

HNPS Advances in Nuclear Physics

Vol 23 (2015)

HNPS2015

Prediction of high-K isomeric states in transactinide nuclei close to N=162

V. Prassa, B.-N. Lu, T. Niksic, D. Ackermann, D. Vretenar

doi: 10.12681/hnps.1909

To cite this article:

Prassa, V., Lu, B.-N., Niksic, T., Ackermann, D., & Vretenar, D. (2019). Prediction of high-K isomeric states in transactinide nuclei close to N=162. *HNPS Advances in Nuclear Physics*, *23*, 70–75. https://doi.org/10.12681/hnps.1909

Prediction of high-K isomeric states in transactinide nuclei close to N=162

V.Prassa^{1,*}, Bing-Nan Lu², T. Niksic¹, D. Ackermann³, D. Vretenar¹

Physics Department, Faculty of science, University of Zagreb, 10000 Zagreb, Croatia
Institut fur Kernphysik, Institute for Advanced Simulation, and Julich Center for Hadron Physics,
 Forschungszentrum Julich, D-52425 Julich, Germany
GSI Helmholtzzentrum fur Schwerionenforschung GmbH, Planckstrasse 1,
 64291 Darmstadt, Germany

Abstract Transactinide nuclei around neutron number N=162 display axially deformed equilibrium shapes. In the present study we are particularly interested in the occurrence of high-K isomers in the axially deformed isotopes of Rf (Z=104), Sg (Z=106), Hs (Z=108), and Ds (Z=110), with neutron number N=160-166 and the effect of the N=162 closure on the structure and distribution of two-quasiparticle (2qp) states. The evolution of high-K isomers is analyzed in a self-consistent axially symmetric relativistic Hartree-Bogoliubov calculation using the blocking approximation with time-reversal symmetry breaking.

Keywords high-K isomers, transactinides, nuclear density-functionals

INTRODUCTION

Nuclei beyond the actinides owe their existence to the underlying single-nucleon shell structure. These elements often display axially deformed equilibrium shapes and intruder single-nucleon states with high- Ω values (projection of the single-particle angular momentum onto the symmetry axis of the nucleus) appear close to the Fermi level. The unpaired quasiparticle excitations form isomeric states with high values of total $K = \Sigma_i \Omega_i$ [1]. Because they can only decay by K-forbidden transitions, these states have lifetimes that are significantly longer than most of the neighboring states. The decay of isomeric states provides information on the nuclear wave function, single-nucleon states, pairing gaps and residual interactions [2].

Systematic experimental efforts in the region of very heavy nuclei have produced detailed spectroscopic data in nuclei around 254 No [3- 7]. In addition to the detection of a and γ decays, recent studies have made use of conversion electrons (CE) to investigate possible K-isomeric states in heavy high-Z nuclei such as, for instance, 256 Rf, in which internal conversion becomes the preferred decay mode [8, 9]. The heaviest nuclei for which characteristic high-K isomeric decays have been investigated are 270 Ds and its a-decay daughter 266 Hs [10, 11]. Theoretical studies of quasiparticle excitations in the region of transactinide nuclei have been based on the microscopic-macroscopic approach [12-23], self-consistent models with Skyrme functionals [24-29], the Gogny force [30-32], and relativistic energy density functionals [33-38].

-

^{*}Corresponding author, email: vprassa@gmail.com

In the present study [39] we extend our resent study of shape evolution, collective excitation spectra, and decay properties of transactinide nuclei based on the microscopic framework of relativistic energy density functionals Ref. [33], to two-quasiparticle excitations in the axially deformed isotopes of Rf (Z = 104), Sg (Z = 106), Hs (Z = 108), and Ds (Z = 110), with neutron number N = 160 - 166.

QUASI-PARTICLE EXCITATIONS

The two-quasiparticle neutron or proton states are obtained in a self-consistent relativistic Hartree-Bogoliubov calculation [39, 40], based on the functional DD-PC1 [41] and with a separable pairing force of finite range [42, 43], using the blocking approximation with time-reversal symmetry breaking. The 2qp states are determined by blocking the lowest neutron or proton quasi-particle orbitals located in the vicinity of the Fermi energy that corresponds to the fully paired equilibrium solution. After performing the iterative minimization, the energy of the two-quasiparticle excitation is obtained as the difference between the energy of the self-consistent blocked RHB solution and the energy of the fully paired equilibrium minimum. The breaking of time-reversal symmetry removes the degeneracy between signature partner states with angular-momentum projection on the symmetry axis $K_{\text{min}} = |\Omega_i - \Omega_j|$ and $K_{\text{max}} = \Omega_i + \Omega_j$, and with parity $\Pi = \Pi_i \cdot \Pi_j$.

