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KIDS Energy Density Functional and
Mass — Radius Relation of Neutron Stars

G. Ahn', P. Papakonstantinou™
! National and Kapodistrian University of Athens, Department of Physics,

Nuclear and Particle Physics Section, GR 15784, Athens, Greece
? Rare Isotope Science Project, Institute for Basic Science, Daejeon 34047, South Korea

Abstract  Many efforts are made to determine the nuclear equation of state which governs
the properties and evolution of neutron stars. Especially important is to constrain the
parameters of the nuclear symmetry energy. In those efforts, nuclear energy density functional
(EDF) theory has been a very useful tool, as it provides a unified framework for the description
both of nuclei, which can be studied on Earth, and of infinite matter and its nuclear equation of
state, which is a necessary input in the modelling of neutron stars. In the present study, a new
nuclear EDF, the KIDS functional, is explored with a focus on the nuclear symmetry energy.
The form of the functional allows us to vary at will the poorly constrained high-order
derivatives of the symmetry energy and examine how the maximum possible mass of a neutron
star is affected. Some tentative constraints on the skewness are presented, which will help guide
further refinements. It is noteworthy that the pressure of neutron-rich matter is found strongly
affected by skewness variations, both at low and high densities.

Keywords KIDS functional, Symmetry Energy, Equation of State, Mass-Radius Relation,
Neutron Stars

INTRODUCTION

Much intense effort is devoted to determining the nuclear equation of state which
governs the properties and evolution of neutron stars. Especially important is to constrain the
parameters of the nuclear symmetry energy. In the process, nuclear energy density functional
(EDF) theory [1] has been a very useful tool, as it provides a unified framework for the
description both of nuclei, which can be studied on Earth, and of infinite matter and its
nuclear equation of state. Most functionals that are used in describing the nuclear matter are
fitted to experimental data and in particular nuclear masses, charge radii, and giant
resonances. This leads to a fairly reliable description of nuclear matter at and around the
saturation density. However, extrapolations to high and low densities must be carried out
with care [2]. In addition, overfitting to ordinary nuclei may result in decreased predictive
power in exotic, neutron-rich systems.

An important component of the equation of state is the symmetry energy, which is
usually characterized by its value at saturation density, as well as its derivatives’ values at
saturation density. This quantity affects the structure of stable and exotic nuclei, and also
affects neutron stars’ properties [3]. Dedicated efforts over the years have led to ever-
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narrowing constraints for the symmetry energy value and its slope [4]. Explorations at high
density through heavy-ion collisions as well as astronomical observations are expected to
illuminate the role of higher-order derivatives, which are not often considered and their
values are not well constrained.

A method which allows us to choose at will the values of undetermined quantities and
apply them in describing nuclei and neutron stars has been proposed in the framework of the
KIDS functional [5, 6]. It will allow us to study the sensitivity of calculated observables to
each of the above unconstrained quantities and thus systematically narrow down their values.
Such a methodology would be tedious if not impossible in the context of usual functionals,
which have a limiting analytical form (cf Skyrme functionals) and in addition require each
time a fit on data of finite nuclei. By contrast, the form of the KIDS functional is optimal for
varying any quantity of interest independently of the others. We explore this possibility to
study the effect of the symmetry energy’s curvature and skewness on the neutron star
equation of state.

The present manuscript is organized as follows. In the the next two sections we present
the optimal Ansatz of the KIDS functional, its analytical relations to the symmetry energy,
and the formalism that relates the symmetry energy with the neutron-star properties. For the
subsequent studies, we select as baseline an initial KIDS parameterization (KIDS-ad-2 [5])
which corresponds to a realistic equation of state (Akmal-Pandharipande-Ravenhall [7] for
pure neutron matter) and has been successfully applied in the description of magic nuclei [6].
We then explore 10 equations of state which are nearly identical (in terms of saturation
properties) to ad-2 and identical to each other except for the curvature and skewness of the
symmetry energy. We find deviations for the pressure both at low and high densities and in
the description of neutron stars indicating the significance of these parameters.

