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Abstract

The influence of resonances on the analytical properties and off-shell characteris-
tics of effective interactions has been investigated. This requires, among others, the
knowledge of the Jost function in regions of physical interest on the complex k-
plane when the potentials are given in a tabular form. The latter are encountered
in inverse scattering and supersymmetric transformations. To investigate the ef-
fects of resonances on the analytical properties of the potential, we employed the
Marchenko inverse scattering method to construct, phase and bound state equivalent
local potentials but with different resonance spectra. It is shown that the inclusion
of resonances changes the shape, strength, and range of the potential which in turn
would modify the bound and scattering wave functions in the interior region. This
could have important consequences in calculations of transition amplitudes in nu-
clear reactions, which strongly depend on the behaviour of the wave functions at
short distances. Finally, an exact method to obtain the Jost solutions and the Jost
functions for a repulsive singular potential is presented. The effectiveness of the
method is demonstrated using the Lennard-Jones (12,6) potential.

1 Introduction

Interaction potentials between colliding nuclei are widely used to describe scatter-
ing and spectral data. For practical reasons, they are expressed in terms of quite
simple analytic and local forms of specific shape with parameters adjusted to fit the

1 Permanent address: Department of Theoretical Physics, University of Thessa-
loniki, Thessaloniki GR-34006, Greece.
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scattering cross section well which means that the relevant scattering wave func-
tions are asymptotically correct. Such potentials, however, do not guarantee that
their off-shell characteristics are sufficiently good to describe equally well reactions
that depend on the behaviour of the wave function in the interior region. Examples
of such reactions are the electro—disintegration and photo—disintegration processes
which depend crucially on the bound and scattering wave functions at all distances.

An alternative way to construct local nucleus—nucleus potentials is via inverse scat-
tering techniques. The inversion potential in this case is directly related to the
available information of the scattering phase shifts and of bound states. In the in-
verse scattering method at a specific partial wave ¢ (fixed—¢ inversion) [1-3] and in
the absence of bound states, the constructed potential is unique. When bound states
are present one may construct an infinite number of potentials which are spectrum
and phase equivalent at all energies. This is achieved by choosing arbitrarily the
bound states normalization constants which are not available from experiments.
However, the asymptotic normalization constants determine the shape and range
of the potential which in turns affects the distribution of resonances in the k—plane
and vice versa. This emphasizes the importance of taking resonances into account
in constructing effective interactions which are usually ignored.

One of the main reasons for omitting the resonances is the lack of experimental in-
formation on their positions and widths especially for broad resonances. In the past,
this was aggravated by the absence of an exact and yet simple method to study the
analytical properties of the corresponding amplitude which could facilitate their in-
corporation into the potential construction. Recently, however, a method for direct
calculation of the Jost function in the complex k-plane, has been developed [4-8]
which is both exact and quite simple and thus it could be used, to incorporate in
the potential construction the resonance poles as well.

The method is implemented via a complex rotation of the coordinates which requires
knowledge of the potential off the real axis in the r—plane. This poses no problem
when the potential is given in an analytic form. However, there are cases, such as
the aforementioned inverse scattering method, in which the resulting potential is
given numerically. In this paper, we show how the Jost function method of Refs.
[4-8] can be extended to deal with such potentials.

The method, in the form developed in the aforementiond references, cannot be
directly applied to potentials which are more singular than 1/r? at the origin. Inter-
atomic and inter-molecular are examples of this type of forces which are strongly
repulsive at short distances due to the overlap of the electron clouds. It is, therefore,
desirable to extend the Jost function method to potentials of this kind and thus in-
vestigate the analytical properties and the importance of resonances in atomic and
molecular systems as well.

