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Abstract

The gravitational radiation has been proposed a long time before, as an explana-  tion for the observed
relatively low spin frequencies of young neutron stars and of accreting neutron stars in low-mass X-ray
binaries as well. In the present work we studied the effects of the neutron star equation of state on the r-mode
instability window of rotating neutron stars [1].

There are several open problems in physics and astrophysics on neutron stars [2]. One
of the problems is why neutron stars do not spin up to the theoretically allowed
limit called Kepler frequency. In particular, there is a sharp cut off for spins above
730, Hz which are well below the theoretically allowed upper

limit [3]. One possibility is the radiation of gravitational waves from the rapidly rotating
pulsars. In particular, neutron stars may suffer a number of instabili- ties which come
in different flavors but they have a general feature in common; they can be directly
associated with unstable modes of oscillation [4,5]. The r-modes are oscillations of
rotating stars whose restoring force is the Coriolis force. The gravitational radiation-
driven instability of these modes has been proposed as an explanation for the
observed relatively low spin frequencies of young neutron stars and of accreting
neutron stars in low-mass X-ray binaries as well [4].

The motivation of the present work is twofold. First, we intend to examine
possible constraints on the r-mode instability related to the bulk neutron stars
properties (mass, radius, density distribution, crust elasticity, e.t.c.) by em-
ploying a suitable set of analytical solutions of TOV equations. Second, our aim is
to examine and if possible to establish, relations between the critical angular
velocity Q¢ and a) the nuclear equation of state via the slope param- eter L and b)
the crust elasticity via the slippage factor S. In particular, we propose a correlation
between Q¢ and the derivative of the nuclear symmetry energy with respect to the
baryon density.

The r-modes evolve with time dependence elWt=t/T a5 4 consequence of ordinary
hydrodynamics and the influence of the various dissipative processes. The real part of
the frequency of these modes, w, is given by

‘__(E—l)(:l—f—Q) .
W= T Q, (1)

where Q is the angular velocity of the unperturbed star [6]. The imaginary part
1/7 is determined by the effects of gravitational radiation, viscosity, etc. [4,7,6]. In

the small-amplitude limit, a mode is a driven, damped harmonic oscillator with an
exponential damping time scale
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where 14z, 75, Ty and Ty are the gravitational radiation time scale, the damping
time scale due to viscous dissipation at the boundary layer of the rigid crust and
fluid core, the bulk and shear viscosity dissipation times scales respectively and
the damping time scale due to the mutual friction. Gravitational radiation tends to
drive the r-modes unstable, while viscosity
and mutual friction suppress the instability. More precisely dissipative effects cause

the mode to decay exponentially as e UT (i.e., the mode is stable) aslong as 7 > 0
[6]. The damping time 7/ for the individual mechanisms is defined in

general by [4]
1 1 [dE y
Y (})a : (2)

In Eqg. (2) the total energy E of the r-mode is given by [4,6]

R
1 DD 9 ‘¢
E = 5052]2_2”“9“ /p(rj-r“”gd.r, (3)
0
where g is the dimensionless amplitude of the mode, R is the radius, Q is the angular
velocity and p(r) is the radial dependence of the mass density of the neutron star.

Firstly, we study the case where the viscosity due to boundary layer of the rigid
crust is not taken into account the equilibrium equation (minimal model). Then, the

equilibrium equation, }: 0, is written [8]

QNS Q2 __
_(HZ) +Q(Hz) +b=0. ()

Eq. (4) is directly converted to a cubic equation. The above equation, in any case,
can be solved numerically to give the desired critical frequency Qc. However, in this
case, it is conceptually difficult to intuit answers. Eq. (4) can be also solved
analytically and the solution is given, for Y < 1, by

ot
R

0.~ (5) S vt

and for Y =1 by

Q. = (41)\/?)”{6 vflc-.os E tan~! ( Y - 1)} (6)
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We also consider the effect on r-mode instability due to the presence of a solid

crust in an old neutron star (minimal model+crust effects). It is proved that the
presence of a viscous boundary layer under the solid crust of a neutron star
increases the viscous damping rate of the fluid r-modes [4,9]. Actually, the
presence of a solid crust has a crucial effect on the r-mode motion and following
the discussion of [10] this effect can be understood as follows: based on the perfect
fluid mode-calculations it is anticipated the transverse motion associated with the
mode at the crust-core boundary to be large. However, if the crust is assumed to
be rigid, the fluid motion must essentially fall off to zero at the base of the crust
in order to satisfy a non-slip condition (in the rotating frame of reference).

where Y =

=1

The equilibrium equation, when the dissipation mechanism due to the crust has
been included, is given now by