Fig. 1.Lowest two-quasiparticle states in Rf (upper panel) and Sg (lower panel) isotopes with neutron number N=160-166. The 2qp states correspond to axially symmetric solutions obtained with the relativistic functional DD-PC1 and a pairing force separable in momentum space. The calculation includes time-reversal symmetry breaking.

Figures 1 and 2 display the excitation energies of two-quasiparticle $K_{V(\Pi)}$ states for the Rf, Sg, Hs and Ds isotopes with neutron number N=160-166. In figure 1 the high density of single-particle levels close to the Fermi surface in the isotopes of Rf and Sg with N=160 yields a number of quasiparticle excitations in the energy window below 1.8 MeV. Our calculation predicts the occurrence of the two-neutron isomeric states $K^{\Pi}=9^{-}_{V}$ and 2^{-}_{V}

originating from the single-particle orbitals $v7/2^+$ [613] \otimes $v11/2^-$ [725]. The neutron orbitals $v1/2^+$ [620] and $v7/2^+$ [613] are coupled to form the states 4^+_V and 3^+_V at excitation energy close to 1MeV. An interesting result, that can also be noticed in the two other isotopic chains considered in this study, is that the lowest two-quasiparticle states in the N = 162 isotones are predicted at considerably higher excitation energies. For the particular choice of the energy density functional and pairing interaction used in this and our previous study [33], the lowest two-quasiparticle states typically occur at \approx 0.8 MeV, whereas in the N = 162 isotones the excitation energies of the lowest 2qp states are predicted at E \geq 1.2 MeV. For 266 Rf, in particular, the doublet of states $^{-}$ and $^{-}$ and $^{-}$ states at energy 1.35 MeV originates from the two-proton configuration $\pi 1/2^-$ [521] \otimes $\pi 9/2^{+}$ [624]. The lowest two neutron excitations occur at even higher energies: the 9^{+}_{V} and 2⁺_V states at 1.60 MeV and 1.65 MeV, respectively, based on the high-j configuration $v7/2^+$ [613] \otimes $v11/2^+$ [606]. In ²⁶⁸Sg, as a result of the neutron shell-closure at N=162, the lowest 2qp excitations are the proton states 7_{Π}^{-} and 2_{Π}^{-} at 1.32 and 1.33 MeV, respectively, originating from the Nilsson levels $\pi 5/2^{-}[512]$ and $\pi 9/2^{+}[624]$. We note that for this nucleus the only two-neutron qp states, predicted below 1.8MeV are the $9^+_{\ \ V}$ and 2^{+} , (v11/2⁺[606] \otimes v7/2⁺[613]) at 1.70 and 1.74 MeV, respectively. The occurrence of 2qp excitations in 268 Rf and 270 Sg already at energies ≈ 1 MeV is consistent with the increase of the single-particle level density near the Fermi surface. The lowest-lying twoneutron excitations 12^-_V and 1^-_V originate from the configuration v13/2 [716] \otimes $v11/2^+$ [606]. In 270 Rf and 272 Sg the lowest 2qp configurations are: $v5/2^+$ [613] \otimes $v13/2^{-}[716]$ (9 $^{-}_{V}$ and 4 $^{-}_{V}$), $v9/2^{+}[604] \otimes v13/2^{-}[716]$ (11 $^{-}_{V}$ and 2 $^{-}_{V}$), $v11/2^{+}[606]$ \otimes v13/2⁻[716] (12⁻_V and 1⁻_V), and v5/2⁺[613] \otimes v11/2⁺[606] (8⁺_V and 3⁺_V).

In 268 Hs (left panel of figure 2), the lowest-lying 2qp excitations are the signature partner levels $9^-_{\ V}$, $2^-_{\ V}$ and $4^+_{\ V}$, $3^+_{\ V}$. The two configurations coincide in energy, with the aligned Ω -states at 0.86 MeV and the anti-aligned ones at 0.88 MeV. Adding two more protons (right panel of figure 2), the doublet $4^+_{\ V}$ and $3^+_{\ V}$ (v1/2⁺[620] \otimes v7/2⁺[613]) becomes the lowest 2qp excitation in the nucleus 270 Ds. The partner levels $9^-_{\ V}$ and $2^-_{\ V}$, which are the lowest 2qp states in the N=160 Rf, Sg and Hs isotopes, are calculated \approx 200keV higher in energy. The prediction of a high-K two-neutron quasiparticle configuration at energy \approx 1 MeV is in agreement with the experimental observation of a two-neutron high-K isomeric decay in 270 Ds [11]. In 270 Hs, because of the deformed shell closure, the neutron two-quasiparticle states $9^+_{\ V}$ and $2^+_{\ V}$ are predicted at energies 1.65 and 1.69 MeV, respectively. The lowest-lying 2qp states calculated for 270 Hs are the proton excitations $7^+_{\ \Pi}$ and $2^+_{\ \Pi}$, with the structure of Nilsson orbitals $\Pi5/2^-[512] \otimes \Pi9/2^-[505]$.