In Sect. II we describe our formalism by briefly recalling the Marchenko inversion
and the Jost function method for locating resonances. In the same section the exten-
sion of the latter method to singular potential is described. In Sect. III we present
our results while our conclusions are given in Sect. IV.
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2 Formalism
2.1 Inverse Scattering Method

In the Marchenko inversion scheme [1-3] the potential Vi(r), for each partial wave
¢, is obtained from the relation

Vi(r) = -zd—{%"—) (1)

where the function K,(r, r’) satisfies the Marchenko fundamental integral equation

Ko(r, ') + Fo(r,7) + / Ko(r,s)Fe(s,r')ds =0 . (2)

The kernel F¢(r, r’) of this equation is related to the S—matrix Se(k), and thus to
experiment, via

n=0

0 Np—1
1
Folr,r')= 5= / h{P (kr) [1 = Se(k)I AT (kr')dk = 3 Aneh{P (bar)h{P (bar'),(3)

where hg”(z) is the Riccati-Hankel function, Ny is the number of bound states,
and Ape is the asymptotic normalization constant [3] for the nth bound state with

energy Eé") = —h?b2/2u where ib, lies on the positive imaginary axis of the k-

plane. The A,; can be expressed in terms of the relevant Jost solution féﬂ(k, r)

oo

AT} = / [ (16, )] (4)

0

The S—-matrix needed in Eq. (3) can be parametrized using the convenient rational
ansatz,
=k + a;
k) =
s = 1=t )

i=1

i.e. using an infinite number of simple poles and zeros. In practice the number of a;
in the above formula is limited to NV which is sufficiently large to reproduce the input
scattering phase shifts and bound states. The rational parametrization reduces the
Marchenko inverse scattering procedure to an algebraic problem since the kernel of
Eq. (2) becomes separable; this can easily be seen if one performs the integration
in Eq. (3) using the residue method.

In the absence of bound states the above scheme is unique, i.e., once a good fit to
the data from (0,00) is achieved, one and only one potential can be obtained. In
the presence of bound states, however, the potential is not unique as it depends on
the choice of the asymptotic normalization constants A4,, which are not provided
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by experiment. When 4,, are chosen according to Eq. (4) or, equivalently, obtained
via the Jost function fg(k),

_ [, _fl=B)
Ane = [ dfe(k)/dk]kﬂ,,,, ! (6)

the resulting potential is unique and has the shorter range [3]. Any other choice can
lead to an equivalent local potential which reproduces the same on-shell data but
it has different shape and range. ;From Eq. (6) it is clear that the normalization
constants can be determined from the knowledge of the Jost function. In the case of
rational parametrization Eq. (6), the A, can be easily obtained as the Jost function
also assumes the parametrization

< k-o
fe(k) = %, 7
e il;[lk’ﬁi (7)

where the parameters «; and 3; can be extracted as described in [9].

The Jost function thus constructed approximates well the exact Jost function on a
segment of the real axis of the k—plane. From this one should expect that it would
be a good approximation off the real axis as well. Indeed, if two analytical functions
coincide on any arc of a continuous curve, they coincide everywhere in the region
of their analyticity [10].

There are at least two problems concerning such a parametrization. Firstly, the
function (7) actually does not coincide with the exact Jost function on the real
axis but can only be a good numerical approximation at certain points. How fast
the deviations are growing when one moves away from the real axis is not known.
Secondly, since instead of an infinite number of terms in Eq. (7), we have to truncate
the product to a finite number of terms, not all a; correspond to zeros of the exact
Jost function. In other words, the fitting procedure employed to evaluate these
parameters, may generates a number of unphysical zeros and poles which could be
simply an artifact of the truncation.

2.2  FEzact Method for Locating Resonances

The method we employ here for locating potential resonances belongs to the class
of so-called complex energy methods which are based on a rigorous definition of
resonances, namely, as zeros of the Jost function. Unlike most of the other methods
of this class, which involve an expansion of the resonant wave function in terms of
square-integrable functions, our method is based on a direct calculation of the Jost
function at complex k£ by integrating exact differential equations equivalent to the
Schrédinger equation,

heP (kr)

O F{D (k) = £ Vi(r) [BEP (kr) EED () + 07 k) F) k), (8)

the boundary conditions being

F&(k,0)=1. (9)
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The new unknown functions Féi)(k, r) are subjected to the additional condition
rH (k)0 FS) (ky r) + 1) (k)0 F) (k1) = 0. (10)

