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Nuclear equation of state constraints from tidal deformability of neutron
stars

Ch.C. Moustakidisa,1

aDepartment of Theoretical Physics, Aristotle University of Thessaloniki,
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Abstract

We study the effect of nuclear equation of state on the tidal polarizability of neutron stars. The predicted
equations of state for the β-stable nuclear matter are parameterized by varying the slope L of the symmetry
energy at saturation density on the interval 65 MeV≤ L ≤ 115 MeV. The effects of the density dependence
of the nuclear symmetry energy on the neutron star tidal polarizability are presented and analyzed. A
comparison of theoretical predictions with the recent observation predictions is also performed and analyzed.
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1. Introduction

Gravitational waves from the final stages of inspiraling binary neutron stars are expected to be one of the
most important sources for ground-based gravitational wave detectors [1–6]. The masses of the component
will be determined to moderate accuracy, especially if the neutron stars are slowly spinning, during the
early part of the evolution. Flaganan and Hinderer [1] have recently pointed out that tidal effects are also
potentially measurable during the early part of the evolution when the waveform is relatively clean. The
tidal fields induce quadrupole moments on the neutron stars. The response of the neutron star is described
by the dimensionless Love number k2, which depends on the neutron star structure and consequently on the
mass and the equation of state of the nuclear matter.

The motivation of the present work, in view of the above studies, is to study extensively the nuclear
equation of state (EOS) effect on the dimensionless Love number k2. We employ a phenomenological model
for the energy per baryon of the asymmetric nuclear matter having the advantage of an analytical form. By
suitably choosing the parametrization of the model we obtain different forms from the density dependence of
the nuclear symmetry energy by varying the slope parameter L on the interval 65 MeV≤ L ≤ 115 MeV. The
effects of the density dependence of the nuclear symmetry energy on the neutron star tidal polarizability are
presented and analyzed while comparison of theoretical predictions with the recent observation predictions
is also performed and analyzed.

2. Tidal polarizability and tidal Love numbers

The tidal Love numbers k2 is given by the ration of the induced quadrupole moment Qij and the applied
tidal field Eij

Qij = −k2
2R5

3G
Eij ≡ λEij , (1)
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where R is the neutron star radius. The tidal Love number k2 is given by [2]
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1
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One first has to solve the following differential equation

r
dy(r)

dr
+ y2(r) + y(r)F (r) + r2Q(r) = 0, y(0) = 2, yR ≡ y(R) (2)

where
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, (3)
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The Schwarzschild radius RS is given by

Rs =
2GM

c2
=

2GM⊙
c2

M̄ = 2.948M̄(Km). (5)

The equations (2), (3) and (5) must be integrated with the TOV equations

dP (r)

dr
= −GM(r)E(r)

r2c2

(
1 +

P (r)
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)(
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, (6)

dM(r)

dr
=

4π2E(r)
c2

, (7)

with the boundary conditions y(0) = 2, P (0) = Pc and M(0) = 0. Since the neutron stars in binaries
have a broad mass distribution it is necessary to investigate the mass dependence of the tidal polarizability.
Whereas what can be measured for a neutron star binary of mass M1 and M2 is the mass-weighted tidal
polarizability [4, 6].

λ̃ =
1

26

[
M1 + 12M2

M1
λ1 +

M2 + 12M1

M2
λ2

]
.

In the present work we consider binaries consisting of two neutron stars with equal masses.
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3. The nuclear model

The model used here, which has already been presented and analyzed in a previous paper [7], is designed
to reproduce the results of the microscopic calculations of both nuclear and neutron-rich matter at zero
temperature and can be extended to finite temperature. The energy per baryon at T = 0, is given by

Eb(n, I) =
3
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In Eq. (8), I is the asymmetry parameter (I = (nn−np)/n) and u = n/n0, with n0 denoting the equilibrium
symmetric nuclear matter density, n0 = 0.16 fm−3. The parameters A, B, σ, C1, C2 and B′ which appear
in the description of symmetric nuclear matter are determined in order that Eb(n = n0, I = 0) = −16 MeV,
n0 = 0.16 fm−3, and the incompressibility is K = 240 MeV. The baryon energy is written also as a function
of the baryon density n and the proton fraction x (x = np/n), that is Eb(n, x), by replacing I = 1 − 2x.
The additional parameters x0, x3, Z1, and Z2 employed to determine the properties of asymmetric nuclear
matter are treated as parameters constrained by empirical knowledge. The parameterizations used in the
present model have only a modest microscopic foundation. Nonetheless, they have the merit of being able
to closely approximate more physically motivated calculations.

