Zuvedpla tTnG EAAnViKig Emtotnuovikng Evwong TexvoAoylwyv MAnpogopiag

& Erikowvwviwy otnv Eknaidsuon

Tép. 1 (2025)

120 Xuvedplo ETTIE «AwdakTikn Tng MNANpopopLkng»

12° MaveAArvio Juvédplo pe AleBvr) TuppETOXN
"AldaKTIKR TNG MAnpoopIKNc”

Topog Mpaktikwy

EmpéAela

®eodkng, I'., Anuntpakomoulou, A., Yo@adg, A., Pwkidng, E., & Kootag A.

- A2ET

TANERIETINO | 1voq
@iiraiov |

BiBAloypa@pikn avagopa:

Teaching Introduction to Programming in the
Times of Al: A Case Study of a Course Redesign

Nikolaos Avouris, Kyriakos Sgarbas, George Caridakis,
Christos Sintoris

doi: 10.12681/cetpe.9223

Avouris, N., Sgarbas, K., Caridakis, G., & Sintoris, C. (2025). Teaching Introduction to Programming in the Times of Al: A
Case Study of a Course Redesign. Zuvedpia tng EAAnvikn G Eriotnuovikn¢ Evwong TexvoAoyiwyv lNAnpopopiag &
Emkowvwviwyv otnv Eknaideuon, 1, 158-167. https://doi.org/10.12681/cetpe.9223

https://epublishing.ekt.gr | e-Ekd6tng: EKT | MpdoBaon: 25/01/2026 00:40:14

Teaching Introduction to Programming in the Times of
Al: A Case Study of a Course Redesign

Nikolaos Avouris', Kyriakos Sgarbas', George Caridakis?, Christos Sintoris?
avouris@upatras.gr, sgarbas@upatras.gr, gcari@aegean.gr, sintoris@upatras.gr

"Hellenic Open University/Department of Flpecttrical and Computer Engineering, University
of Patras

Hellenic Open University/DeBartmeng ofoclﬁltuA’aéTechnology and Communication,
niversity of the Aegean

3Department of Electrical and Computer Engineering, University of Patras

Abstract

The integration of Al tools into programming education has become increasingly prevalent in recent
years, transforming the way programming is taught and learned. This paper provides a review of the
state-of-the-art Al tools available for teaching and learning programming, particularly in the context of
introductory courses. It highlights the challenges on course design, learning objectives, course delivery
and formative and summative assessment, as well as the misuse of such tools by the students. We
discuss ways of re-designing an existing course, re-shaping assignments and pedagogy to address the
current Al technologies challenges. This example can serve as a guideline for policies for institutions
and teachers involved in teaching programming, aiming to maximize the benefits of Al tools while
addressing the associated challenges and concerns.

Keywords: Al tools, Introduction to Programming, learning objectives

Introduction

The rapid advancements in Artificial Intelligence (Al) have brought transformative changes
across numerous fields, including education. In particular, the teaching of
introductory programming —long framed around traditional lectures, guided exercises,
and manual grading —is being reshaped by Al-powered tools that offer real-time feedback,
automate code generation and evaluation, generate instructional content, and provide
adaptive learning experiences. Tools such as GitHub Copilot, ChatGPT, and numerous
Al-based tutoring systems are drastically changing how students learn to program and how
instructors design, deliver, and assess their courses. This paper explores the impact of Al
tools on teaching and learning of introduction to programming, outlines the
corresponding shifts in educational objectives and pedagogical considerations, and
proposes through a case study, a set of good practices for institutions and instructors. The
paper is structured as follows: First we review relevant literature and available tools and
technologies. Then we outline the challenges in re-shaping a typical Introductory to
Programming course. Next, we describe the current design and delivery of such a course
and proceed with proposal for its re-design. Finally, we look into the future of institutional
policies and guidelines for such transformation, aiming to support the didactics of
informatics in a rapidly evolving technological landscape.