The sum of the products of the auxiliary functions Féi)(k,r) with the Riccati-
Hankel functions,

Balk, 1) = 3[R (k) ESD) b, r) 4+ WO hr) O (k)] (11)

obeys the Schrodinger equation. The function @.(k,r) is the so-called regular solu-
tion which vanishes near r = 0 exactly like the Riccati-Bessel function, i.e.

lim ¢(k,r)/je(kr) = 1. (12)

The Jost function, fy(k), can be obtained by comparing the asymptotic behaviour
of the regular solution,

(B9 (kr) f767) + B (k) fe(k)] (13)

1
dRrl= 43

with Eq. (11) expressed in terms of the auxiliary functions Fe(i)(k, r),

folk) = | I’im F (k,7) (14)

In Ref. [5] it has been shown that the limit (14) exists for all complex & for which
Imkr >0. (15)

If r is real, the condition (15) is only satisfied for bound and scattering states but
not for resonances. Therefore, to calculate f,(k) in the fourth quadrant we make
the complex rotation of the coordinate in Eq. (8),

T

r = zexp(if), z>0, 0§9<2

(16)
with a sufficiently large 6.

The above scheme works extremely well in locating bound, scattering, and resonant
states as well in finding Regge poles and trajectories when the potential Vi(r) is
central, short range and it is given in analytic form. A generalization to non—central,

multi-channel, and Coulomb-tailed as well as to singular potentials can be found
in Refs. [4-6,8].

2.3 Jost Function for Singular Potentials

In the case of regular potentials the boundary conditions for Eq. (8) are given by
Eq. (9). Going over to singular potentials, Eq. (12) does not hold anymore. Due
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to the extremely strong repulsion, the regular solution vanishes much faster than
Je(kr) when r — 0. In fact, it vanishes exponentially [3] and therefore the conditions
(9) must be modified accordingly. In order to find the exact behavior of the regular
solution near the origin we apply the familiar semi-classical WKB method. Though
the strong repulsion makes things rather complicated, it has the advantage that the
criterion of the applicability of the WKB approximation is satisfied when r — 0.
Indeed, the WKB method works well when the local wavelength A varies slowly, i.e.

|dA/dr| < 1. (17)

It can be shown [11] that this derivative is given by

dv(r)

- V()

ld/dr]| = %‘ . (18)

Assuming that V(r) approaches its singularity near r = 0 monotonically, we can
find an rpi, that for all r < rpi, the momentum in (18) is negligible, i.e. we may
write

dv(r)

s

1

When r — 0, the right hand side of Eq. (19) for usual singular potentials tends to
zero. For example, if

V(r) — g/r™,

r—0

the condition (17) is always satisfied for n > 2,

1
npa?1

27

Therefore, assuming that the necessary condition (17) is fulfilled and choosing a
small enough rpyin, we can express the regular solution on the interval (0, rmin)
using the WKB approximation (see, for example, Ref.[12]}, viz.

|dA/dr| — —0, ifn>2.
r—0

¢l(k7 7‘) =

;(r) exp [ir/p(p)dp] . r € (0, Pmin] » (20)

where the classical momentum p(r) is defined by

p(r) = [k = V() = (£ 22/ 2)

and the upper limit a in the integral is an arbitrary value a > rpin. Usually a
is taken to be the inner turning point [12], but it is obvious from Eq. (20) that
an additional integration from a to the turning point can only change the overall
normalization of the solution which is not our concern at the moment. Thus, Eq.
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(20) together with the derivative

dv(r)