KIDS FUNCTIONAL AND SYMMETRY ENERGY

It is known from Brueckner’s theory for homogenous matter and from effective field
theories for dilute Fermi systems that the Fermi momentum (xg), which is proportional to the
cubic root of the density, is a fundamental quantity and indispensable variable in the
description of fermionic systems [8,9,10]. The recently proposed KIDS (Korea — IBS —
Daegu — Sungkyunkwan) energy density functional therefore uses relevant powers of the

cubic root of the density (pl/ 3) [5]. In particular, the energy per particle in the context of the
KIDS functional is:

3
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where T(p, 9) is the free Fermi gas kinetic energy, ¢;(8) the KIDS parameters and § = —p“;pp

the asymmetry of nuclear matter.
There are two special cases that we are particularly interested in modeling. The first one
is when the asymmetry is zero, which means that the number of protons in the matter is equal



to the number of neutrons. In this kind of matter, the so-called Symmetric Nuclear Matter
(SNM), the following apply:

Pp = Pn» 6 =0
and the energy per particle reduces to:
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The second case of interest is when there are no protons in the matter and only neutrons exist.

In this kind of matter, which is called Pure Neutron Matter (PNM), the following apply:
pp=0,pp=p6 =1

and the energy per particle reduces to:

E 3h? -
= 1oy B s+ Z (1) pt*a.
i=0

Interpolations between the two cases can be done using the quadratic approximation,
ci(8) = ¢;(0) + [c;(1) — ¢;(0)]8%.
They can also be done through the formalism of Skyrme functionals, particularly useful for

finite nuclei [6]. From the energy-per-particle equation it is possible to extract analytical
relations for the important quantities that characterize the symmetric nuclear matter. Those
are the saturation density (py), the energy per particle at saturation density (gy) and the
incompressiblity (K;).

An important quantity is the Symmetry energy (Esym), which is defined as [2]:

0%E(p, 8)
Esym(p) = (—) =~ E(p,1) — E(p, 0).
y 2\ 08 ),

It describes the static response of the nucleus to the neutron-proton asymmetry, it affects
many nuclear phenomena, such as the stability of neutron-rich nuclei and ultimately, the
mass-radius relation of neutron stars.

We are interested in Egyp, and its derivatives with respect to the density at the saturation
point. In particular, the quantities of interest are the symmetry energy (] = Esym(po)), the
slope of the symmetry energy (L), the curvature of the symmetry energy (Ksym) and the

skewness (Qgsym), all at saturation density. In the context of the KIDS functional they are

given by":
hz 3 /3 "
J = So = Eqym(po) = 6M< “) by - Z(c 0 — 1))py"
"2 /312 2/3 oy
L= W(T) 2(3 + 1)(C1(0) C](l))p 3

" Here we adopt the simplified expression for the kinetic term from Ref. [2]. A somewhat different one was used in Ref. [4], leading to
somewhat different values for the reported symmetry-energy parameters. The consequences are minor in the present context.
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The above quantities are very important and will help us characterize the nuclear matter.

The optimal number of KIDS parameters and the above analytical expressions will allow us

stm =

to determine a set of KIDS functional parameters for any combination of (], L, Ksym, stm)
set we wish to examine.

Experimental observations suggest that the symmetry energy at saturation density should
be ] = (30 — 35) MeV, the slope of the symmetry energy at saturation density should be
L(py) = (40 — 76) MeV and the curvature of the symmetry energy at saturation density
should be Kgym(pg) = (=100 £ 100) MeV. While the skewness is not well constrained yet,
a strong correlation with the slope seems to exist: Qgym(po) = —6.443L(p,) + (708.74 +

118.14) MeV [11,12,13,14].
EQUATION OF STATE AND TOV EQUATIONS

The equation of state (EoS) is the equation that gives the energy per particle (or the
energy density) as a function of the density (s(p)). We will focus on the EoS of stellar matter,
namely charge-neutral B-stable matter, which is encountered in the core of neutron stars and
on the EoS of dilute (p < 0.2 fm~3) neutron matter, which is encountered in the inner crust
of neutron stars. Stellar matter consists mostly of neutrons, but a non-zero proton and lepton
fraction is present.

