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Abstract Using a new approximate analytic parameter-free proxy-SU(3) scheme, we make predictions of
shape observables for actinides and superheavy elements, namely § and v deformation variables, and compare
these with predictions by relativistic and non-relativistic mean-field theories. Furthermore, we make predictions for
B(E2) transition rates of deformed nuclei and compare these with existing data and predictions of other theoretical
approaches.
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INTRODUCTION

The proxy-SU(3) is a new algebraic approach to heavy deformed nuclei based on fermionic
symmetries, which has been introduced recently [1, 2]. Tts basic assumptions and microscopic
justification have been discussed in Ref. [1] and are further considered in the present Symposium
in Ref. [3]. A first success of the proxy-SU(3) scheme is the explanation of the prolate over
oblate dominance in deformed nuclei, and the determination of the border of the prolate to oblate
transition, which have been considered in Refs. [2, 4] and are further discussed in the present
Symposium in Ref. [3]. In addition, parameter-free predictions for the deformation parameters 3
and  for even rare earths have been made in Ref. [2] and successfully compared to Relativistic
Mean Field predictions and to existing data.

In the present work we first obtain parameter-free predictions for the deformation parameters (3
and v for even actinides and superheavy elements and we compare them to alternative theoretical
predictions. Subsequently we calculate B(FE2) transition rates for deformed rare earth nuclei.

EVEN-EVEN ACTINIDES AND SUPERHEAVY ELEMENTS

For the illustrative and pedagogical purposes of this work, we take the relevant shells for
the actinides and superheavy elements (SHE) as Z = 82-126, N = 126-184, and N = 184-
258, although the upper bounds are by no means certain and microscopic calculations give many
varying scenarios. Parameter independent proxy-SU(3) results have been obtained for actinides
and superheavy nuclei with Z in the pfh proxy-SU(3) shell (which is an approximation of the
82-126 shell) and neutrons in the sdgi proxy-SU(3) shell (which is an approximation of the 126-
184 shell), as well as in the pfhj proxy-SU(3) shell (which is an approximation of the 184-258
shell), following the procedure described in Ref. [2]. Results are shown for 84 < Z < 98, while
additional results for 100 < Z < 114 have been presented elsewhere [5]. In order to have results
from alternative calculations to compare our results with, we confine ourselves to 128 < N < 220.

We compare our results to predictions contained in the following sources:

1) Extended results for 10 < Z < 110 and N < 200 with the D1S Gogny interaction are given
in [6] for the mean ground state /3 deformation, as well as for the mean ground state v deformation.
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2) Extended results for 10 < Z < 98 and 16 < N < 198 by relativistic mean field theory
(RMF-Lal) using the Lagrangian parametrization NL3 are reported in [7].

3) Extended results for the deformation 5 up to A = 339 are reported in the mass table
FRDM(2012) [8], calculated within the finite-range droplet macroscopic model and the folded-
Yukawa single-particle microscopic model.

4) Extended results for the proton deformation (3, and the neutron deformation f,, with covari-
ant density functional theory for 96 < Z < 130 and N from the proton drip line up to N = 196
are given in Ref. [9] for the functionals PC-PK1 and DD-PC1.

5) Extended results for the deformation 8 within a microscopic-macroscopic method (MMM)
for 98 < Z <126 and 134 < N < 192 are given in Ref. [10].

The results are summarized in Figs. 1 and 2. Overall good agreement is observed between the
parameter-free proxy-SU(3) predictions and the alternative calculations.

B(E2) RATIOS

As discussed in Appendix A of Ref. [11], B(E2)s within the proxy-SU(3) model are proportional
to the square of the relevant reduced matrix element of the quadrupole operator (). If ratios of
B(E2)s within the same nucleus and within the same irreducible representation are considered,
only the relevant SU(3)—SO(3) coupling coefficients remain, while all other factors cancel out,
leading to

B(E2; Li — Ly) 2Ly + 1 (((A w) G Lis (1, D2||(A, ) Ky L) )? )
B(E2;2, —0,)  2L;+1  ({(\, 2)02; (1,1)2][(A, ©)00))2

where normalization to the B(E2) connecting the first excited 27 state to the 07 ground state
of even-even nuclei is made. The needed SU(3)—SO(3) coupling coefficients are readily obtained
from the SUBCGVCS code [12], as described in Appendix A of Ref. [11].

It should be noticed that the ratios given by Eq. (1) are completely free of any free parameters
and /or scaling factors.

NUMERICAL RESULTS

Calculations have been performed for the proxy-SU(3) irreps (54,12) and (52,14). The irrep
(54,12) accommodates '*Er, for which complete spectroscopy has been performed [13],while the
irrep (52,14) accommodates %Dy, for which complete spectroscopy has been performed [14], and
16Er, for which rich data exist [15].

B(E2)s within the ground state band are shown in the upper four panels of Fig. 3. Agreement
between the proxy-SU(3) predictions and the data is excellent in the cases of '°Dy and '®FEr,
while in '%Er three points are missed. In addition, very good agreement is seen in most cases with
various predictions within the pseudo-SU(3) scheme. It appears that nuclear stretching [21] has
been properly taken into account.

Proxy-SU(3) predictions for B(FE2)s within the v; band, with AL = —2 (increasing with L)
and AL = —1 (decreasing with L), are shown in the lower four panels of Fig. 3, and are compared
to the data for nuclei for which sufficient data exist [15], as well as to pseudo-SU(3) predictions.
The distinction between increasing B(E2)s with AL = —2 and decreasing B(E2)s with AL = —1
is seen clearly in the data. Agreement with the pseudo-SU(3) predictions is excellent in almost all
cases.

DISCUSSION

The main findings of the present section can be summarized as follows.

Analytic expressions for B(E2) ratios for heavy deformed nuclei providing numerical results in
good agreement with experiment are derived within the proxy-SU(3) scheme without using any
free parameters and/or scaling factors. The derivation, described in Appendix A of Ref. [11], is
exact. The only quantities appearing in the final formula are the relevant SU(3)—SO(3) coupling
coeflicients, for which computer codes are readily available [12, 22].
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Concerning further work, spectra of heavy deformed nuclei will be considered within the proxy-
SU(3) scheme, involving three- and/or four-body terms in order to break the degeneracy between
the ground state and y; bands [16, 23, 24]. Furthermore, B(M1) transition rates can be considered
along the proxy-SU(3) path, using the techniques already developed [25] in the framework of the
pseudo-SU(3) scheme.
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Figure 1: Proxy SU(3) predictions for Z = 84-98 for 3, obtained following the procedure of Ref. [2], compared
with results by relativistic mean field theory (RMF-Lal) [7], the microscopic-macroscopic method (MMM) [10],
covariant density functional theory with the DD-PC1 functional (DD-PC1) [9] (in which case different values for
protons (DD-PC1_p) and neutrons (DD-PC1.n) are reported), the D1S-Gogny interaction (D1S-Gogny) [6], and

the mass table FRDM(2012)[8].
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Figure 2: Proxy SU(3) predictions for Z = 84-98 for ~, obtained following the procedure of Ref. [2], compared
with results by the D1S-Gogny interaction (D1S-Gogny) [6].
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Figure 3: B(E2)s within the ground state band (upper four panels) and within the v; band (lower four panels)
are shown for the indicated proxy-SU(3) irreps and for the relevant nuclei, with data taken from [15]. In addition,
predictions by the pseudo-SU(3) scheme from Refs. [16] (DW), [17, 18, 19] (VV), and [20] (K) are shown. All values
are normalized to B(E2;2] — 07).


http://www.tcpdf.org