QN /902 s\ - |
_(E> —HI(H;:) +d(Hz) +6=0, ©)

where the coefficients &and b are similar with a and b, given by Egs (7)

and (8), where now the structure integrals Ij (i = 1, 2, 3) have been replaced
by the corresponding I'j. In the present work we also explore the case of an
elastic crust. In this case the r-mode penetrates the crust and consequently the
relative motion (slippage) between the crust and the core is strongly reduced
compared to the rigid crust limit [11]. In particular, the way the slippage factor S
defined as S = Av/v has been included on the r-mode problem which has been
discussed in Refs. [11-13]. They propose that the factor S must be included
quadratically in the r-mode damping formula. This leads to a revised Ekman layer time
scale [13]
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Actually, the factor S depends mainly on the angular velocity Q, the core radius
Rc and the shear modulus py but can be treated also, in approximated way, as a
constant (see also [13]). In particular, in Eq. (10) the factor S is used as a free
parameter varied in the interval of very low values (S = 0.05) up to the value S
= 1 which corresponds to a complete rigid crust.

Finally, in the present study we also consider an additional damping mecha- nism
called mutual friction (for more details see [14]). This mechanism arises from the
scattering of electrons of the magnetic fields which entrapped in the cores of the
superfluid neutron vortices ([14]). Mutual friction is considered as a candidate to
provide the needed stability for the r-modes in old cold neutron stars while it has
been shown that suppresses the gravitational radiation in the case of the f-
modes of rotating neutron star. The dissipation time scale due to the mutual
friction is given also by

1 1 7 RAY2 S MAY? QN
Losaan L (I
T.-'t 1F T_.1 iF k m J J.r H Z ( )

The characteristic damping time scale %, is independent of angular velocity and
temperature (to lowest order) but sensitively depends on the entrainment

parameter ¢ [14]. Actually, T has typical values 10 sec, however, a resonance
phenomenon leads to very small values for a few narrow range of ¢([14]). In the
present study we treat 7, as a phenomenological parameter varying in

the range 5 s <%y <10 s according to the previous study of [14].

Now, the equilibrium equation is given by
G 0 5 0 2 e 1/2 B 0 6
C () g d(—") b:(_f) _ 19
Ture (Hx) +G(Hz) * Hz * Hz/) (12)
Where the coefficients @, b and d are similar with those in eq. (9) while the coefficient
¢ is given by

_ RN\Y? /M. N2 grem™3Y 1
= _— 4 17%. 17 — !
= 417810 (km) (u) (7& )Il. (13)

Motivated by the strong radius dependence of the critical angular velocity Qc, we
propose a phenomenological approach to study the EOS effects on the r-mode
instability window. This approach, despite its simplicity, provides a few insights of
the mentioned study, in a universal way, and also leads to some simplified empirical
relations. Moreover, the proposed method suggests and provides, in a way,
constraints on the nuclear equation of state with the help of accurate
measurements of the main bulk neutron star properties.
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We consider that the energy per particle of nuclear matter close to saturation
density ng, in the parabolic approximation, has the form [15]

_ 1 _
E(n,z) ~ E(n,z = 5) + Egym(n)(1 — 22)% (14)
In Eq. (14) n is the baryons density, Esym(n) is the symmetry energy and x
is the proton fraction. E(n,x = %) is the energy per particle of symmetric nuclear

matter, where close to the saturation density can be written in a good
approximation

E(n,z = ):—16+£(1—_£)2+ L (1—1)3. (15)

18 5 162 Ng

b | —

The incompressibility K and the skewness L are defined as
,O0?°E(n,x) O*E(n, )
K=9n2—"—27| _.. L=-92m3— "2 | _. . 16
In neutron star matter, in order to satisfied the B-equilibrium, a small electron
fraction exists and contributes to the total energy according to the expression
3he Y
E. = T{_3fr2-n.;r4)1-’3. (17)

The total energy is given now by

E(n,z) = E(n,z)+ E.(n,x), (18)
while the total pressure is defined as
S OF
P(n,z) =n"—. 19
(n,z)=n 5 (19)

The proton fraction x in B-equilibrium is regulated by the value of the sym-
metry energy. In particular, is determined by solving the equation dE/dx = 0
which leadsto [16]

AE,m(n)(1 — 2z) = hc(3m*nz)'/3. (20)
The combination of Egs. (18) and (19) leads to

6Es ym ('?1 )
on

K n L n\2
— 1—— ) — 1—— .
In, ( -n-s> 54dng ( -n-s)

The expression (21) has been extensively used in the literature for neutron star
structure studies. In particular, the pressure at the saturation density ns takes the
form