1 2
-2{L4+=) r3 a
- dull )= = 4@5)15,22) — iy/p(r) fexp [ / p(p)dp}, (22

r

rE (D~ rmin]

can be used as boundary conditions for the regular solution of the Schrédinger
equation at any point in the interval (0, rmin). To obtain the corresponding boundary
conditions for the functions Fe(i)(k, r), we need to express them in terms of ¢,(k,r)

and 0,¢¢(k, ). For this we can use Eq. (11) together with relation

| 1 ; ¥
0re(k,r) = 5 [FLT) (k) ah( (kr) + B (b m)oh T (k)] (28)

which follows from (10). From (11) and (23) we find that

F& (k,r) = i% 6ok, )0:h{T (kr) — AT (kr) B e (k, 7)) (24)

which is valid for any r € [0,00). Therefore Eqs. (24) taken at some point r <
Tmin With ¢¢(k,r) and 0,¢¢(k,r) given by (20) and (22), provide us the boundary
conditions, required in Egs. (8), for singular potentials. It can easily be checked (by
using je(kr) for the regular solution near r = 0) that Eq. (24) gives the correct
boundary conditions for regular potentials as well.

Alternatively to impose the boundary conditions on the functions Fg(i)(k, r) near
the origin, one can simply solve the Schrodinger equation from a small r up to
some intermediate point b where, using (24), the Fz(i)(k,b) can be obtained and
propagated further on by integrating equations (8).

The use of more complicated boundary conditions at 7 = 0 does not change the
condition (15) for the existence of the limit (14). Indeed, in deriving this condition
we used only the behavior of the potential and the Riccati-Hankel functions at
large distances [4,6]. Therefore, the Jost function for a singular potential can also be
calculated by evaluating the function Fe(_)(k, r) at a large r. When we are dealing
with resonances, i.e. working in the fourth quadrant of the k—plane, we need to
integrate Eqs. (8) along the turned ray (16).

As can be seen from the WKB boundary conditions (20}, the use of a complex r
near the origin, makes ¢;(k,r) oscillatory from the outset. Although this does not
formally cause any problem, in numerical calculations such oscillations may reduce
the accuracy. To avoid this we solve Egs. (8) from a small ry;, to some intermediate
point b along the real axis and then perform the complex rotation,

r=b+zexp(if), z€l0.00), 059<-’23, (25)
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Therefore, on the interval [rmin, b] we can use Eqgs. (8) as they are, while beyond the

point r = b these equations are transformed to

¢S (kb + kze'?) 5
2ik

0. F D (k b+ ze) = £ (b+ze)g(k, b+ ze?)  (26)

Though the complex transformation (25) is different from (16), the proof of the
existence of the limit (14) given in the Appendix A.2 of Ref. [6] remains applicable
here. Indeed, that proof was based on the fact that for Im kr > 0 the Riccati-
Hankel function h§+)(kr) decays exponentially at large |r|, and thus the derivative
8,F(=)(k, r) vanishes there and the function F(~)(k,r) becomes a constant. Under
the transformation (25) the asymptotic behavior of the Riccati-Hankel function,

Bt (kr) — —iexpli(kr — ex/2)] (27)

has only an additional r-independent phase factor exp(ikbd) which does not affect
the proof.

;From the above, it is clear that we can identify the Jost function f;(k) as the value
of F’J_)(k, b+ ze'®) at a sufficiently large z beyond which this function is practically
constant. In the bound and scattering state domain, where Im k > 0, one can choose
any rotation angle 8 allowed by the potential, including § = 0. In the resonance do-
main, however, where k = |k|exp(—i¢) , ¢ > 0, the rotation angle # must be
greater or equal to ¢. If the condition 8 > ¢ is fulfilled, the value of the limit (14)
does not depend on the choice of 4. This provides us with a reliable way to check
the stability and accuracy of the calculations by comparing the results for f;(k)
obtained with two different values of 6.

From Eq. (27) it is clear that the angular momentum appears only in the phase
factor of the asymptotic behavior of the Riccati-Hankel functions and hence of the
regular solution. Therefore, the use of any complex ¢ cannot change the domain of
the k-plane where the limit (14) exists. This means that the Jost function can be
calculated, for any complex angular momentum, using the same equations. More-
over, when looking for the Regge poles in the £-plane, the complex rotation is not
necessary because these poles correspond to real energies. Locating Regge poles as
zeros of the Jost function in the complex ¢-plane is easier than by calculating them
via the S-matrix using three integration paths (in the r~plane) as suggested in Ref.
(13].

