of the μ — e conversion 
Lagrangian which is equivalent to constrain one parameter. In some cases we can 
write the branching ratio Rße- as [2] 

G2
F q Ee [M^lf 

R»e- = -2ÏG*ZfGP(A,Z)Q> m 

where 
Q * [ß°v + ßl

vii]
2 + [ß0

s + ßl
sn]2, 

with 7Z = M^/M^ being the ratio of the isovector to isoscalar matrix elements. 
In general, especially for light nuclei, TZ is very small. As an example see the case 
of R-parity violating SUSY mechanisms in Ref. [18]. 

In Table 3 we quote the upper bounds for the quantities ρ and Q derived by using the 
expected experimental sensitivity of the Brookhaven experiment, Ä„e- < 2 χ IO - 1 ' 
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for 2 'A1 and the recent experimental data on the branching ratio Rße- for 4 8Ti and 
2 0 8 Pb given in the introduction. The limits of/? and Q for the 27A1 target quoted in 
Table 3 improve by about four orders of magnitude over the previous ones. Using 
the upper limits for Q given in this table we can derive, by assuming isoscalar 
dominance, constraints on the scalar current couplings ß°s. In the imparity violating 
Lagrangian for the 27A1 target [6,13] we obtain \ß%\ < 7 χ 10~ 1 0 . The limit for β% 

obtained with the data of Ti target [10] is \ß°s\ < 1.1 χ I O - 7 , i.e. more than two 

orders of magnitude weaker than the limit of 2 7 AL 

We should mention that significantly better improvement on these limits is expected 

from the ongoing experiments at PSI [9]. The analysis of the data obtained with 

the last run of the SINDRUM II experiment on the 4 8 T i target is expected to reduce 

the best upper limit in the value Rße- = 1 - 2 x 10" 1 3 [9]. 

5 Summary and Conclusions. 

The transition matrix elements of the flavor violating μ~ —> e~ conversion are 

of notable importance in computing accurately the corresponding rates for each 

accessible channel of this exotic process. Such calculations provide ifseful nuclear-

physics inputs for the expected new data from the MECO and PSI experiments to 

put severe bounds on the muon-number-changing parameters (isoscalar couplings, 

etc.) determining the effective currents in various models that predict the exotic 

μ~ —> e~ process. 

From the existing data on Rße- in 48Ti and 208Pb and the expected sensitivity of 
the designed MECO experiment on 27A1 [7] we obtained stringent upper limits on 
the quantities ρ and Q introduced in Eqs. (11) and (20). 
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