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Abstract
We consider two competing sets of nuclear magic numbers, namely the harmonic oscillator (HO)

set (2, 8, 20, 40, 70, 112, 168, 240,...) and the set corresponding to the proxy-SU(3) scheme, possess-
ing shells 0-2, 2-4, 6-12, 14-26, 28-48, 50-80, 82-124, 126-182, 184-256... The two sets provide 0+

bands with different deformation and bandhead energies. We show that for proton (neutron) numbers
starting from the regions where the quadrupole-quadrupole (Q ·Q) interaction, as derived by the HO,
becomes weaker than the one obtained in the proxy-SU(3) scheme, to the regions of HO shell clo-
sure, the shape coexistence phenomenon may emerge. Our analysis suggests that the possibility for
appearance of shape coexistence has to be investigated in the following regions of proton (neutron)
numbers: 8, 18-20, 34-40, 60-70, 96-112, 146-168, 210-240,...

Keywords shape coexistence, proxy-SU(3)

1 INTRODUCTION

Shell model theory has been established in the nuclear physics community as the major microscopic
model for nuclei. In this model the single particle orbitals are organised, so as to have definite angular
momentum l. The algebra of angular momentum is SU(2), with multiplets |l, l0i, with l0 being the
projection of angular momentum. But this organisation is sufficient for almost spherical nuclei. In
deformed nuclei the previous classification of single particle orbitals is inadequate. The quadrupole
interaction prevails and the proper organisation has again an SU(2) structure, but with definite number
of quanta in the xy plane n? = n

x

+ n
y

, instead of l [1]. This SU(2) structure has multiplets |n?, l0i.
Two sets of magic numbers, i.e. 20-40 and 28-48, have exactly the same |n?, l0i multiplets and identical
magnitude of the m = 2 component of quadrupole interaction. Thus the two sets compete.



2 THE SU(3) GLOSSARY

The three-dimensional (3D) isotropic harmonic oscillator (HO) Hamiltonian is

H =
1

2m
(p2

x

+ p2
y

+ p2
z

) +
m!2

2
(x2 + y2 + z2). (1)

In the second quantization language one can define bosonic annihilation and creation operators

a
j
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r
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2~ x
j

+
ip

2m!~
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j

, a†
j

=
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2~ x
j

� ip
2m!~

p
j

, j = x, y, z. (2)

Obviously the eigenfunctions of the Hamiltonian are |n
z

, n
x

, n
y

i in the Cartesian notation, where n
z

, n
x

, n
y

are the number of quanta in each Cartesian axis. The action of the a, a† operators is

a
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x
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x

|n
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� 1i , a†
x

|n
x
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p
n
x

+ 1 |n
x

+ 1i . (3)

Now the problem can be turned into cylindrical coordinates, which are more suitable for deformed
nuclei. In order to distinguish the x-y plane from the z axis, the left and right quanta operators are being
defined [2]

a± =
a
x

⌥ ia
yp

2
, a†± =

a†
x

± ia†
yp

2
. (4)

The operators a+, a†+ are called right hand operators, because they seem to destroy/create a circular
quantum, which rotates like a right hand in the x-y plane. For the same reason the other two operators
are called left hand operators. The operators in the z axis are renamed a0 = a

z

, a†0 = a†
z

.
With these ingredients one can define eight operators which are the generators of SU(3) [3]

l0 = a†+a+ � a†�a�, l± = ±
p
2(a†0a⌥ � a†⌥a0), (5)

q±2 = �
p
6a†±a⌥, q±1 = ⌥

p
3(a†0a⌥ + a†±a0), q0 = 2a†0a0 � a†+a+ � a†�a�. (6)

The first three operators (l0, l±) form the algebra of angular momentum, while the last five are the five
components of the quadrupole moment. The l, q are single particle operators, while the L, Q are used for
the whole shell and they are derived from the sum over all particles.

The Hamiltonian of the many nucleon problem is

H =
X

k

H
k

� �

2
Q ·Q = H0 �

�

2
Q ·Q, (7)

where H
k

is the 3D-HO Hamiltonian for the kth particle, � is the strength of the Q ·Q interaction and if
k and j are two distinct nucleons one has

Q ·Q =
X

k,j,m

(�1)mq
mk

q�mj

=
X

m

(�1)mQ
m

Q�m

. (8)

The most general equation for the trace of the quadrupole interaction has been derived in the sym-
plectic model (eq.(5.4) of ref. [4]). If only the valence shell is of interest, with L = 0 for the 0+ energy,
one may consider

Q ·Q =< C
(2)
SU(3) >= 4(�2 + µ2 + �µ+ 3(�+ µ)), (9)

where C
(2)
SU(3) is the second order Casimir operator of SU(3), (�, µ) are the SU(3) quantum numbers and

< C
(2)
SU(3) > is the eigenvalue of the operator in a given SU(3) irrep.