In order to find the mass-radius relation of neutron stars, which is an essential step in
understanding neutron stars, the Tolman-Oppenheimer-Volkoff (TOV) equations must be
solved. For non-rotating neutron stars, these equations are:

dP M(r) + 4mr3 %
dr - r(rc2 — 2GM(r))
dM  4ne(r)r?
TS
where P(r) the pressure and €(r) the energy density of B-stable matter.
The TOV equations require an EoS that describes the stellar matter. From the EoS of

neutron matter, it is possible to find the EoS of the stellar matter using charge neutrality and

equalities involving chemical potentials of the nucleons and leptons [15].

Before we proceed with our results, we must clarify that this is work in progress and our
present results should be considered preliminary and indicative. In particular, in the present
study, and unlike Ref. [5], 1) the low-density regime (spinodal region, clusterization and the
core-crust transition) has not been adequately modeled and 2) the causality condition has
been applied to PNM, not beta-stable matter. Given these shortcomings, we expect that



extracted values for the maximum mass of a neutron star are the most robust of our current
results.

FINDING THE MASS-RADIUS RELATION OF NEUTRON STARS

In Ref [5] a set of parameters for the KIDS functional was determined based on
generally adopted properties of SNM (p, = 0.16 fm~3,&, = —16MeV,K, = 240MeV) and
on a fit of the PNM EoS to the Akmal-Pandharipande-Ravenhall EoS [7]. The parameters for
that set, labeled ad-2, are shown in the following table:

Co(8) (MeV fm3)

¢, (8) (MeV fm?)

c,(8) (MeV fm>)

c3(8) (MeV fm®)

SNM (5=0)

-664.52

763.55

40.13

0.00

PNM (5=1)

-411.13

1007.78

-1354.64

956.47

Table 1. The ad-2 parameters of the KIDS functional [5].

We use the above parameter set as baseline and henceforth fix the SNM parameters to the
same values and the symmetry energy parameters J and L to the rounded ] = 33 MeV,L =
50 MeV values (see also Table 3). For the purposes of this study we then vary the values of
the curvature (2 values) and skewness (5 values): Kgy, = —160 MeV (rounded ad-2 value)

and 0 MeV; Qg = (—200,0,400,600,1000) MeV. New sets of values of ¢;(8) are readily

obtained through the available analytical relations and tabulated below.

Ksym (MeV) stm (MeV) co(1) c; (1) c,(1) c3(1)
-160 -200 382.50 -3395.77 6801.91 -4077.37
-160 0 174.16 -2244.51 4681.28 -2775.29
-160 400 -242.50 58.01 440.00 -171.12
-160 600 -450.84 1209.27 -1680.64 1130.96
-160 1000 -867.50 3511.79 -5921.92 3735.13

0 -200 1382.50 -8000.81 13587.96 -7202.37
0 0 1174.16 -6849.55 11467.32 -5900.29
0 400 757.50 -4547.03 7226.04 -3296.12
0 600 549.16 -3395.77 5105.40 -1994.04
0 1000 132.50 -1093.25 864.13 610.13

Table 2. The parameters of the KIDS functional that were found for ] = 33 MeV, L = 50 MeV and
for Ksym and Qgyn, that can be seen in the table above. The units of ¢; are MeV - fm3+,

Using the above parameters we find the energy per particle for PNM, which is shown in
Fig.1, normalized to the free Fermi energy. Although the description of the saturation region
is practically the same for all sets, away from the saturation point large deviations are
observed. This shows the significance of the high-order parameters of the symmetry energy,
namely its curvature and skewness, at both low and high densities. Next we determine the




respective EOSs of stellar matter. Its pressure for the 10 parameter sets is shown in Fig.2. We
observe that the pressure for some sets becomes negative already at densities relevant for
neutron stars. The varying range of the spinodal region at subsaturation densities for given
Ksym 18 remarkable, given that the only difference among the displayed equations of state in