because of the low production cross section and consequently low number observed events (3), no detailed spectroscopic data are available except for a decay energies and decay times [44]. The calculation for $^{272}\mathrm{Ds}$ predicts the proton two-quasiparticle states 10^- n and 1_{Π}^{-} based on the configuration $\pi 9/2^{-}[505] \otimes \pi 11/2^{+}[615]$. Because of the N = 162deformed shell gap the two-neutron doublets 9^+_V , 2^+_V and 5^+_V , 6^+_V , appears only at higher excitation energies (1.5 MeV). $^{272}\mathrm{Ds}$ is the a-decay daughter of $^{276}\mathrm{Cn}$, which could be produced in a similar way as 270 Ds [11] via the reaction 207 Pb(70 Sn, 1n) 276 Cn. An order of magnitude lower production cross section could be compensated by higher beam intensities at future linear accelerator facilities, e.g. the LINAG project presently under construction for SPIRAL2 [45], or the project for a high-intensity continuous wave machine at GSI [45]. Consistent with the results obtained for Rf and Sg isotopes, ^{2/2}Hs, 274 Hs, 274 Ds and 276 Ds exhibit an increased density of two-quasiparticle states at low excitation energies. The lowest Nilsson levels that form the 2qp configurations in the energy window below 1.8 MeV are the $13/2^{-}[716]$, $11/2^{+}[606]$, $5/2^{+}[613]$ and $3/2^{+}[611]$ for neutrons, and the orbitals $11/2^{+}[615]$, $9/2^{-}[505]$ and $5/2^{-}[512]$ for protons.

Fig. 2. Same as described in the caption to Fig. 1 but for the isotopes of Hs (upper panel) and Ds (lower panel).

CONCLUSIONS

In summary, we have employed the self-consistent mean-field framework based on relativistic energy density functionals to study the structure of two-quasiparticle excitations in axially deformed Rf, Sg, Hs, and Ds isotopes, with neutron number N=160-166. The calculation of excitation energies of 2qp states is based on the blocking approximation with time-reversal symmetry breaking. Our microscopic self-consistent calculation has provided a detailed prediction for the evolution of 2qp states close to the N=162 deformed-shell

gap. The excitation energies of 2qp configurations depend on the specific choice of the energy density functional, and the strength of the pairing interaction. In the particle-hole channel we have used the relativistic functional DD-PC1 that was adjusted to the experimental masses of a set of 64 axially deformed nuclei in the mass regions $A \approx 150$ – 180 and $A \approx 230 - 250$. The strength of the separable pairing force of finite range was fine-tuned to reproduce the odd-even mass differences in the region $A \approx 230 - 250$. A stronger (weaker) pairing would automatically increase (decrease) the energies of the 2qp states (shown in Figs. 1 and 2) with respect to the corresponding ground states. The calculation predicts the occurrence of a series of low-energy high-K isomers, most notably the 9_{V}^{-} in the N = 160 and N = 166 isotopes, and the 12_{V}^{-} in the N = 164 nuclei. A very interesting result is the low density of 2qp states in the N = 162 isotones, with no twoneutron states predicted below 1.6 MeV excitation energy. The two-proton states in these nuclei are calculated almost 0.5 MeV higher in energy than the lowest 2qp states in neighboring isotopes. This is a consequence of the deformed-shell closure at N = 162 and presents an interesting observable that can be used, together with the separation energies and $Q_{\mathbf{G}}$ -values, to characterize the evolution of deformed shell gaps in this mass region, and possibly verified experimentally in the near future for 270 Hs and 272 Ds.

ACKNOWLEDGEMENTS

This work has been supported by the NEWFELPRO project of Ministry of Science, Croatia, co-financed through the Marie Curie FP7-PEOPLE-2011-COFUND program. Bing-Nan Lu and D. Vretenar acknowledge the support of the Helmholtz-Institut Mainz.