P(n,z)=n” { (1—2z)*+ %(1 — 2x)
n

(21)
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Now, if we define the value of the symmetry energy at the saturation as J =
Egym(ns) and the slope parameter as L = 3n, (%), Eq. 22 is written as

P(ns,xzs) = ns %(1 — Q:I?s)g +zsJ(1 — 2;1?_‘,.)} ) (23)

According to Eq. (23) the total pressure P at the saturation density depends
directly on the slope parameter L (mainly) and J and indirectly on the men- tioned
parameters via the proton fraction xs. Since the proton fraction, for densities
close to ng is x « 1, then in a good approximation Eq. (23) takes the form

P(ng,zg) ~ -nsé. (24)

The expression (24) has a clear meaning, the pressure of neutron star matter
close to the saturation density is directly related to the symmetry energy

via the slope parameter L. The above finding became very important when
Lattimer and Prakash, found a remarkable empirical relation which exists
between the radii of 1 and 1.4 M9 neutron stars and the corresponding neutron stars
matter’s pressure evaluated at densities 1, 1.5 and 2 of the saturation density ns
[17]. The mentioned relation obeys a power-low relation:

P(n) ] 1/4

\ I
MeV fm™> (25)

R(M) = C(n, M) [

where R(M ) is the radius of a star mass M , P (n) is the pressure of neutron
star matter at density n and C(n, M) is a number that depends on the density n
at which the pressure was evaluated and the stellar mass M. The values of C(M,
n) for the various cases are presented in Table. 3 of Ref. [17]. These values
were estimated by averaging results of 31 disparate equations of state. Recently,
Lattimer and Lim [18] excluding those equations of state, because of the
maximum mass constraints imposed by PSR J1614-2230 ([19]) and they found
the revised value

C(ns, 1.4M5)=9.52£0.49 km. (26)

The correlation (25) is significant since the pressure of neutron star matter near
the saturation density is, in large part, determined by the symmetry energy of
the EOS [17]. Moreover, it relates the macroscopic quantity R (and of course all
the relative quantities for example moment of inertia etc.) to the microscopic
quantity P. Consequently, this formula, supports the statement that the nuclear
equation of state plays an important role on the construction of relativistic very
dense objects i.t. a neutron star. Moreover the formula (25), since it directly
relates the radius to the slope parameter L, exhibits the dependence of the
neutron star size on the nuclear symmetry and consequently on the isovector
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character of the nucleon-nucleon interaction. More precisely, inverting Eq. (25)
yields

. R .
P(n) ~ {m] (MeV fm™) (27)

where apparently, various restrictions on the equation of state are possible if the
radius of a neutron star can be measured with high accuracy [17]. As we show
the r-mode instability window, defined by the dependence Q¢ T , is strongly
affected by the neutron star radius R. The effects of the mass M and the mass
distribution p(r) play minor role. Consequently, the dominant effect of the
equation of state on the r-mode is originated from the predicted values of the
neutron star size. In view of the above statement, we employ the correlation (25)
in order to relate the angular velocity Q¢ with effects of the

EOS and mainly the slope parameter L which consists a basic characteristic of the
EOS and is related to the derivative of the symmetry energy at the saturation
density.

For a static spherical symmetric system, the metric can be written as follows [2]

&G 1 (") amA(r)
2 p(?) = ﬁ (1 — € ) +e r 3 (29)
887G 1 () V()
TP = (1= e70) 40—, (30)

where derivatives with respect to the radius are denoted by ‘. The combination of
Egs (29) and (30) leads to the well known Tolman-Oppenheimer-Volkovf
equations [2]

dr r2

dP(r)  Gp(r)M(r) (1+ P(r) ) . 471'P(r)-r3) (1 B QG’ﬂ-f(r))_l-
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It is difficult to obtain exact solution of TOV equations in closed analytical form and
they solved numerically with an equation of state specified. Actually, there are
hundreds of analytical solutions of TOV equations but three of them satisfy the
criteria that the pressure and energy density vanish on the surface of the star. Also
both of them decrease monotonically with increasing radius. These three solutions
are the Tolman VII, the Buchdahl’s and the Nariai IV. It is worth pointing out that
all the analytical solutions presented and used in the present work contain two

parameters, the central density pc and the compactness parameter 8 = GM/RCZ.