2.4 Results

In the present work we firstly address the question of how the analytical properties of
potentials given in tabular form, generated by inversion or Supersymmetric (SUSY)
transformations [14] can be studied. To make an analytic continuation of them into
the first quadrant of the complex r-plane, needed for the complex rotation, we
fitted the potentials on the real axis by simple analytical forms with adjustable
parameters and then considered r in these forms as a complex variable. Such an
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approach to analytic continuation is based on a theorem of the complex analysis
which states that if a function is analytic in a region and vanishes along any arc
of a continuous curve in this region, then it must vanish identically in this region
[10]. The obvious corollary of this theorem is that if two functions coincide on a
curve, they coincide everywhere in the region of analyticity. Therefore, the analytical
form which coincides with the tabulated function on the real axis should reproduce
this function off the real axis as well. The question then arises if small numerical
deviations in the potential on the real axis generate perceptible deviations of the
position of the resonances. We have investigated this situation first by assuming the
following analytic potential

V(r) = 5exp [-0.25(r — 3.5)%] - Sexp(-0.2r%) (28)

where the strength parameters are given in MeV and r in fm. The reduced mass
p is such that A%/2u = 1/2MeV fm?. The resonances and Regge trajectories of
this potential were investigated in Ref. [5]. We then fitted the N points V{r;),
1=1,2, .-, N using the ansatz

N N,
Vae(r) = z @y, exXp [—bn(r - cﬂ)2] + Z dn, exp(—e,r?) (29)
n=1 n=1

where the parameters were obtained using the MERLIN minimization program [15].
The minimization was stoped when the least square error on 120 points and N; = 5
and Ny = 4 was of the order of 10™* - a typical accuracy in these cases. This means
that the fit to the analytic potential was between the third and fourth decimal in
the whole region. With such a fit, all resonances found in Ref. [5] were recovered
within three to five decimal points. Obviously the accuracy can be improved as the
fit to the potential improves. One further comment is necessary: The form factors
used for the fit restrict the use of rotation to a certain region only.

These test calculations show that the Jost function method is applicable and retains
its effectiveness even when the potential is given numerically on the real axis. We
can therefore use it to study the importance of incorporating physical two—cluster
resonances in constructing a potential. This can be easily investigated by construct-
ing Equivalent Local Potentials (ELP’s) for a specific partial wave via inversion as
described above and studying the implications of the implanted resonances. For this
we use the nucleon-a potential of Dubovichenko et all [16] for the £ = 0 partial wave

V(r) = =Vpexp(—ar?) (30)

where Vo = 55.774MeV and o = 0.292fm~2. This is a deep potential that sustains
an unphysical Pauli Forbidden State (PFS)[17] at —9.73058 MeV. This means that
the Levinson’s theorem, dp(0) — dg(c0) = =, is fulfilled for this system. At large dis-
tances the radial wave function decays exponentially, ug(r) — 00 Asexp(—bor) ,
and the asymptotic normalization constant was found to be A; = 6.1603 fm~1/2,

By varying the asymptotic normalization constant we obtained a set of potentials
which were fully phase shift and bound state equivalent but have different number
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V(r) [MeV]

Fig. 1. Bound and
4 phase equivalent po-
tential for the nu-
cleon — « interaction.
» These potential gen-
as0 i) - erate different reso-
’ nance spectra.

0 1 2 3 4 3 6 7
7 [fm]
0 1 2 1 2 Rek (fm™?)
0 1 I 1 Il 1 1 1
—1 . ) . = ¢ * - _
—24 [4,=3 T. 1 A, =2 ‘4 [a =1
Imk (fm™)

Fig. 2. Distribution of the Jost function zeros (filled circles) in the complex k-plane
for the S—wave N-a potential for three different values of the asymptotic normal-
ization constant 4,. The diagonal of the fourth quadrant represents the threshold
boundary Re E = 0.

of potential resonances. These potentials are shown in Fig. 1. It is seen that for
values of A less than the choice given by (4) (4, = 6.1603), a hump appears in the
interaction region which is higher as A; becomes smaller while at the same time
the well becomes deeper. For values larger than 6.1603 the potential is also of long
range but without a hump. In the extreme case of A; = 0 the potential becomes
repulsive at all distances. This means that as A; — 0 resonances are generated and
their appearance and position depend on the specific choice of A;.