3.1. Symmetry energy
The energy Eb(n, I) can be expanded around I = 0 as follows

Eb(n, I) = Eb(n, I = 0) + Esym,2(n)I
2 + Esym,4(n)I

4 + · · ·+ Esym,2k(n)I
2k + . . . , (9)

where the coefficients of the expansion are given by the expression

Esym,2k(n) =
1

(2k)!

∂2kEb(n, I)

∂I2k

∣∣∣∣
I=0

. (10)

In (9), only even powers of I appear due to the fact that the strong interaction must be symmetric under
exchange of neutrons with protons. The nuclear symmetry energy Esym(n) is defined as the coefficient of
the quadratic term, that is

Esym(n) = Esym,2(n) =
1

2!

∂2Eb(n, I)

∂I2

∣∣∣∣
I=0

. (11)

The slope of the symmetry energy L at nuclear saturation density n0, which is correlated with the crust-core
transition density nt in a neutron star, is defined as

L = 3n0
∂Esym(n)

∂n

∣∣∣∣
n=n0

. (12)

By suitably choosing the parameters x0, x3, Z1, and Z2, it is possible to obtain different forms for the density
dependence of the symmetry energy Esym(n) as well as on the value of the slope parameter L. We take as
a range of L 65 MeV ≤ L ≤ 115 MeV where the value of the symmetry energy at saturation density is fixed
to be Esym(n0) = 30 MeV. Actually, for each value of L the density dependence of the symmetry energy is
adjusted so that the energy of pure neutron matter to be comparable with those of existing state-of-the-art
calculations.
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Figure 1: The dimensionless tidal Love number k2 as a function of the compactness M/R for the selected EOSs.

3.2. Proton fraction

The proton fraction x (as a function of the baryon density n) in β-stable matter. In this case we have
the processes

n −→ p+ e− + ν̄e p+ e− −→ n+ νe, (13)

which take place simultaneously. We assume that neutrinos generated in these reactions have left the system.
This implies that

µ̂ = µn − µp = µe. (14)

The demand for equilibrium leads to equation

∂

∂x

(
Eb(n, x) + Ee(n, x)

)
= 0, (15)

or (
∂Eb

∂x

)

n

= −
(
∂Ee

∂x

)

n

= −µe. (16)

Finally, considering that the chemical potential of the electron is given by the relation (relativistic electrons)

µe =
√
k2Fe

c2 +m2
ec

4 ≃ kFec = !c(3π2nx)1/3, (17)

then Eq. (16) is written (
∂Eb

∂x

)

n

= −!c(3π2nx)1/3. (18)

Eq. (18) determines the proton fraction of β-stable matter.

3.3. Nuclear equation of state for β-stable matter

The total pressure P (n, x), in the core of a neutron star, is decomposed into baryon and electron contri-
butions

P (n, x) = Pb(n, x) + Pe(n, x), (19)

where

Pb(n, x) = n2 ∂Eb(n, x)

∂n
. (20)
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The electrons are considered as a non-interacting relativistic Fermi gas and their contribution to the total
energy density ϵe(n, x) and pressure Pe(n, x) reads

ϵe(n, x) =
!c
4π2

(
3π2xn

)4/3
, (21)

Pe(n, x) =
!c

12π2

(
3π2xn

)4/3
. (22)

Now the total energy density ϵtot and pressure Ptot of charge neutral and chemically equilibrium nuclear
matter is

ϵtot = ϵb + ϵe, (23)

Ptot = Pb + Pe . (24)

From Eqs. (23) and (24) we construct the equation of state in the form ϵ = ϵ(P ).
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Figure 2: Tidal polarizability λ as a function of the the neutron star mass for the selected EOSs. An estimate of uncertainties
in measuring λ for equal mass binaries at a distance of D = 100 Mpc is shown for the Advanced LIGO detector and the Einstein
Telescope.

4. Results and Discussion

In Fig. 1 we plot the tidal Love number k2 as a function of the compactness M/R for the selected
equations of state. The maximum of k2 occurs near to 0.1 M/R. Actually the EOS effects are more
pronounced on the interval 0.05− 0.15 M/R.

The tidal polarizabilty λ depends strongly on the equation of state as displayed in Fig. 2. In comparison
an estimate of uncertainties in measuring λ for equal mass binaries at a distance of D = 100Mpc is show
for the Advanced LIGO detector and the Einstein Telescope. According to Fig. 2, a crude estimate of
uncertainties in measuring λ excludes EOS with high values of L (espexially for low values of neutron stars).
Moreover, the narrow uncertain range for the proposed Einstein Telescope will enable it to tightly constrain
the EOS compared to Advanced LIGO detector.

In any case additional work with a combination of theoretical, terrestrial experiments and observation
data are necessary to constrain further the nuclear matter equation of state.
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