- Publishing

HNPS Advances in Nuclear Physics

Vol 23 (2015)

HNPS2015

Neutron induced fission cross-section of
240Pu(n,f): first results from n_TOF (CERN)
Experimental Area Il

A. Tsinganis, A. Stamatopoulos, N. Colonna, R. Vlastou,
P. Schillebeeckx, A. Plompen, J. Heyse, M. Kokkoris, M.
Barbagallo, E. Berthoumieux, M. Calviani, E. Chiaveri,
and the n_TOF Collaboration

doi: 10.12681/hnps.1902

To cite this article:

Tsinganis, A., Stamatopoulos, A., Colonna, N., Vlastou, R., Schillebeeckx, P., Plompen, A., Heyse, J., Kokkoris, M.,
Barbagallo, M., Berthoumieux, E., Calviani, M., Chiaveri, E., & n_TOF Collaboration, and the. (2019). Neutron induced
fission cross-section of 240Pu(n,f): first results from n_TOF (CERN) Experimental Area Il. HNPS Advances in Nuclear
Physics, 23, 22-27. https://doi.org/10.12681/hnps.1902

https://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at: 10/01/2026 19:27:59



22
Proceedings of the 24™ Syposium of the HNPS

Neutron induced fission cross-section of 240Pu(n,f): first results
from n_TOF (CERN) Experimental Area II

A. Tsinganisl’z’* A. Stamatopoulosl, N. Colonna3, R. Vlastou', P. Schillebeeckx4, A. Plornpen4, J.
Heyse4, M. Kokkorisl, M. Barbagallo3, E. Berthoumieuxs, M. Calvianiz, E. Chiaveri’
and the n TOF Collaboration®

! Department of Physics, National Technical University of Athens
? European Organisation for Nuclear Research, Geneva, Switzerland
3 Istituto Nazionale di Fisica Nucleare, Bari, Italy
* European Commission JRC, Institute for Reference Materials and Measurements, Geel, Belgium
> Commissariat a I’Energie Atomique (CEA) Saclay - Irfu, Gif-sur-Yvette, France
% www.cern.ch/ntof

Abstract  The accurate knowledge of neutron cross-sections of a variety of plutonium isotopes
and other minor actinides, such as neptunium, americium and curium, is crucial for feasibility and
performance studies of advanced nuclear systems (Generation-IV reactors, Accelerator Driven
Systems). In this context, the **’Pu(n,f) cross-section was measured with the time-of-flight
technique at the CERN n_TOF facility at incident neutron energies ranging from thermal to
several MeV. The present measurement is the first to have been performed at n TOF's newly
commissioned Experimental Area II (EAR-2), which is located at the end of an 18m neutron
beam-line and features a neutron fluence that is 25-30 times higher with respect to the existing
185m flight-path (EAR-1), as well as stronger suppression of sample-induced backgrounds, due
to the shorter times-of-flight involved. Preliminary results are presented.
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INTRODUCTION

The accurate knowledge of neutron cross-sections of a variety of plutonium
isotopes and other minor actinides is crucial for feasibility and performance studies
of advanced nuclear systems [1-2]. Such isotopes, that present a fission threshold
at a few hundred keV, accumulate during the operation of a conventional thermal
reactor, but could be effectively transmuted in reactors with a fast neutron
spectrum. Improved knowledge of the neutron-induced fission cross-sections of
these isotopes is not only important for the design of advanced systems, but also
for the more efficient operation of existing reactors, since safety margins can be
more accurately defined. In particular, the non-fissile and long-lived 2*°Pu isotope
contributes to the long-term residual activity of nuclear waste. It is included in the
Nuclear Energy Agency (NEA) High Priority List [3] and the NEA WPEC Subgroup
26 Report on the accuracy of nuclear data for advanced reactor design [4]. In this
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context, an experiment to measure the 2*°Pu(n,f) cross-section was executed at
the CERN n_TOF (neutron time-of-flight) facility [5-8]. Preliminary results are
presented in this article.