3 MATRIX REPRESENTATION OF THE U(10) ALGEBRA

The U(10) algebra of the HO has ten vectors of the type |n
z

, n
x

, n
y

i, with total number of quanta n =
n
z

+ n
x

+ n
y

= 3. These vectors are the eigenfunctions of the isotropic 3D-HO Hamiltonian [2]. The
generators of SU(3) mentioned in the previous section, can be expressed in matrix representation upon
these ten vectors. For convenience the orbitals |n

z

, n
x

, n
y

i are labeled as |1i = |3, 0, 0i, |2i = |2, 1, 0i,
|3i = |2, 0, 1i, |4i = |1, 2, 0i, |5i = |1, 1, 1i, |6i = |1, 0, 2i, |7i = |0, 3, 0i, |8i = |0, 2, 1i, |9i = |0, 1, 2i,
|10i = |0, 0, 3i. The order of the orbitals is the filling order with nucleons, so as to achieve the highest
weight irreducible representation of SU(3) [5]. It is important to note that |1i has n? = 0, while |2i, |3i
have n? = 1 etc.

In ref.[3], chapter 4, eq. (4.5) the three components of angular momentum are defined as l
µ⌫

=
x
µ

p
⌫

� p
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x
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= i(a
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). Since [a
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, it can be derived that l
z

= i(a†
y
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� a†
x

a
y

). The
projection of the angular momentum in the matrix representation within the basis |n

z

, n
x

, n
y

i is
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A diagonalization of each block gives the eigenvalues of the matrix. Specifically the first block has
eigenvalue 0, the second ±1, the third 0,±2 and the last ±1,±3. It becomes apparent, that the projection
of the angular momentum has values l0 = ±1,±3, ...,±n? if n? is odd and l0 = 0,±2,±4, ...,±n? if
n? is even.

From the eqs. (4), (6) one can easily derive that

q2 = �
p
6
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). (10)

From matrix representation and multiplication one gets the matrix of the q̄2 = q�2q2 + q2q�2 interaction

q�2q2 + q2q�2 =

2

666666666666664
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⇤

6 0
0 6

�

2

4
18 0 6
0 12 0
6 0 18

3

5

2

664

36 0 6
p
3 0

0 24 0 6
p
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6
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p
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This matrix is again organised into blocks containing orbitals with the same n?. But since not all
blocks are diagonal, an additional quantum number is hidden. This quantum number is the projection of
the angular momentum l0. Indeed the commutator is [q±2q⌥2, l0] = 0. Each block has specific values of
n?, l0

2

666666666666664

⇥
n? = 0, l0 = 0

⇤

n? = 1,
l0 = ±1

�

2

4
n? = 2,
l0 = 0,±2

3

5

2

664

n? = 3,
l0 = ±1,±3

3

775

3

777777777777775

Finally the multiplets of each block are |n?, l0i.
Possibly an algebraic structure is the cause of this. The answer has been given by J.P. Elliott in

section 2 of ref. [1]. The same problem is being explained in section 3.6 of ref. [6]. The algebra SU(3)
is decomposed into two subalgebras SU(2) and U(1). The first represents rotations in the x-y plane,
while the latter involves the z axis. The SU(2) algebra has the following generators u± = ⌥

⇣
1

2
p
3

⌘
q±2,

u0 = 1
2 l0, which satisfy the commutation relations [u±, u0] = ⌥u±, [u+, u�] = �u0. The U(1) is

characterised by the operator q0, which has eigenvalues ✏ in the Elliott paper [1], with ✏ = 2n
z

�n?. The
block diagonal form of the matrices q±2, l0 appears due to the SU(2) structure. The SU(2) multiplets are
characterised by a quantum number of j-type (which is not necessarily the angular momentum) and one
of m-type (needless to say that this is not always the projection of the angular momentum). In the present
algebraic structure the m-type quantum number is the eigenvalue of u0 and the j-type, let it be named
⇤