Using the ansatz (29) we fitted these potentials, with N; = 5 and N2 = 3, the
accuracy being again within a fourth decimal at all points meaning that correspn-
oding accuracy in reproducing the phase shifts was better than 0.0001 of a degree.
We employed the analytical representations of these phase—equivalent potentials to
locate the zeros of the Jost function in the fourth quadrant of the k—plane. The orig-
inal potential (30), which is also a member of our set of ELP’s, does not generate
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Wy (1)

Fig. 3. Bound state wave func-
tions generated by the poten-
tials of Fig. 1

r [fm]

any physical resonances. All the zeros of the Jost function, which we found for this
potential, are situated below the diagonal of the fourth quadrant of the k-plane and,
therefore, represent sub—threshold resonances which are unphysical. The growth of
the potential barrier when A, decreases, indicates that some physical resonances
should appear. In other words, when A; becomes smaller some of the Jost function
zeros should move up to the area above the threshold line. When, however, A; is
too small, the barrier transforms into a strong repulsive core, and the resonances
should disappear. This can be seen in Fig. 2 where we present the distributions of
the Jost function zeros for three phase—equivalent potentials corresponding to A,
equal to 3, 2 and 1.

At a first sight one can argue that the zeros of the Jost function practically have
no effect on the scattering processes because they are far away from the real axis.
These potentials, however, generate bound and scattering wave functions which
have a different behaviour in the interior region. The bound state wave functions
are shown in Fig. 3 while the scattering wave functions, for center of mass energy
E = 5MeV, are plotted in Fig. 4. The nodeless wave function for the SUSY po-
tential is also shown. Since the interior region (within few fm) is of importance in
describing various nuclear reactions, the existence and distribution of resonances
cannot be ignored when the reaction observables are calculated. These differences
are also a source of off shell differences in the corresponding scattering matrices
which are manifested in three— and four—cluster calculations.

In order to evaluate the accuracy and efficiency of the method given in subsection
2.3 we apply it to the Lennard-Jones potential

V(r) =D [(d/r)" - 2(d/r)%] . (31)
which is well-known in atomic and molecular physics. Combined with a rotational
barrier, this potential supports narrow as well as broad resonant states (see, for

example, Ref.[12]). To locate them, any method employed must be pushed to the
extreme, thus exhibiting its advantages and drawbacks.

103



Fig. 4. Scattering wave func-
tions generated by the poten-
tials of Fig. 1 for E = 5 MeV.
The A; = 0 corresponds to
the shallow SUSY potential
that generates a nodeless wave
function at short distances.

r [fm]

To compare our results with other calculations, we chose the same parameters as
those of (31) used in Refs. [12,18], namely, d = 3.56 Aand with D varying from
5cm~! to 60cm~!. The choice D = 60cm™! together with the conversion factor
h%/2u = 8.7802375 ecm~1A? (which was used for all values of D) approximately rep-
resents the interaction between the Ar atom and the H; molecule [12]. In Table 1
the energies and widths of the first resonant states in the partial wave £ = 8 are
presented for different values of D. The results obtained with three other methods
described in Refs. [12,18] are also given. The digits shown there are stable under
changes of the rotation angle and thus they indicate the accuracy achieved. The third
column of these tables, contains the results obtained in Ref. [12] using a Complex
Rotation (CR) method which in some aspects is similar to ours. The authors of that
reference perform the rotation directly in the Schréodinger equation and integrate
it from r = 0 outwards and from a large rpax inwards. At the origin they use the
WKB boundary conditions and at rnax they start from the Siegert spherical wave.
In other words, the wave function is calculated using physical boundary conditions.
In such an approach a resonance corresponds to a complex energy which matches
the inward and outward integration. As indicated in Ref. [12], this method fails
for broad resonances due to instability in the outward integration. In the fourth
column the results obtained in Ref. [12] using the Quantum Time Delay (QTD)
method are cited. This method is expected to be reliable for narrow resonances but
its applicability to broad states is questionable. Finally, in the last column of Table
1 we give the results obtained in Ref. [18] using the Finite Range Scattering Wave
(FRSW) method. The main idea of this method is based on the fact that while the
scattering wave function cannot be expanded properly by a finite number of square
integrable functions on an infinite range, it is possible to do so for a finite range.

