
  

  HNPS Advances in Nuclear Physics

   Vol 21 (2013)

   HNPS2013

  

 

  

  Critical point for the Deformation Dependent Mass
model through a variational procedure 

  D. Petrellis   

  doi: 10.12681/hnps.2005 

 

  

  

   

To cite this article:
  
Petrellis, D. (2019). Critical point for the Deformation Dependent Mass model through a variational procedure. HNPS
Advances in Nuclear Physics, 21, 65–70. https://doi.org/10.12681/hnps.2005

Powered by TCPDF (www.tcpdf.org)

https://epublishing.ekt.gr  |  e-Publisher: EKT  |  Downloaded at: 22/07/2024 20:28:13



Critical point for the Deformation Dependent Mass model through a
variational procedure

D. Petrellisa

aInstitute of Nuclear and Particle Physics, National Center for Scientific Research “Demokritos”, Athens, Greece

Abstract

The recently introduced Deformation-Dependent Mass model is combined with a variational approach
to the Bohr Hamiltonian in order to describe transitional nuclei. The results of this procedure are demon-
strated for the ‘spherical to γ-unstable’ and the ‘spherical to deformed’ transitional classes, which corre-
spond to the E(5) and X(5) solutions.
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1. Introduction

Critical point symmetries, as the E(5) and X(5) [1, 2] solutions of the Bohr Hamiltonian became known,
have for more than a decade described the properties of transitional nuclei and were followed by a variety
of similar models giving successful, parameter-free predictions of energy ratios and B(E2) ratios. In one of
these models [3], a Davidson potential with a variational parameter is used, instead of the infinite square
well in β employed in both E(5) and X(5), and the critical point is determined by the procedure described
in the next section. The results obtained resemble very closely those of E(5) and X(5).

In a recent publication [4], a variant of the Bohr Hamiltonian was proposed, where the mass term is
allowed to depend on the β variable of nuclear deformation. Analytic solutions of this modified Hamiltonian
were obtained using a Davidson potential in β and by employing techniques from supersymmetric quantum
mechanics [5]. In addition to the new set of analytic solutions, the newly introduced Deformation-Dependent
Mass (DDM) model offered a remedy to the problematic behaviour of the moment of inertia in the Bohr
Hamiltonian, where it appears to increase proportionally to β2. In the DDM model the moments of inertia
increase at a much lower rate, in agreement with experimental data. Recently, a solution of the DDM
model with a Kratzer potential has been obtained [6].

In what follows, the two approaches (the variational and the DDM with Davidson) are combined and
the results for the ground band energy spectra are presented.

2. General description of the method

The method originally proposed in [3, 7] uses a Davidson potential (u(β) = β2 + β4
0/β

2) in the Bohr
Hamiltonian and analytic expressions for the energies are obtained. The resulting expressions depend on
the angular momentum L and the parameter β0 of the potential, which is the position of the potential
minimum and upon variation of β0 (from 0 to sufficiently large values) the energy spectra change from
those of the spherical type to the γ-unstable type and (with the addition of a harmonic oscillator potential
term in γ) also from the spherical to the prolate-deformed.

Then, the critical point can be identified as the value of β0 that maximizes the rate of change of each
energy ratio (RL = E(L)/E(2)), in accordance with the observation that in a phase transition certain
characteristic quantities change most abruptly. Therefore, one looks for the value of β0 for which the first
derivative of RL (for each separate value of L) with respect to β0 (dRL/dβ0), becomes maximum and subse-
quently uses these values to calculate the energy ratios. As shown below, the same method can be extended
in the DDM framework for the two cases of shape transitions, with the addition of an extra parameter.
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2.1. The spherical to γ-unstable transition
The energy spectrum of the ground band, in the DDM model with a Davidson potential as calculated

in [4] is given by the expression:

E0(α,β0, L) = α
29

4
+

√
8 + 49α2 + L(L+ 6)α2

2
+ α

√
9 + L(L+ 6) + 8β4

0

2

+

√
(8 + 49α2 + L(L+ 6)α2)(9 + L(L+ 6) + 8β4

0)

4
(1)

As can be seen, the energies, apart from the angular momentum L and β0, depend also on α, which is
a parameter that enters the formula of the mass depending on deformation [4], and for α = 0 the results of
the Bohr Hamiltonian with a Davidson potential are obtained [3]. Consequently, the energy is represented
graphically by a surface, instead of a curve and the variational method described above is implemented
by finding the pair of (α,β0)crit values that maximize the partial derivative of RL with respect to β0 (see
fig. (1)). It should be noted that a proper rescaling of the potential, like the one followed in [6] may be
necessary in order to lower the obtained β0’s to more physical values. Also, very recently, an interpretation
of the role of the α parameter has been proposed in [8].
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Figure 1: R4 energy ratio surface (top) and its derivative with respect to β0 (bottom) as functions of α and β0 for the
γ-unstable case.

Fig. 2 shows how the critical point ‘migrates’ for increasing L values, showing a stabilization in α for
L ≥ 10.
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Figure 2: Critical values for α and β0 for the various L values in the ‘spherical to γ-unstable’ transition.

The RL ratios that correspond to the critical (α,β0) values are shown in fig. 3. Although they follow
the general trend of the E(5) results the variational RL ratios tend more towards the O(6) limit.
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Figure 3: Critical RL energy ratios (var) as functions of L for the ground state band and the U(5)-O(6) transition, as they
compare to the E(5) results [1].
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2.2. The spherical to deformed transition

The energies of the ground state band for the prolate deformed (γ = 0◦) case in the DDM with Davidson
are given by the expression:

E0(α,β0, L) = α
29
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√
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2
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0

2

+
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0)

4
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The R4 ratio and its partial derivative with respect to β0 are shown in fig. 4. As fig. 5 shows, the
critical points for various L follow a similar path to that of the γ-unstable case with α showing even a slight
decrease with increasing L, for L ≥ 10.
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Figure 4: R4 energy ratio surface (top) and its derivative with respect to β0 (bottom) as functions of α and β0 for the deformed
case.

As in the γ-unstable case, the critical RL energy ratios (fig. 6) follow the X(5) results, slightly shifted
towards the SU(3) limit.
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Figure 5: Critical values for α and β0 for the various L values in the ‘spherical to deformed’ transition.
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Figure 6: Critical RL energy ratios (var) as functions of L for the ground state band and the U(5)-SU(3) transition, as they
compare to the X(5) results [2].
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3. Conclusion

A method, previously used to obtain the critical point with the Bohr Hamiltonian, was employed in
the framework of the recently introduced Deformation-Dependent Mass (DDM) model. The results for the
ground state band follow closely those of the E(5) and X(5) solutions, leaning though more towards the
deformed limits.
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