each graph is the value of Qgy .
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Figure 1. Left: Energy per particle graph for PNM, normalized to the free Fermi energy, versus
density for ] =33 MeV,L = 50 MeV, Kgyr, = —160 MeV and various values of Qgyp . Blue

dashed line corresponds to Qsym = —200 MeV, red dash-dotted line to Qsym = 0 MeV, green
solid line to Qgym = 400 MeV, magenta pixelled line to Qsy, = 600 MeV, cyan thick line to
Qsym = 1000 MeV and black dotted line to ad-2 parameters. Right: Same as left, but with
Ksym = 0 MeV.
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Figure 2. Left: Pressure versus density for ] =33 MeV,L = 50 MeV, Ksym = —160 MeV and
various values Qsym . Blue dashed line corresponds to Qsyr, = —200 MeV, red dash-dotted line to
Qsym = 0MeV, green short-dashed line to Qsym, = 400 MeV, purple solid line to Qsym =
600 MeV and cyan dotted line to Qsyr, = 1000 MeV. Right: Same as left, but for Kgyr, = 0.

Only three of the sets could satisfy fundamental physical (at present, also technical)
constraints which had to do with the stability behavior of the pressure, namely positive values
for the pressure and its gradient especially at high densities. Those three sets of parameters
are indicated in boldface in Table 2 and henceforth we will refer to them as (I), (IT) and (III).



The corresponding sets of values for the symmetry energy and its derivatives are summarized
and compared to those of ad-2 in Table 3. Note that set (I) is almost identical to ad-2 by

construction.
] (MeV) L (MeV) Ksym (MeV) Qsym (MeV)
D 33.00 50.00 -160.00 600.00
(1) 33.00 50.00 -160.00 1000.00
(I11) 33.00 50.00 0.00 1000.00
ad-2 32.76 49.11 -156.69 586.29

Table 3. The symmetry-energy parameters for which the discussed stability requirements are
satisfied (indicated with boldface in Table 2), compared with those of ad-2.

Using the EoSs that correspond to the sets of Table 3, we solved the TOV equations to
find the respective mass-radius relations. At this stage, a causality check is necessary, so that
the mass-radius relations found are not superluminal. For this check, the critical maximum
density for which the speed of sound becomes equal to the speed of light at vacuum was
found and the graph was cut from that point onwards. (As already mentioned, at present the
check was performed on PNM rather than stellar matter, which renders the results
approximate. This is also why the present results for ad-2 deviate somewhat from the more
accurate ones of Ref. [5].) The critical density can be seen in Table 4, along with the
maximum predicted mass of the neutron star and a reference radius of a neutron star with a
particular mass (1.4 Mg).

Max Mass(Mg) R, 4(km) Pmax(fm™3)
0 2.05 11.29 0.877
(I1) 1.92 11.70 0.615
(I17) 1.96 12.07 0.632
ad-2 2.06 11.27 0.906

Table 4. Preliminary results (see text for current technical limitations) for the maximum predicted
mass of a neutron star, a reference radius of a neutron star with a particular mass and the maximum
density for which causality criterion is satisfied. The labelling is the same as Table 3.

The latest observations have confirmed that a neutron star is able to have a mass greater than
2 Mg. Out of the three sets suggested above, only one set (I) is able to yield a maximum mass
of a neutron star greater than 2 Mg [16], at least within the technical limitations of the
present study.

CONCLUSIONS

The target of this study was to investigate the symmetry energy in the context of the
KIDS functional, using the symmetry energy and its derivatives, as well as some of the latest
astronomical observations. An important result is that the skewness (stm) of the symmetry




energy significantly affects the pressure and the mass-radius relation of the neutron stars, if
varied within the full range of current uncertainties. For example, we found that given

(], L, Ksym) = (33,50,—160) MeV, the skewness (stm) should be at least 400 MeV, while
for other Kgyp, the resulting allowed Qgyy, are different. Given that ] and L were kept
constant, the present study hints at the possibility to confidently constrain the values of Kgyp,,

Qsym With the help of astronomical observations.
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