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Electron-capture modes with realistic nuclear structure calculations

P.G. Giannaka and T.S. Kosmas

Theoretical Physics Section, University of Ioannina, GR 45110 Ioannina, Greece

Abstract

Nuclear electron capture posses prominent position among other weak interaction processes occuring in
explosive nucleosynthesis. In particular, this process plays important role in the core-colapse of massive
stars by modifying the electron to baryon ratio Ye. From a nuclear theory point of view, such processes
may be studied by using the same nuclear methods (e.g. the quasi-particle random phase approximation,
QRPA), employed in the present work with these used for the one-body charge changing nuclear reactions
(β-decay modes, charged-current electron-neutrino absorption by nuclei, etc). In this work we calculate
e−-capture cross sections on 56Fe using two different approaches. At first, original cross section calculations
are perfored by using the pn-QRPA method considering all the accessible transitions of the final nucleus
56Mn. Secondly, we evaluate the Gamow-Teller strength distributions and obtain the cross sections at the
limit of zero-momentum transfer. The agreement between the two methods is very good.

Keywords: semi-leptonic charge-curent reactions, electron capture, nuclear matrix elements,
Quasi-Particle Random Phase Approximation, neutrino nucleosynthesis

1. Introduction

Weak interaction processes occuring in the presence of nuclei play crucial role in the late stages of the
evolution of massive stars and in the presupernova stellar collapse. As it is known, the core of a massive
star, at the end of hydrostatic burning is stabilized by electron degenerecy pressure as long as its mass does
not exceed the appropriate Chandrasekhar mass MCh [1, 2] but if the core mass exceeds MCh electrons are
captured by nuclei.

Electron capture on nuclei takes place in the very dense environment of the stellar core where the Fermi
energy (or equivalently the chemical potential) of the degenerate electron gas is sufficiently large to overcome
the threshold energy Ethr (Ethr is given by negative Q values of the reactions involved in the interior of the
stars) [3]. This high Fermi energy of the degenerate electron gas leads to enormous e−-capture on nuclei and
reduces the electron to baryon ratio Ye [4, 5]. As a consequence, the nuclear composition is shifted to more
neutron-rich and heavier nuclei (including those with N > 40) which dominate the matter composition for
matter densities larger than about 1010g cm−3 [6, 7].

In the early stage of collapse, for densities lower than a few 1010g cm−3, the electron chemical potential
is of the same order of magnitude as the nuclear Q value, and the e− capture cross-sections are sensitive
to the details of GT strength distributions in daughter nuclei. At these densities, electrons are captured on
nuclei with mass number A ≤ 60. For higher densities and tempratures, e− capture occurs on heavier nuclei
A ≥ 65 [8].

In the present work e−-capture rates are discussed within a refined version of the Quasi-Particle Ran-
dom Phase Approximation (QRPA) which is applied to construct all the accessible final (excited) states
[9–11]. For the description of a correlated ground state we determine the single-particle occupation num-
bers, calculated in BCS theory as shown below [9, 10]. We also evaluate the Gamow-Teller strenght distri-
butions and obtain the cross sections at the limit of zero-momentum transfer.
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2. Construction of nuclear ground and excited states

Electrons of energy Ee are captured by nuclei interacting weakly with them via W± boson exchange as

(A,Z) + e− → (A,Z − 1)∗ + νe− (1)

The outgoing neutrino carries energy Eν while the daughter nucleus absorbs a part of the incident electron
energy given by the difference between the initial and the final nuclear energies as E = Ef − Ei.

The nuclear calculations for the cross sections of the reaction (1) start by writing down the weak in-
teraction Hamiltonian Ĥw which is written as a product of the leptonic jleptµ and the hadronic current Ĵ µ

(current-current interaction) as

Ĥw =
G√
2
jleptµ Ĵ µ (2)

where G = GF cosθc with GF and θc being the well known weak interaction coupling constant and the
Cabbibo angle, respectively [12].

Then, the transition matrix elements entering the cross section from an initial nuclear state |i⟩ to a final
|f⟩ take the form

⟨f |Ĥw|i⟩ =
G√
2
ℓµ

∫
d3x e−iqx⟨f |Ĵµ|i⟩. (3)

For the calculation of these transition matrix elements one takes advantage of the Donnelly-Walecka multi-
pole decomposition which leads to a set of eight independent irreducible tensor multipole operators containing
polar-vector and axial-vector components [12].