The test calculations show that our method works well, especially for narrow res-
onances. Broad resonances can also be located. In contrast to the CR-method of
Ref.[12], which was unstable for broad resonances corresponding to D < 35cm™!,

we succeeded even in the case of D = 5cm™! which generates an extremely broad
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Table 1
Energies and widths of the lowest resonances, in the ¢ = 8 partial wave, for the
Lennard~Jones potential with different D. (D, Eres and Tpes (cm™?) ).

Ref. This work CR[12] QTD[12] FRSW[18]
D | Etes Cres Eres Tres Eres I'res Eres I'res
5 |30 60

10 |27 42

15 | 25.5 29.4

20 | 24.5 24.8

25 | 22.90 18.63

30 | 21.193 13.70
35 | 19.450 9.724 19.449 9.727 | 19.370 10.228
40 | 17.6478 6.533 17.647 6.536 | 17.619 6.604 | 17.617 6.603
45 | 15.7768 4.039 15,777 4.039 | 15.769 3.992 | 15.769 3.990
50 | 13.81980  2.1833 13.820 2.183 | 13.819 2.143 | 13.818 2.142
55 | 11.744242 0.93915 | 11.744 0.939 | 11.744 0.926 | 11.743 0.926
60 | 9.4943275 0.264474 | 9.494 0.264 | 9.494 0.263 | 9.4934 0.263

state (its width is greater than the resonance energy by a factor of 2). Our results for
small values of D, reproduce well the curve depicted in Fig. 3 of Ref. [12] which was
produced semi-classically. The greater stability of the Jost function method as com-
pared to the CR—method of Ref. [12] can be attributed to the use of the ansatz (11)
for the regular solution. The Riccati-Hankel functions, explicitly extracted there,
describe correctly all oscillations at large distances with the remaining functions
Fl(i) being smooth. Another reason for this stability is the use of the deformed in-
tegration path given by Eq. (25) which enables us to avoid fast oscillations at short
distances.

3 Conclusion

We demonstrated that for a potential given numerically the analytic properties of
the corresponding Jost function in the complex k—plane can be obtained via fitting
the potential by any analytic form that allows a complex rotation into the first
quadrant of the complex r—plane. The scattering observables, the bound states, and
the potential resonances can be calculated with a sufficient accuracy which is im-
proved with an improved fit to the potential.

The phase shifts extracted from experimental data on the real k—axis, contain infor-
mation about resonances in an indirect way. They “feel” the existence of resonances
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only when they are close to the real axis (narrow resonances). The broad resonances,
however, remain “unnoticed” and therefore a potential which is based on them, gen-
erates an S—matrix without the corresponding poles. However, even extremely broad
resonances affect the behaviour of the wave function at short distances. This im-
plies that an information on the distribution of resonances can be a clue for making
a correct choice among very different potentials generating the on-shell S—matrix.
Such information can, in principle, be obtained from various inelastic processes. For
example, photo-excitation of a nucleus and its subsequent decay in two fragments A4
and B can reveal AB-resonances which are not “visible” in elastic A B-scattering.
When a potential is constructed using theoretical phase—shifts, additional effort to
locate broad resonances would exclude any ambiguities. For example, in the Res-
onating Group Model (RGM) [17] one has a complicated (nonlocal) potential and
thus resorts to construction from nonlocal phase-shifts of an ELP with very simple
simple form.

Finally, we presented an exact method for calculating the Jost function for singular
potentials, for real or complex momenta of physical interest. We demonstrated, in
the example considered, that the suggested method is sufficiently stable and effective
even in the case of highly singular potentials.
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