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___________________________________________________________________________ 

Abstract The usual nuclear shell model defines nuclear properties through an effective 
mean-field plus a two-body interaction Hamiltonian in a finite orbital space. In this study we 
try to understand the correlation between the various parts of the shell model Hamiltonian and 
the nuclear observables and collectivity in nuclei. By varying specific groups of matrix 
elements we find signs of a phase transition in nuclei between a non-collective and a collective 
phase. In all cases studied the collective phase is attained when the single-particle transfer 
matrix elements are dominant in the shell model Hamiltonian, giving collective characteristics 
to nuclei. 

Keywords quantum phase transitions, nuclear shell model 
___________________________________________________________________________ 

INTRODUCTION 

Nuclear models have long provided a fertile ground for studying phase transitions in 
mesoscopic quantum systems. Quantum phase transitions [1–6] occur when the special 
observables of a system, called order parameters, reveal structural, often geometrical, 
changes as a function of control quantities. The search of quantum phase transitions is 
performed by writing the Hamiltonian in this form 

! = (1 − &)() + &(+. 
By varying the control parameter &, the system moves between the limiting symmetries 

() and (+ and one might find a critical value of the control parameter,	&., where a quantum 
phase transition is observed. The existence of the quantum phase transition and its order is 
confirmed using the Ehrenfest criterion [7], which involves the study of the derivatives of the 
ground state energy functional. If the first derivative with respect to λ is dicontinuous, then 
we have a first order quantum phase transition. If the second derivative is discontinuous, then 
the quantum phase transition is of second order. If no discontinuity is found, there is no 
quantum phase transition, only a crossover between the two phases. 

In the framework of the shell model, pairing and collective effects are fully taken into 
account through the two-body interaction matrix elements. In the following, we explore the 
effects of specific components of the effective shell-model interactions on the properties of 
nuclear spectra, and identify the patterns related to the effects of certain parts of these 
interactions. In particular, we study the qualitative changes of nuclear observables similar to 
phase transitions which appear as a function of the interaction in the same shell-model 
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framework. In this way we expect to better understand the relationship between the input 
effective Hamiltonian and the nuclear output. By changing the interaction matrix elements for 
a single nucleus, we can no longer reproduce the nuclear properties of this particular nucleus, 
however, it has been found that [8, 9] even a random (but keeping in force angular 
momentum and isospin symmetry) set of matrix elements in a finite orbital space results in 
the energy spectrum and properties of stationary states which carry certain analogies to 
realistic nuclei. 

In the case of the sd shell model space we have only three single-particle levels, 
20)/+, 134/+, 135/+. The angular momentum and isospin conservation allow 63 matrix 
elements of the residual two-body interactions. Similarly, the two-body interaction in the pf 
shell, which is made up of the 167/+, 285/+, 164/+, 28)/+ single particle levels, has 195 non-
zero matrix elements.  In a recent study [10], where the pf orbital space was used, it was 
found that certain interaction matrix elements are responsible for the transition from a 
spherical shape to a deformed one. First of all, these were the matrix elements (pf matrix 
elements in that specific model) changing the occupation numbers of the subshells by one 
unit, i.e. the matrix elements ⟨:;, :<|>|:?, :@⟩ with :; = :?, or :; = :@, or :< = :?, or :< = :@. 
This drives the mixing of spherical orbitals in the process of deformation. A complementary 
version of a similar approach was applied in [11] in order to demonstrate that the incoherent 
parts of the residual interaction are essential for producing chaotic wave functions and 
resulting smooth level density.  
 