References

- [1] K.E.G. Lo "bner, Phys. Lett. B 26, 369 (1968).
- [2] P. M. Walker and G. D. Dracoulis, Nature 399, 35 (1999).
- [3] R. -D. Herzberg and P. T. Greenlees, Prog. Part. Nucl. Phys. 61, 674 (2008).
- [4] R. -D. Herzberg and D. M. Cox, Radiochim. Acta 99, 441 (2011).
- [5] P. T. Greenlees et al., Phys. Rev. Lett. 109, 012501 (2012).
- [6] B. Sulignano et al., Phys. Rev. C 86, 044318 (2012).
- [7] J. Rissanen et al., Phys. Rev. C 88, 044313 (2013).
- [8] H. B. Jeppesen et al., Phys. Rev. C 79, 031303(R) (2009).
- [9] A. P. Robinson et al., Phys. Rev. C 83, 064311 (2011).
- [10] S. Hofmann et al, Eur. Phys. J. A 10, 5 (2001).
- [11] D. Ackermann et al., GSI Sci. Rep. 2011, 208 (2012); and to be published.
- [12] S. Nilsson et al., Nuclear Physics (1968).
- [13] A. Sobiczewski, I. Muntian, and Z. Patyk Phys. Rev. C 63, 034306 (2001).
- [14] A. Sobiczewski and K. Pomorski, Prog. Part. Nucl. Phys. 58, 292 (2007).
- [15] A. Sobiczewski, Radiochim. Acta 99, 395 (2011).
- [16] G. G. Adamian, N. V. Antonenko, and W. Scheid, Phys. Rev. C 81, 024320 (2010).
- [17] A. N. Kuzmina, G. G. Adamian, and N. V. Antonenko, Phys. Rev. C 85, 027308 (2012).

- [18] F. R. Xu, E. G. Zhao, R. Wyss, and P. M. Walker, Phys. Rev. Lett. 92, 252501 (2004).
- [19] D. S. Delion, R. J. Liotta and R. Wyss, Phys. Rev. C 76, 044301 (2007).
- [20] H. L. Liu, F. R. Xu, P. M. Walker, and C. A. Bertulani, Phys. Rev. C 83, 011303(R) (2011).
- [21] H. L. Liu, F. R. Xu, and P. M. Walker, Phys. Rev. C 86, 011301 (2012).
- [22] H. L. Liu and F. R. Xu, Phys. Rev. C 87, 067304 (2013).
- [23] H. L. Liu, P. M. Walker, and F. R. Xu, Phys. Rev. C 89, 044304 (2014).
- [24] S. Cwiok, J. Dobaczewski, P. H. Heenen, P. Magierski, and W. Nazarewicz, Nucl. Phys. A 611, 211(1996).
- [25] S. Cwiok, W. Nazarewicz, and P.H. Heenen, Phys.Rev.Lett. 83, 1108(1999).
- [26] T. Duguet, P. Bonche, and P.-H. Heenen, Nuclear Physics A 679, 427 (2001).
- [27] M. Bender, P. Bonche, T. Duguet, and P.-H. Heenen, Nuclear Physics A 723, 354 (2003).
- [28] M. Bender and P.-H. Heenen, J. Phys.: Conf. Ser. 420, 012002 (2013).
- [29] Yue Shi, J. Dobaczewski, and P. T. Greenlees, Phys. Rev. C 89, 034309 (2014).
- [30] J. L. Egido and L. M. Robledo, Phys. Rev. Lett. 85, 1198 (2000).
- [31] J.-P. Delaroche, M. Girod, H. Goutte, and J. Libert, Nuclear Physics A 771, 103 (2006).
- [32] M. Warda and J. L. Egido, Phys. Rev. C 86, 014322 (2012).
- [33] V. Prassa, T. Niksic, and D. Vretenar, Phys. Rev. C 88, 044324 (2013).
- [34] A. V. Afanasjev, T. L. Khoo, S. Frauendorf, G. A. Lalazissis, and I. Ahmad, Phys. Rev. C 67, 024309 (2003).
- [35] V. Prassa, T. Niksic, G. A. Lalazissis, and D. Vretenar, Phys. Rev. C 86, 024317 (2012).
- [36] E. Litvinova, Phys. Rev. C 85, 021303 (2012).
- [37] A. V. Afanasjev and O. Abdurazakov, Phys. Rev. C 88, 014320 (2013).
- [38] D. Vretenar, A. V. Afanasjev, G. Lalazissis, and P. Ring, Phys. Rep. 409, 101 (2005).
- [39] V. Prassa, Bing-Nan Lu, T. Niksic, D. Ackermann, and D. Vretenar, Phys. Rev. C 91, 034324 (2015).
- [40] J. Meng, H. Toki, S. G. Zhou, S. Q. Zhang, W. H. Long, and L. S. Geng, Prog. Part. Nucl. Phys. 57, 470 (2006)
- [41] T. Niksic, D. Vretenar, and P. Ring, Phys. Rev. C 78, 034318 (2008).
- [42] Y. Tian, Z. Y. Ma, and P. Ring, Phys. Lett. B 676, 44 (2009).
- [43] T. Niksic, P. Ring, D. Vretenar, Y. Tian, and Z. Y. Ma, Phys. Rev. C 81, 054318 (2010).
- [44] J. Dvorak et al., Phys. Rev. Lett. 97, 242501 (2006).
- [45] R. Ferdinand, Proceedings of IPAC2014, Dresden, Germany, 1852 (2014).
- [46] W. Barth, Proceedings of IPAC2014, Dresden, Germany, 3211 (2014).