E

(as in ref. [1], is ⇤), with ⇤
E

= 1
2(nx

+ n
y

) = 1
2n?. Since u0 = l0

2 and the possible values of u0

are �⇤
E

, �⇤
E

+ 1, . . . , ⇤
E

obeying the angular momentum algebra, obviously l0 = �2⇤
E

, �2⇤
E

+ 2,
. . . ,2⇤

E

. Therefore for the total number of quanta n = 3, the possible n? values are 0, 1, 2, 3. For each
one of these, ⇤

E

takes the values 0, 1
2 , 1, 3

2 . If ⇤
E

= 0 then l0 = 0 and this reflects to the first block of
the matrices q�2q2 + q2q�2, l0. If ⇤

E

= 1
2 , then l0 = ±1, so this is the second block, and so on.

4 ACTION Of q2 ON NILSSON ORBITALS

The asymptotic wave functions of Nilsson orbitals are labeled usually as K[Nn
z

⇤], but there is an alter-
native notation |n

z

rs⌃i, which is explained very well in section 8.7 of ref. [7]. A brief repetition of the
formalism is necessary.

The Nilsson problem is solved in the cylindrical coordinate system. The quanta on the x-y plane are
being created by the R†, S† operators. These operators are exactly the same as the a†+, a

†
� respectively,

i.e., R = a+, R† = a†+, S = a�, S† = a†�. The following relations are valid

r =
N � n

z

+ ⇤

2
, s =

N � n
z

� ⇤

2
, ⌃ = K � ⇤. (11)



where R†R |ri = r |ri and S†S |si = s |si. The actions R |ri =
p
r |r � 1i, R† |ri =

p
r + 1 |r + 1i,

S |si =
p
s |s� 1i, S† |si =

p
s+ 1 |s+ 1i, will be useful. With these tools one can transform the

Nilsson orbitals between the two notations K[Nn
z

⇤] ! |n
z

rs⌃i.
The q±2 operators with the Nilsson symbols are q2 = �

p
6R†S, q�2 = �

p
6S†R. Thus the q̄2

interaction is q̄2 = q2q�2 + q�2q2 = 6R†SS†R + 6S†RR†S. Using that [R,R†] = [S, S†] = 1, the q̄2
action on Nilsson orbitals becomes

q̄2 |nz

rs⌃i = 6(r + s+ 2rs) |n
z

rs⌃i = 6(n? + 2rs) |n
z

rs⌃i . (12)

Now we can calculate the matrix representation of the q̄2 interaction for two sets of Nilsson orbitals.
One set will include the Nilsson orbitals in the shell 20-40, while the other will include the Nilsson
orbitals in the shell 28-48. It will be seen that the two matrices are totally identical and diagonal.

The first calculation can be done for the shell 20-40, which includes the orbitals |n
z

rs⌃i: |300+i,
|210+i, |210�i, |120+i, |111+i, |120�i, |030+i, |021+i, |021�i, |030�i. This ordering resembles
the highest weight order. The same matrix can be created within the shell 28-48. The Nilsson orbitals
which are included in this shell are: |400+i, |310+i, |210�i, |220+i, |111+i, |120�i, |130+i, |021+i,
|021�i, |030�i. The only difference between the two sets is that 4 out of 10 orbitals of the second set
have one more quantum in the z axis, namely |300+i ! |400+i, |210+i ! |310+i, |120+i ! |220+i,
|030+i ! |130+i. But since the two sets have the same values of r and s, they will have the same matrix
for the q̄2 interaction, which for both sets is

q̄2 = q2q�2 + q�2q2 =

0

BBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0 0
0 6 0 0 0 0 0 0 0 0
0 0 6 0 0 0 0 0 0 0
0 0 0 12 0 0 0 0 0 0
0 0 0 0 24 0 0 0 0 0
0 0 0 0 0 12 0 0 0 0
0 0 0 0 0 0 18 0 0 0
0 0 0 0 0 0 0 42 0 0
0 0 0 0 0 0 0 0 42 0
0 0 0 0 0 0 0 0 0 18

1

CCCCCCCCCCCCCCA

. (13)

Obviously the m = 2 component of the quadrupole tensor has the same magnitude in both shells.
One could say that part of the quadrupole-quadrupole interaction is incorporated into both shells, due to
their identical structure in the x-y plane. One shell is defined by the magic numbers of the 3D-HO, which
are 2 ,8, 20, 40, 70, 112, . . . , while the other one corresponds to the proxy-SU(3) magic numbers [8],
[9]. For proton or neutron number greater than 28 the proxy-SU(3) shells close at 48, 80, 124,..., which
are close to the nuclear magic numbers 50, 82, 126, . . . . In Table 1, proxy-SU(3) shells are suggested for
proton (neutron) numbers less than 50.