Literature review and current technological background
Today, there is a significant number of Al tools that can support or enhance learning of

introductory programming. There are tools based on Al technology for code generation and

I. ®ecdkng, A. AnuntpakomolAou, A. Zo@dg, E. Qwkidng, & A. Kwotag (Emy.), Mpaktikd 12° MaveAAiviou Zuvedpiou pe Aebvr
Tuppetoxn "Adaktikni tng MAnpogopikng”, Mavemotripo Ayaiou, Podog, 31 OktwBpiou - 2 NogpBpiou 2025

AOakTIki TG MANPOYOPLKAG 159

evaluation, like ChatGPT or GPT-4 (OpenAl), and many other similar tools. These have been
used to answer conceptual questions, offer explanations, and help debug or refactor code
through natural language interactions. Similarly, GitHub Copilot (OpenAl Codex) has been
used to suggest code completions, function implementations, and even entire modules based
on prompts in the editor. In addition, many experiments have been made to develop
Conversational Al and Virtual Tutors, Intelligent Tutoring Systems (ITS) that tailor exercises
to learners’ needs and offer hints or scaffolded guidance when students need it (Chen et al.
2022; Er et al. 2024; Finn et al. 2023; Gabbay & Cohen, 2022; Wang et al. 2023). More relevant
to introductory to programming, recent work by Diamantopoulos et al. (in press) provides a
concrete example of how Large Language Models, specifically GPT-4, can be leveraged to
deliver formative feedback in a first-year programming course. Crucially, the authors
highlight potential pitfalls, such as the risk of over- or under-grading edge cases and the need
for robust grading rubrics to guide the Al's evaluation process. These findings align closely
with the concerns raised in other recent studies on Al-assisted programming instruction and
gradings (e.g., Golchin et al., 2025; Nagakalyani et al. 2025; Prather et al., 2023) and support
the broader call for rethinking assessment strategies, academic integrity policies, and faculty
training to accommodate Al-driven teaching tools.

To address these concerns, Bozkurt et al. (2024) proposed a manifesto for teaching and
learning in a time of Al In this, they advocate for critical and reflective pedagogy on Al use
and role, reformulation of traditional assessment methods, disclosure of Al involvement in
assignments and assessments and call for curricula that not only integrate Al as a learning
tool but also prepare students to take a critical stance towards Al. These ideas are relevant to
Programming courses, where there is the danger of students offloading critical thinking and
problem-solving tasks and not developing fundamental required skills. As Risko and Gilbert
(2016) have observed, cognitive offloading can even be beneficial to learning, if tools are used
for routine tasks, enabling students to focus on higher-level problem solving and creative
tasks. Such an example being support for syntactic aspects of coding. However today there is
a danger of over-reliance on external aids that may lead to shallow learning, so there is a need
for updated pedagogical policies that address the balance of Al benefits without undermining
the deeper learning process. Along these lines, Tan et al. (2025) examine the dual role of Al in
computer science education, emphasizing that current technologies are both powerful tools
for enhancing programming productivity while they acknowledge the danger of students
becoming overly reliant on automated solutions, without internalizing core programming
concepts. They suggest adaptation of curricula that integrate AI modules and propose
balanced assessment practices based on clear academic integrity policies.

Finally, Garcia (2025) conducted a review of literature on the use of ChatGPT in teaching
and learning computer programming, identifying both pedagogical opportunities and
challenges associated with generative Al technologies. The review concludes that while
ChatGPT can support novice programmers through immediate code generation, explanation,
and debugging assistance, it also risks fostering overreliance, potentially undermining the
development of foundational computational thinking and problem-solving skills. Garcia
highlights a shift in the instructional landscape where educators must balance Al-enhanced
support with the cultivation of core programming competencies. Among the key
recommendations are the integration of Al literacy into curricula, the redesign of assessments
to focus on higher-order thinking, and the promotion of reflective practices to ensure students
understand -not just use- code. These conclusions underscore the urgency for programming
courses to be restructured to encourage computational thinking and abstraction.

160 12° NaveAAnvio Tuvédplo pe Atebvn Tuppetoxn

Instructional design for the times of Al

In view of the significant technological advances and the new function of technology as a
productivity tool in computer science, as discussed in the previous section, we need to re-
examine and adapt their instructional designs to consider the fast-changing technological
background, and at the same time, prevent the misuse of these same tools, which could
undermine deeper learning objectives.