We have studied the effect of the elasticity of the crust, via the slippage factor S, on
the instability window. The value S = 1 corresponds to a complete rigid crust
without elasticity while lower values of S introduce elastic properties to the crust.
[11] showed that the slippage factor is S = 0.05 — 0.1 in a typical case, while
[13] found the value S = 0.05. The critical frequency Qc is written

(Hz). (32)

10°K ) 7" (101{111)-““
T R

Q, ~ 4360 /11 (

Finally, we studied the effects of the mutual friction on the instability win- dow in
comparison to the minimal model and the crust viscosity effects. The

corresponding time scale 7, varying in the large range 5 s < 7)< 10 s in order to
systematically study the mutual friction effects (see Fig. 2). We confirm the results
of the previous work of [14] where the MF effects are almost negligible for > 50
s. In this case, the main viscosity mechanism is due to the Ekman layer viscosity
and the previous analysis concerning the r-mode from the equation of state is a good
approximation. However, for 7,< 50 s the mutual friction effects are very important
narrowing remarkably the in- stability window. In particular, for £y = 5 s the window
disappears that is the mutual friction suppresses completely the gravitational
radiation. In this case, since the mutual friction suppression overcomes significantly
those due to the Ekman layer the value of the time scale 7, is the dominate factor
and further analysis is essential in order to clarify further the role of the equation of
state. Actually, in this case and in a good approximation, the equilibrium equation
takes the simple form t,r = |tsr| and the critical angular velocity Qc, for the Tolman

VII solution, is given by

1 1

= 273"
Torp B

0, =432 (33)

It is obvious that, in this special case, the Q¢ is very sensitive on the compact- ness
parameter B. The most compact configuration of a neutron star leads to

dramatic lowering of the critical angular velocity values. For example when the
value of B varies on the interval 0.1 — 0.2 then (and for a the typical value Tyz=8 s)
the Q¢ varies on the large interval 17076 — 1510 Hz. In addition, the combination
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of Egs. (33) and (24)-(26) and considering that M = 1.4 Mg yields to a
dependence of Q¢ on the parameter L, that is

1 L \"®
0, ~ (2757 & 492) (W) (Hz). (34)

In any case, it is worth pointing that according to the analysis of [14] only 2% of
the expected range of ¢ leads to the time scale 7 pmp F  shorter than 15 sin

T

MF

neutron stars with temperature about 108 K (that are typical for low mass x-rays
binaries).

In the present work we investigated r-mode constraints from the neutron star
equation of state. Firstly, we examined the case of a neutron star with a fluid interior
and we derived an analytical solution for the Q¢ T dependence. In particular, we
used a set of analytical solution of the TOV equations in or- der to reveal the role of
the bulk neutron star properties (radius, mass, mass distribution) on the r-mode
instability window. The main findings include the strong dependence of Q¢ on the
neutron star size and the very weakly depen- dence on the other two properties for
low values of temperature. Secondly, we examined the more realistic case where the
effect of the solid crust is included in our study. In this case we found that the effect
of the radius is also the most important but the dependence is more weakly
compared to the fluid in- terior case. In any case, the dissipation effect due to the
solid crust decreases considerably the instability window.

In view of the above results and motivated by the strong radius dependence of the
critical angular velocity, we propose a phenomenological approach in order to
correlate Q¢ with microscopic properties of the nuclear equation of state. This
approach, despite of its simplicity, provides a few insights on the study of the
effects of the EOS on the r-mode instability window, in a uni- versal way. In
particular, the radius of a NS depends strongly on the specific character of the EOS
for densities close to the saturation density. By employing an empirical relation, we
related the Q¢ to the slope parameter L which is an individual characteristic of any
EOS. We also proposed an approximated formula for the Q¢ L dependence
applicable for a large number of EOS. This approach leads to some simplified empirical
relations. Moreover, the proposed method provides, in a way, constraints on the
nuclear equation of state with the help of accurate measurements of the main bulk
neutron star properties. We also examined the case of an elastic crust via the
slippage factor S. We found that this factor is the most important, concerning the
estimation of the instability window. The measure of S is of importance, in order to
define re- liable estimation of the corresponding instability

window. On the other hand, we proposed possible measure of S in the case of
accurate measures of Qc, Rand T.

Finally, we verified previous studies that the mutual effects are very important and
under some assumptions could explain the observation data, concerning old cold
neutron star, even in the case of hadronic matter. However, more the- oretical work is
appropriate in order to establish in details the mutual friction dissipations effects and
to clarify further the equation of state constraints on the r-mode instability window.
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Fig. 1. The instability window for the Tolman VII solution when the elasticity of
the crust is taken into account via the slippage factor S. The observed cases of
LMXBs and MSRPs from [20] are also included for comparison.
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Fig. 2. The instability window for the Tolman VII solution for the cases a) minimal
model, b) minimal model+crust considering slippage factor S = 1 and ¢) minimal
model+crust including also mutual friction effects for various values of the time
scale ¥y . The observed cases of LMXBs and MSRPs from [20] are also
included for comparison.
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