5 SHAPE COEXISTENCE

The proxy-SU(3) shells are 0-2, 2-4, 6-12, 14-26, 28-48, 50-80, 82-124, . . . . The corresponding algebras
are respectively U(1), U(1), U(3), U(6), U(10), U(15), U(21),... On the contrary, the 3D-HO magic



Table 1: Proxy-SU(3) magic numbers below 50. The proxy-SU(3) approximation replaces the intruder
parity Nilsson orbitals by their �K[�N�n

z

�⇤] = 0[110] counterparts [8], i.e. 7/2[413] is replaced by
7/2[303]. These counterparts are identical in the x-y plane, but they differ by one quantum in the z axis.
Thus the SU(2) substructure is identical for the orbitals included among the proxy-SU(3) and the HO
magic numbers, which have the same U( (n+1)(n+2)

2 ) algebra.

shell model K[Nn
z

⇤] 0[110] counterparts algebra magic numbers
1g9/2 9/2[404] X 50

7/2[413] 7/2[303] 48
5/2[422] 5/2[312]
3/2[431] 3/2[321]
1/2[440] 1/2[330]

2p1/2 1/2[301] U(10)
1f5/2 5/2[303]

3/2[301]
1/2[310]

2p3/2 3/2[312]
1/2[321]

1f7/2 7/2[303] X 28
5/2[312] 5/2[202] 26
3/2[321] 3/2[211]
1/2[330] 1/2[220]

1d3/2 3/2[202] U(6)
1/2[200]

2s1/2 1/2[211]
1d5/2 5/2[202] X 14

3/2[211] 3/2[101] U(3) 12
1/2[220] 1/2[110]

1p1/2 1/2[101]
1p3/2 3/2[101] X 6

1/2[110] 1/2[000] U(1) 4
1s1/2 1/2[000] U(1) 2



numbers are 2, 8, 20, 40, 70, 112, . . . , defining shells with algebras U(1), U(3), U(6), U(10), U(15),
U(21), . . . . The quantum numbers (�, µ) of the highest weight irreps for the algebras U(6), U(10), U(15),
U(21) can be found in Table I of ref. [9]. U(1) has (�, µ) = (0, 0), while the highest weight irreps of
U(3) are (�, µ) = (2, 0), (0, 2), (0, 0) for 2, 4, and 6 valence particles respectively. Thus for each set of
magic numbers one can calculate the eigenvalues of the Casimir operator of SU(3), as defined in eq. (9).
The resulting plot is Fig.(1).

The Casimir operator is proportional to the quantities �2, B(E2, 2+1 ! 0+1 ). Thus it measures the
deformation [10]. In the set of the 3D-HO magic numbers these eigenvalues start to become smaller,
compared to the ones obtained for the proxy-SU(3) calculation, at the proton (neutron) numbers 8, 18,
34, 60, 96, 146, 210. From these numbers up to the neighboring shell closure of the 3D-HO, i.e., 8, 20,
40, 70, 112, 168, 240, the two sets of magic numbers compete against each other and the result is shape
coexistence. So in proton (neutron) numbers within the regions 8, 18-20, 34-40, 60-70, 96-112, 146-168,
210-240 one may expect that the experimental data will show the appearance of two 0+ energy bands.
The ground state 0+ is usually the outcome of the proxy-SU(3) magic numbers, while in the excited
0+ the 3D-HO is somehow involved. At Fig. 8 of ref. [11] an approximate map of shape coexistence
manifestation is presented. All areas have protons or neutrons among the previously proposed numbers.
Furthermore, shape coexistence appears from 96 to 110 neutrons in the Hg isotopes and from 60 to 70
neutrons in the Sn isotopes (Fig. 10 of ref. [11] and Fig. 3.10 of [12]). Clearly shape coexistence ends in
the 3D-HO shell closure.
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Figure 1: The values of �2+µ2+�µ+3(�+µ) for protons (neutrons) for the two sets of magic numbers
(proxy-SU(3) and 3D-HO). In most experimental cases shape coexistence begins when the Casimir, as
calculated by the 3D-HO magic numbers, becomes less than the Casimir of proxy-SU(3) magic numbers.
The phenomenon ends at the 3D-HO shell closure.
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