In Eq. (3) the ground state of the nucleus |i⟩ is computed in the context of the BCS theory, by solving
the relevant BCS equations which gives us the quasi-particle energies and the amplitudes V and U that
determine the probability for each single particle level to be occupied or unoccupied, respectively [13]. In
the nuclear ground state, nucleons are considered as independent particles interacting with the strong nuclear
field, a Coulomb corrected Woods-Saxon potential with a spin orbit part for our description. In addition,
the pairing correlations (known as residual two-body interaction) described by the Bonn C-D potential are
also taken into consideration. The renormalization of this interaction is achievied through the two pairing
parameters gp,npair the values of which are tabulated in Table 1.

Table 1: Parameters for the renormalization of the interaction of proton pairs, gppair, and neutron pairs, gnpair. They have been

fixed in such a way that the corresponding experimental gaps, ∆exp
p and ∆exp

n , are quite accurately reproduced.

Nucleus gnpair gppair
∆exp

n

(MeV )
∆theor

n

(MeV )
∆exp

p

(MeV )
∆theor

p

(MeV )
56Fe 0.9866 0,9756 1.3626 1.3626 1.5682 1.5683

The pairing parameters gp,npair, are fitted by the reproduction of the energy gaps, ∆exp
p,n , from neighboring

nuclei (3-point formula) as

∆exp
n = −1

4

[
Sn[(A− 1, Z)]− 2Sn[(A,Z)] + Sn[(A+ 1, Z)]

]
(4)

∆exp
p = −1

4

[
Sp[(A− 1, Z − 1)]− 2Sp[(A,Z)] + Sp[(A+ 1, Z + 1)]

]
(5)
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Table 2: The experimental separation energies (in MeV) for protons Sp and neutrons Sn of the targets (A,Z), 56Fe, and
neighboring nuclei (A± 1, Z ± 1) and (A± 1, Z).

Sn(A− 1, Z) 9.298 Sp(A− 1, Z − 1) 8.067

Sn(A,Z) 11.197 Sp(A,Z) 10.184

Sn(A+ 1, Z) 7.646 Sn(A+ 1, Z + 1) 6.028

where Sp and Sn are the experimental separation energies for protons and neutrons, respectively, of the
target nucleus (A,Z) and the neighboring nuclei (A ± 1, Z ± 1) and (A ± 1, Z). In Table 2, the values of
experimental separation energies for the target 56Fe and the neighboring nuclei 56Mn, 56Co are shown.

Subsequently, the excited states |f⟩ of the studied daughter nucleus 56Mn are constructed by solving
the pn-QRPA equations [10]. Their solution is an eigenvalue problem, which provides the amplitudes for
forward and backward scattering X and Y, respectively, as well as the QRPA excitation energies Ων

Jπ [11].
In our method the solution of the QRPA equations is obtained separately for each multipole set of states
|Jπ⟩.

For the renormalization of the residual interaction (Bonn C-D), the parameters gpp and gph entering
the QRPA matrices A and B, are determined from the reproducibility of the low-lying experimental energy
spectrum. The values of these parameters are listed in Table 3.

Table 3: Strength parameters for the particle-particle (gpp) and particle-hole (gph) interaction for various multipolarities.

Positive
Parity

gph gpp
Negative
Parity

gph gpp

0+ 0.400 1.000 0− 0.800 0.800

1+ 0.994 0.200 1− 0.800 0.800

2+ 1.200 0.804 2− 0.737 0.395

3+ 0.200 1.300 3− 0.200 0.200

4+ 0.201 1.161 4− 0.800 0.800

5+ 1.153 1.200 5− 1.000 1.000

At this point, it is worth mentioning that the calculated pn-QRPA energy spectrum of each individual
multipolarity Jπ needs to be shifted in such a way that the first calculated value of each multipole state (i.e.
1+1 , 2

+
1 ...etc), to approach as close as possible the corresponding lowest experimental energy. Such a shifting

is necessary whenever in the pn-QRPA a BCS ground state is used, a treatment adopted by other groups
previously [1, 16–18]. Table 4 shows the shifting applied to our QRPA spectrum for each multipolarity of
the daughter nucleus 56Mn. The resulting low-energy spectrum with the use of the above parameters and
the shifting shown in Table 4, agrees well with the experimental one (see Figure 1).

