Validation of the ImageJ package for alpha track counting on Solid State Nuclear Track Detectors

Alexandropoulou M., Department of Physics, University of Ioannina
Sarigiannidis D., Department of Physics, University of Ioannina
Papachristodoulou C., Department of Physics, University of Ioannina
Stamoulis K., Department of Physics, University of Ioannina
Ioannides K., Department of Physics, University of Ioannina

http://dx.doi.org/10.12681/hnps.1873

To cite this article:
Validation of the ImageJ package for alpha track counting on Solid State Nuclear Track Detectors

M. Alexandropoulou¹, D. Sarigiannidis¹, C. Papachristodoulou¹*, K. Stamoulis¹,², K. Ioannides¹,²

¹ Department of Physics, School of Sciences, University of Ioannina, 45110 Ioannina, Greece
² Archaeometry Center, University of Ioannina, 45110 Ioannina, Greece

Abstract In the present work, an alpha spectroscopic method using CR39 nuclear track detectors is being evaluated, elaborating on track parameters from different alpha particle sources. The freely-available, Java-based ImageJ software was used to obtain the major and minor axis length, the area and the mean gray level of the recorded tracks. A multi-parameter approach based on Principal Component Analysis of the data was subsequently applied and succeeded in grouping the recorded tracks according to alpha-particle energy. The methodology was further applied for the separation of radon progeny on CR39 detectors exposed in a radon chamber.

Keywords CR-39, image analysis, alpha-particle spectroscopy, radon

INTRODUCTION

Solid State Nuclear Track Detectors (SSNTDs) are suitable for recording tracks from low-energy alpha-particles. The geometrical parameters of the tracks are associated with the particles’ energy and angle of incidence. However, developing an alpha spectroscopic method based on SSNTDs is not a trivial task, as previous studies have shown the absence of a linear relationship between the track axis and the energy of the incident particles [1-3]. Optical parameters, such as the gray scale level of the tracks, convey additional information on the track depth, which increases monotonically with the energy and angle of incidence of the alpha particles [2]. A multi-parameter approach that combines both geometrical and optical characteristics seems promising for the energy discrimination of alpha particles from different emitters. Such a methodology might be useful in studies of exposure to airborne radon progeny, aiming to differentiate between the 210Po and 214Po radionuclides.

In this work, an alpha spectroscopic method using CR39 SSNTDs is being evaluated, elaborating on track parameters from different alpha particle sources. The method is based on the appropriate statistical handling of data obtained from the freely-available, Java-based ImageJ software [4], which can perform most image processing and analysis tasks.

EXPERIMENTAL DETAILS

CR-39 SSNTDs (Track Analysis Systems Ltd, Bristol, UK) were irradiated inside a vacuum chamber with alpha particles from a 241Am source ($E_\alpha=5.49$ MeV) and a triple 239Pu-
$^{241}\text{Am}-^{244}\text{Cm}$ source ($E_\alpha=5.15, 5.49 & 5.80$ MeV, respectively). CR39 detectors were also exposed over a 20 d period in a chamber containing a ^{222}Rn-emitting ^{226}Ra source. After irradiation, the CR-39 detectors were etched in a 6 N aqueous NaOH solution at 70°C for 7 h, were subsequently removed from the etchant, rinsed under tap water and air-dried. Tracks were observed in a Zeiss optical system and analyzed using ImageJ. After setting the required track characteristics (major and minor axis, area, circularity and gray level), the measurement routine is executed and results are reported (Fig. 1). Only circular tracks, corresponding to normal incidence on the detector surface were considered in this study.

![Image](http://epublishing.ekt.gr)

Fig. 1. Image processing and analysis of alpha-particle tracks from a ^{241}Am source, using ImageJ. Left: Acquired image. Center: Analyzed tracks after threshold determination. Right: Analysis results.

RESULTS AND DISCUSSION

Spectroscopic Analysis

The tracks formed after irradiation with the ^{241}Am source, show a gaussian major axis length distribution, centered at 14.2 μm (Fig. 2a). This peak, corresponding to 5.49 MeV alpha particles, is also identified in the distribution obtained from the triple source. In the latter case, two additional gaussian functions are fitted to the distribution, centered at 13.8 and 14.6 μm, which can be attributed to 5.80 MeV (^{244}Cm) and 5.15 MeV (^{239}Pu) alpha particles, respectively.

The optical characteristics of the recorded tracks are based on gray level analysis using a scale from 0 (no light transmission, completely dark track) to 255 (total transmission, completely bright track). The biplots shown in Fig. 2b confirm the expected trend for lower gray level - higher alpha particle energy - smaller tracks, and vice versa. Furthermore, they indicate that, compared to track geometry, the gray level is a more determinant parameter for energy separation.

A multi-parameter approach, by means of Principal Component Analysis (PCA), was employed for CR39 exposed to the ^{241}Am source and to the triple source. By including ImageJ values for the major (MJ) and minor (MN) axis length, the track area (AR) and the mean gray level (GL), PCA succeeded in grouping the recorded tracks according to alpha particle energy (Fig. 3). Group separation in the case of the triple source is dominated by the track gray level.
Radon progeny separation

A typical Rn spectrum acquired by means of a CAM-PIPS detector (Fig. 4a) shows two distinct peaks arising from 214Po (6.0 MeV) and 218Po (7.7 MeV) deposited on the detector’s surface, while 222Rn alpha particles produce a continuous spectrum up to 5.5 MeV.

Analysis of the CR39 detectors, by applying appropriate tracks’ selection criteria, also succeeds in differentiating Rn progeny, as evidenced in the obtained distribution of major axis lengths (Fig. 4b, top). The dependence of the track area on the mean gray level, further points to two groups of tracks that share common characteristics (Fig. 4b, bottom).

A PCA based on various geometrical track parameters coupled with gray levels, yields two diffuse groups of tracks, which however are clearly separated along the PC1 axis (Fig. 5). The group attracted toward negative PC1 scores is characterized by high area and high gray level values, corresponding to 6.0 MeV 218Po alphas particles. The second group is attributed to 7.7 MeV 214Po alpha particles.
Fig. 4. (a) Alpha particle spectrum acquired in the Rn chamber using a CAM-PIPS detector. (b) Data from the CR39 detectors exposed in the Rn chamber.

Fig. 5. A PCA score-plot of the alpha tracks recorded in the radon chamber. The tracks originating from 214Po and 218Po alpha particles are separated primarily due to differences in track area followed by differences in gray level.

CONCLUSIONS

Alpha tracks recorded on CR39 SSNTDs were analyzed by applying appropriate track selection criteria with the ImageJ software. Geometrical and optical track parameters were thus obtained and explored for the energy separation of alpha particles emitted from radioactive sources. The analyses showed that a multivariate statistical analysis succeeds in discriminating tracks from different alpha emitters. The methodology was successfully applied to the separation of radon progeny on CR39 detectors exposed in a radon chamber. Studies to extend the method to LR115 SSNTDs are currently underway.

References