QUANTUM PHASE TRANSITIONS 
 

Borrowing the previous approach, we divide the set of interaction matrix elements into 
two parts. The part >) includes the “particle-hole” matrix elements which change the 
occupation number of the subshells by one unit (from now on “one unit change matrix 
elements”), whereas part >+ includes the remaining matrix elements, which either don’t 
change the occupation number of the sub shells (:; = :? and :< = :@ ), or change it by two 
units (:; ≠ :? and :< ≠ :@). By writing the Hamoltonian in the form 

! = ℎ + (1 − &)>) + &>+				(1) 
where part h containing the single particle energies remains fixed and & is the control 
parameter, we vary & from 0 to 1 in steps of 0.1 and study phase transitional patterns in even-
even, odd-odd and odd-A nuclei in the sd and pf shells. In the sd shell model space we have 
results for 24Mg, 28Si, which represent the even-even cases and 26−28Al, 30P, which represent 
odd-odd and odd-A cases. We also chose the 52Fe and 50Mn nuclei, to represent an even-even 
and odd-odd case, respectively, in the pf shell. We have focused our interest mainly to the 
evolution, as a function of λ, of the energy states, reduced transition probabilities, quadrupole 
moments and wave function amplitudes of the ground state, though also higher spin states 
have been taken into consideration for odd-odd and odd-A nuclei. The results can be found in 
the figures which follow.  

For even-even nuclei, the & dependence of the low-energy levels presents a minimum at 
& around 0.2-0.3 for all nuclei and for almost all values of nuclear spin. At the same time, the 



energy ratio R4/2 reaches a maximum, which is always close to a deformed value, just after, 
or at, the minimum in the energies of the yrast states. The ratio E(J)/J(J+1) (effective inverse 
moment of inertia) is almost independent of J, from & = 0 up to the value of λ where the 
energy ratio R4/2 has its maximum value for each particular nucleus. The reduced transition 
probabilities are also sensitive to the phase transition, showing a maximum close to the point 
of the minimum energy of the yrast states, as seen in figures 1, 2 and 3.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. (a) Yrast 2+, 4+, 6+ energies, (b) ratios E(J)/J(J +1) for J = 0, 2, 4, (c) ratios R4/2, (d) electromagnetic 
transition rates as a function of & for 24Mg. 

 
The ground state wave function also displays the signs of a quantum phase transition. 

The left panel of figure 4 shows the percentage of coupling of protons and neutrons to 
angular momenta (Jn,Jp) = (0,0), (2,2), (3,3), (4,4), (6,6) of the ground state 0)E, as a function 
of &. For even-even nuclei, up until the point of the quantum phase transition, the (2,2) 
coupled pairs are the strongest components of the ground state wave function, a behavior 
consistent with deformational characteristics. After the critical point, their amplitudes fall and 
the amplitudes of the (0,0) coupled pairs rise, becoming eventually the strongest components 
of the wave function, a typical feature of the vibrational limit.  

While for even-even nuclei the	& dependence of the energies presents a minimum only 
for the first few yrast low-energy levels, for odd-odd or odd-even nuclei the minimum 
persists up to high energy values, showing that the unpaired nucleon greatly affects the 
results of this study. For yrast states, figure 5, there is a clear minimum of the level energy for 
all nuclei studied. In figure 6 the behavior of the reduced transition probabilities B(E2; 2)E →
0)E), B(E2; 2)E → 1)E), B(E2; 6)E → 4)E) and quadrupole moments of 26,28 Al is presented.  In 
all cases (even for those not appearing in figure 6) there is a maximum of the transition rate 
in the region where the signal of a phase transition appears in energies. The quadrupole 



moment, despite the fact that it changes abruptly due to the details of the interaction, it also 
shows signs of a quantum phase transition. In all cases, the quadrupole moment takes its 
maximum value at those values of & for which the quantum phase transition takes place, 
dropping to smaller values for & closer to 1.  

 
Fig. 2. (a) Yrast 2+, 4+, 6+ energies, (b) ratios E(J)/J(J +1) for J = 0, 2, 4, (c) ratios R4/2, (d) electromagnetic 
transition rates as a function of & for 28Si. 
 