We will discuss in this section a theoretical framework for addressing this challenge. Biggs
(1996) introduced constructive alignment as an instructional design framework, emphasizing
the need for Learning Outcomes, Teaching & Learning Activities (TLAs), and Assessment
Strategies to be coherently aligned. Learning Outcomes articulate the knowledge, skills, or
competences students should acquire; Teaching & Learning Activities are designed so that
students perform tasks that help them achieve those outcomes, while Assessment Strategies
measure whether and how well students have achieved these outcomes. When these three
components line up, students can clearly see the connection between course activities,
assessments, and the intended results, thus better engaging and learning (Figure 1).

Learning
Outcomes
Adjust Learning Outcames\

for the times of Al

Align to adjusted Learning
Outcomes and adapt
Teaching and Assessment to
Al-resistant and Al-compliant

Figure 1. Tasks of Course adaptation in the times of Al (adopted from Biggs (1996)

The re-design interventions that need to be undertaken, as depicted in Fig.1, are relating
to the components of this framework.

(a) Adjustment of the Learning Outcomes. We need to re-define the learning outcomes, given
the existence of the new technological background and tools. We need to clearly define what
the students should be able to know and skills to acquire with respect to the Al assistance. For
example, we need to state clearly that students should be able to apply fundamental
programming concepts independently of Al assistance, and on the other hand to define new
skills relating to the existence of Al technology, like for example, that students will critically
evaluate Al-generated code for correctness, efficiency, and ethics, thus emphasizing not only
coding proficiency but also critical thinking and ethical considerations specific to Al

(b) Modify Teaching and Learning Activities. Given the learning outcomes re-design, we need
to modify teaching and learning activities. For instance, we need to include structured tasks
where students use Al-assisted tools (e.g., code completion, automated debugging) under
guided conditions. Activities might include comparing outputs from an Al code assistant to
students” own code, thereby prompting critical reflection. We may also need to add new
activities, relating to topics like ethics & policies. These align with learning outcomes
addressing the responsible use of Al, by hosting group discussions or projects that examine
Al’s ethical implications in programming,.

(c) Adapt Assessment Strategy. In addition, we must revise our assessment practices, so they
reflect both the new learning outcomes and the activities and ensure fair use of the available
technologies. For instance, we can change evaluation, so that we do not only check final code
correctness but also how students arrived at their solutions. This could involve code

AOakTIki TG MANPOYOPLKAG 161

walkthroughs, self-reflections, or Al-use disclosure statements —all aligned with the outcome
of fostering critical thinking about Al outputs. We may need to adapt Al-resistant evaluation
methods, like oral examinations and live coding, an example being face-to-face or recorded
demonstrations to confirm authentic student understanding and mitigate overreliance on AL
In addition, if the learning outcomes include ethical/critical use of Al, we need to develop
rubrics that assess whether students have appropriately employed Al tools, cited them, and
provided critiques of Al-generated code.

In the following sections, we describe a case study of a proposed re-design of an
Introduction to Programming course, starting with description of current course design.

A case study: Introduction to programming course in HOU

In this section we describe the current design of an Introductory in Programming Course of
HOU, Greece, and we examine scenarios for use of available Al tools by the students. The
course is a distance learning course, delivered over a period of 38 weeks. The learning
objectives - typical of such an introductory course - include, using Python as a programming
language, to introduce students to the principles of programming for solving problems and
creating real-world applications using appropriate data structures and abstraction levels. It
covers various programming paradigms—procedural, object-oriented, and functional —
allowing learners to select the optimal approach, verify their solutions, and document
functionality effectively. Additionally, the course offers practical experience in connecting
applications to databases, working with event-driven programming, and utilizing modules
for tasks like data analysis, scientific computing, and machine learning, thereby highlighting
the role of computing in addressing societal challenges. Currently, no specific reference to Al
tools and their use is included in the learning outcomes. The course activities include five
online tutorial sessions for groups of up to 25 students, while extra one-to-one tutoring can
be delivered if required. The students are asked to submit four assignments, and to work on
a large project for a period of 20 weeks, in groups of 4 to 5 students. Their assessment is based
on grades of the four assignments (30%) and on assessment of the project work (70%).