EXPERIMENTAL SETUP

The n_TOF facility and Experimental Area II (EAR-2)

Neutrons at n_TOF are spallation products created by a bunched 20GeV/c
proton beam delivered by CERN's PS (Proton-Synchrotron) accelerator onto a lead
target 40cm in length and 60cm in diameter. A 1 cm-thick layer of circulating
water surrounds the target in order to cool it down and also act as a neutron
moderator. Beyond the target and after an additional 4cm-thick layer of (borated)
water, a ~185 m vacuum tube leads to the first measuring station (Experimental
Area I, or EAR-1) which has been in operation since 2001.

A new experimental area (Experimental Area II or EAR-2) [9-10] was
commissioned in the second half of 2014. EAR-2 is located at the end of an 18m
neutron beam-line placed vertically above the spallation target. The proximity to
the target yields a gain in flux of 25-30 times compared to the existing
experimental area (EAR-1), while the neutrons are delivered in an approximately
10 times shorter time interval. The very high instantaneous flux and extended
energy range (from thermal to over 100MeV) allow to cover the region of interest
in a single experiment and mitigate the adverse effects of the strong a-
background produced by the samples and the low fission cross-section below and
near the fission threshold.

Both experimental areas meet the requirements to operate as Type A Work
Sectors [11], meaning unsealed radioactive samples can be handled.

Samples and detectors

Three plutonium oxide (PuO,) samples were used [12], for a total mass of
approximately 2.3mg of ?*°Pu (~0.10 mg/cm? per sample, 99.89% purity). The
material was electro-deposited on an aluminium backing 0.25mm thick and 5cm in
diameter, while the deposit itself had a diameter of 3cm. Additionally, a 2*°U
sample with a mass of ~0.6mg and a 2*®U sample with a mass of ~0.8mg were
used as reference. All samples were manufactured at IRMM (Belgium).
Contaminants present in the 2*°Pu samples (most notably 2*°Pu) have a non-
negligible contribution to the fission yield in certain energy ranges (mainly below
1keV) which was subtracted during the analysis.

The measurements were carried out with Micromegas (Micro-MEsh GAseous
Structure) gas detectors [13-16]. The gas volume of the Micromegas is separated
into a charge collection region (several mm, 5mm in this case) and an
amplification region (typically tens of pm, 50um in this case) by a thin
“micromesh” with 35um diameter holes on its surface. A chamber capable of
holding up to 10 sample-detector modules was used for the measurement. The
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detectors were operated with an Ar:CF4:isoC4H;o gas mixture (88:10:2) at a
pressure of 1 bar. A picture of the chamber placed in the experimental area is
shown in Figure 1.

Fig. 1. A view of the chamber housing the samples and detectors, and the
associated electronics placed in the neutron beam in EAR-2. The neutron beam arrives
vertically from below and then continues in the vacuum tube above the chamber and onto
the beam dump a few meters later. Approximately 15-20cm of air are present before and
after the chamber.

The analogue detector signals were digitised with 8-bit flash-ADCs [17] with
a 500 MHz sampling rate. In order to minimise the volume of data to be
transferred and recorded, a zero-suppression algorithm was applied to avoid
recording long sequences of noise where no useful signals are present.