3. Calculations of e−-capture cross sections

In this work, we study the electron capture process in the 56Fe isotope. The original cross section
calculations are obtained by using the pn-QRPA method considering all the accessible transitions of the
final nucleus 56Mn.
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Table 4: The shift (in MeV) of the spectrum applied seperately of each multipole set of states

Positive Parity States Negative Parity States

0+ 1.60 0− 4.30

1+ 5.90 1− 4.20

2+ 3.10 2− 6.80

3+ 2.30 3− 6.80

4+ 2.50 4− 3.50

5+ 2.00 5− 3.50

Figure 1: Comparison of the low-lying experimental spectrum of 56Mn with the theoretical excitations resulting from the
solution of the QRPA eigenvalue problem (up to about 3 MeV). The agreement is very good.

In the Donnelly-Walecka formalism the expression for the differential cross section in electron capture
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by nuclei in the interior of stars reads [8]

dσec

dΩ
=

G2
F cos

2θc
2π

F (Z,Ee)

(2Ji + 1)

{∑

J≥1

W(Ee, Eν)

× {[1− αcosΦ+ bsin2Φ]
[
|⟨Jf∥T̂ mag

J ∥Ji⟩|2 + |⟨Jf∥T̂ el
J ∥Ji⟩|2

]

−
[ (εi + εf )

q
(1− αcosΦ)− d

]
2Re⟨Jf∥T̂ mag

J ∥Ji⟩⟨Jf∥T̂ el
J ∥Ji⟩∗}

+
∑

J≥0

W(Ee, Eν){(1 + αcosΦ)|⟨Jf∥M̂J∥Ji⟩|2

+ (1 + αcosΦ− 2bsin2Φ)|⟨Jf∥L̂J∥Ji⟩|2

−
[ω
q
(1 + αcosΦ) + d

]
2Re⟨Jf∥L̂J∥Ji⟩⟨Jf∥M̂J∥Ji⟩∗}

}
(6)

where F (Z,Ee) is the well known Fermi function [14], W (Ee, Eν) accounts the nuclear recoil [15], and the
parameters α, b, d are given e.g. in Ref. [13].

For low momentum transfer, various authors use the approximation q → 0. Then, the transitions of the
Gamow-Teller operator (GT+ =

∑
i τ

+
i σi), provide the dominant contribution to the total cross section [1].

Under such assumptions the exclusive cross sections from a state |i⟩ to a state |f⟩ of e−-capture are given
by

σfi(Ee) =
6(Ee − E)2G2

F cos
2θc

π(2Ji + 1)
|⟨Jf∥L̂1∥Ji⟩|2 (7)

(GF is the weak coupling constant and θc is the Cabbibo angle) where

L̂1M =
i√
12π

GA

A∑

i=1

τ+(i)σ1M (i) (8)

For astrophysical environment, where the finite temprature and the matter density effects can not be
ignored (the initial nucleus is at finite temprature), in general, the initial nuclear state needs to be a weighted
sum over appropriate statistical factors. Then, assuming Maxwell-Boltzmann distribution of the initial state
|i⟩, the total cross section is given by the expression

σ(Ee) =
∑

if

(2Ji + 1)exp(−Ei/kT )

ZA
σfi(Ee) (9)

where the temprature T is in MeV, ZA denotes the partition function.
From the comparison of the results obtained with the above two methods we conclude that the aggrement

is good (see Fig. 2).
At this point it should be mentioned that in both methods employed a quenched value of the free nucleon

coupling constant is used [1].

4. Summary and Conclusions

As discussed in the Introduction, during the presupernova and collapse phase, electron capture on nuclei
(and in the late stage also on free protons) plays an important role. Electron captures become increasingly
possible as the density in the star’s center is increased. It is accompanied by an increase of the chemical
potential (Fermi energy) of the degenerate electron gas and it reduces the electron-to-baryon ratio Ye of the
matter composition.
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Figure 2: Electron capture cross sections versus the incident electron energy Ee for 56Fe nuclei. The individual contribution
of each multipolarity and the total cross sections have been computed with state-by-state pn-QRPA calculations. For the sake
of comparison we have plotted the results obtained from Ref. [1] using the G-T operator and our results using G-T operator.

In the present work, we use an advantageous numerical approach (constructed by our group recently) to
calculate all basic multipole transition matrix elements needed for obtaining e-capture cross sections. The
required nuclear wave functions are obtained within the context of the pn-QRPA using realistic two-body
forces. Results for the cross sections are obtained by using two different methods: At first we perform
state-by-state calculations by considering the momentum dependence of all transitions matrix elements in
the Donnelly-Walecka method, and afterwards we neglected the momentum dependence and considered
only the Gamow-Teller contribution to the total electron capture cross section as done by other authors
previously. The agreement between the two methods is rather good.
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