 
Fig. 3. (a) Yrast 2+, 4+, 6+ energies, (b) ratios E(J)/J(J +1) for J = 0, 2, 4, (c) ratios R4/2, (d) electromagnetic 
transition rates as a function of & for 52Fe. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 4. Left panel: Amplitudes of the wave function 0)Eexpanded in terms of proton and neutron angular 
momenta as a function of & for 28Si, 24Mg, and 52Fe, Right panel: Amplitudes of the wave function 1)E expanded 
in terms of proton and neutron angular momenta as a function of & for 26Al, 30P, and 50Mn. 
 

The proton and neutron spin decomposition of the wave functions of different stationary 
states also presents signs of a quantum phase transition. In figure 4, right panel, we show the 
decomposition of the wave function of the 1)E state that serves as the ground state for some 
values of & in all studied nuclei, but only those components which have an amplitude over 
10%. First, there is an abrupt change of the spin decomposition at the transitional point. 
Second, before the transitional point, there is a strong mixing of the wave function 
components, while after the transitional point there are one or two dominant components, 
with the rest falling to a minuscule contribution. 

All these results suggest that there is a quantum phase transition taking place as the 
values of the V1 matrix elements increase. As stated in the introduction, in order to be sure 
that a quantum phase transition is present, the Ehrenfest criterion must be applied, which will 
also provide the order of the transition. In Figure 7 we look for discontinuities at the first and 
second derivatives of the ground state energies of 26Al and 27Al. The upper panel of Figure 7 
shows the ground state energies of 26Al and 27Al as a function of &, while the middle and 
lower panels show the first and second derivative of the ground state energies, respectively. 
The ground state energy appears to be a smooth function of &, however, sudden jumps appear 
at the first derivative of the ground state energy, which correspond to steep minima at the 
second derivative. These minima reflect the proton and neutron spin decomposition of the 
wave function, as well as the single – particle  orbital occupancies of the ground state. After 
each spike of the second derivative, the ground state structure changes from a mixed to a pure 
configuration, reflected in the rising of a single-particle orbital occupation and the rising of a 



less mixed proton and neutron coupling configuration. From the study of the derivatives of 
the ground state wave function we understand that this is a second order phase transition. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5. Yrast energies of J = 0 - 10 in 26,28Al, 30P, and 50Mn and J = 1/2 - 21/2 in 27Al, as a function &.	

	
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Reduced quadrupole transition probabilities and quadrupole moments as a function & for 26,28Al. 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 6. The ground state energy and its first and second derivatifves for 26,27Al as a function of &. 
 

 
CONCLUSIONS 
 

Summarizing, we studied the evolution of some nuclear observables when varying the 
values of specific matrix elements of the shell model Hamiltonian. We divided the two-body 
shell model interaction Hamiltonian into two parts, one containing the “one-unit change” 
interaction matrix elements and the other containing the rest two-body matrix elements. The 
results of the energy levels, multipole transition probabilities, the wave function 
decomposition in proton and neutron spin components, and the quadrupole moments for all 
the selected nuclei of the sd and pf shell, reveal the same coherent picture. At some critical 
value of λ, all nuclei undergo a transition from a mixed and collectively deformed phase to a 
phase close to the spherical shape for larger values of &. The “one-unit change” matrix 
elements are responsible for inducing deformational characteristics on nuclei and it appears 
that they act more strongly on unpaired fermions. Also, the study of the derivatives of the 
ground state wave function suggests that this is a second order phase transition.  

There is a principal difference between the nuclear models, mainly algebraic, where the 
quantum phase transitions are studied, and the framework we used to induce a quantum phase 
transition. In the first case, a system is moving between two well defined symmetries, while 
in our case the two groups of matrix elements are not directly related to any explicit 
symmetry. The results, though, show clear signs of a qualitative change in all studied 
observables of nuclei, as a function of &. There is no unique critical value of & where this 



qualitative change takes place, as the interaction affects different nuclei differently. However 
we clearly see a coherent behavior of various observables in different nuclei. 
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