THE PREVIOUS MEASUREMENT IN EAR-1

This measurement was originally attempted in EAR-1, in parallel with the
measurement of the ?*°Pu fission cross-section [18-19]. Due to the lower neutron
flux, it was necessary to measure over a period of several months to collect the
necessary statistics. An unexpected effect of the high a-activity of the 2*°Pu
samples (>6 MBq per sample) was encountered in the course of the measurement
[20], with a steady degradation of the fission fragment amplitude distribution.
After the end of the measurement, a visual inspection of the detectors used with
the 2*°Pu samples revealed a circular discolouration of the mesh whose dimension
and position exactly matched those of the samples. Upon closer inspection with a
microscope, it became clear that the micromesh had suffered serious damage,
particularly around the rims of the holes which were evidently deformed (Figure
2). This lead to a degradation of the electrical field and therefore of the detector
gain and overall performance. In time, this made the fission fragment and a-
particle signals virtually indistinguishable in the obtained pulse-height spectra. It
should be noted that, even when detectors were operating normally, the long a
pile-up tail greatly reduced the quality of the separation, as can be seen in Figure
3 (black).
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Fig. 2. Left: One of the Micromegas detectors used with a 2*°Pu sample pictured
after the end of the measurement. A 3cm diameter discolouration is visible on the
micromesh. Right: Picture of the micromesh taken with an electronic microscope.
Mechanical damage around the rims of the holes can be observed. This leads to a severe
deterioration of the detector gain and performance.
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Fig. 3. Pulse-height spectra obtained from a #*°Pu sample during the measurements
in EAR-1 (black) and EAR-2 (red). Counts are normalised per beam bunch for direct
comparison. The significant suppression of the sample-induced a-background in EAR-2 is
evident, as is the much higher rate of fission events.

DATA ANALYSIS AND RESULTS

The digitised raw data from each detector are analysed off-line by means of a
pulse recognition routine that determines the amplitude and position in time of the
detected signals, as well as the signal baseline, among other quantities [21].
Throughout the measurement, beam-off data were taken in order to record the a-
and spontaneous fission background produced by the samples. The behaviour of
the detectors is studied by means of Monte Carlo simulations performed with the
FLUKA code [22-23], focusing particularly on the reproduction of the pulse height
spectra of a-particles and fission fragments for the evaluation of the detector
efficiency and the correction associated to the signal amplitude threshold.

The interactions of the proton beam with the spallation target lead to a

significant production of prompt y-rays and other relativistic particles that reach
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the experimental area at (nearly) the speed of light and constitute what is
commonly termed the “y-flash”. This causes an initial signal lasting a few hundred
ns, followed by a baseline oscillation that lasts for several us or, in terms of
neutron energy, down to less than 1 MeV. In order to remove this oscillation, an
average shape is obtained from at least several hundred signals and then
subtracted from each raw data "movie” before processing the data.

In Figure 3, the pulse-height spectrum obtained from one of the 2*°Pu
samples (red) is compared to a spectrum recorded with the same sample during
the measurement in EAR-1 (black). It can be clearly observed that the increased
neutron flux leads to a considerably higher number of recorded fission events and
that there is a much stronger suppression of the sample-induced a-particle
background, resulting in a considerably clearer separation from the fission
fragments.

Figure 4 shows the fission counts as a function of incident neutron energy
recorded in all three **°Pu samples between 10 eV and 30 keV, after applying an
appropriate signal amplitude threshold to reject the background and subtracting
the contribution of contaminants present in the sample. Several resonance
clusters can be observed, attributable to the coupling of Class-I and Class-II
states, and resonances are visible up to a few tens of keV. Above 100 keV, data
has been obtained up to at least several MeV, with statistical uncertainties below
2-3% and even below 1% in the range between 0.5-5 MeV.
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Fig. 4. Resonances observed in the measured fission yields from the three 2*°Pu
samples, after subtraction of contributions from contaminants. Several resonance clusters,
attributable to the coupling between Class-I and Class-II states, are visible, while
resonances can be observed up to a few tens of keV. Data are shown with a binning of
2000 bins per energy decade.
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SUMMARY

The measurement of the #*°Pu fission cross-section is the first measurement
to be performed at the newly commissioned Experimental Area II of the CERN
n_TOF facility. Data were collected from thermal energies up to at least several
MeV. Most notably, data showing clear resonant structures have been obtained
even in the sub-threshold region (up to a few tens of keV) where the cross-section
is lowest and where evaluations show a smooth behaviour of the cross-section.
The success of this measurement is largely due to the favourable characteristics of
EAR-2, in particular the increased neutron flux and stronger background
suppression compared to EAR-1, where the measurement was not feasible. These
features will allow n_TOF to expand its measurement capabilities to even more
short-lived and rare isotopes, such as 2*°Th, 232U, 23%¢2*'py and 2**Cm.
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