Each of the four assignments, features a number of questions. These assignments
progressively cover all course topics—from introductory material to advanced data
processing modules. Often the questions are accompanied by screenshots of expected
performance, and in some cases, by code templates and additional data files.

Next, we describe the findings of a study aiming to evaluate how a contemporary Al tool
would tackle recent assignments. So, sued the assignments of the academic year 2024-2025 to
an Al tool and assessed its performance. The findings are included in Table 1, for the chatGPT
03-mini-high model (the most suitable OpenAl model for code generation).

The model answered most of the questions correctly without needing a follow-up
prompt—simply by processing the question document and supplying any additional files.
Notably, both the original questions in the assignment, as well as the provided answers were
in Greek. The model achieved an impressive overall score of 38.4 out of 40, placing it in the
top 10% of a group of currently 20 enrolled students.

However, some limitations were observed. For instance, in a simple exercise part of Q1.1:
"Remove as many parentheses as possible from the following expression: (a*(3/b)) + ((a+2b) +
(5a-b) - (a+b))." The expected answer is a**(3/b) + a + 2b + 5a - b - (a+b).

Despite its apparent simplicity, this problem has proven difficult for some state-of-the-art
language models. For example, both chatGPT 03-mini-high and Grok-3 returned incorrect
expressions, a**(3/b) + (a+2b) + (5a-b) - (a+b), while Claude 3.7 Sonnet a**(3/b) + 5a, and Gemini-
2 proposed the following expression: a**(3/b) + a + 2b + 5*a-b-a-b.

162 12° NaveAAnvio Tuvédplo pe Atebvn Tuppetoxn

In some other cases, the model failed to consider the associated templates or data files, e.g.
an example was, not checking the character encoding of a data file. In general, however, most
of the more complex questions that required generating code and integrating external files
were answered correctly. The size of the code necessary to answer these questions varied
between 50 and 160 lines. These responses included not only the correct code but also clear
comments and a trace of the underlying problem-solving reasoning.

Table 1. Assigned work (HOU, Acad. Year 2024-25): Al tool performance

question topic points extras Al score comments.
Q1.1 |Expressions, logical operators a 28 failed tc-: eliminate a non-needed parenthesis in an
expression
Q1.2 |Loop structures 3 3.0
Qi3 Data Input, Execution Flow i 40
Control
Q2.1 |Strings, Sets 3 template 3.0
Q2.2 |Lists, Tuples 3 template 3.0
@23 |Dictionaries 4 template 36 The program had no way to exit when .asked fora
record |D when there were no records in the list
Q2.1 [Classes, Objects, Properties 3 3.0
File Reading, Processing, . The data files were not encoded in UTF8 and the
. il .
Q32 || dating 3| datafiles | 2.5 | eram did not check for encoding, failed to read.
Q3.3 |Classes, Overloading 4 template 4.0
File Management - Storing and
Q4.1 eer ne 3 30
retrieving objects with pickle
Q4.2 |NumPy library 3 3.0
Q43 pandas, NumPy and matplotlib 4 data file, a5 Originally failed to use the template that was
: libraries template . provided, after prompting, it provided full solution

Next, we tested the group project, which represents the most critical activity for the course,
also serves as final assessment. The project requirements specify that students must deliver
their code to solve a complex problem and produce a 10-page report explaining the problem,
their approach, work distribution, and results. Additionally, each group member had to
submit a 2-page individual report detailing their specific contribution, workload, and
resources used. Students selected their group project topics from a predefined list.

To evaluate the capabilities of an Al tool in supporting student projects, we examined a
case study using, as an example one of the project topics, the "Memory Game" project—a card
game for 1-4 players with three difficulty levels (played with 16, 40, or 52 cards). We input the
three-page project specification into the ChatGPT 03-mini-high model, which generated over
350 lines of code. The application, following the instructions, used the tkinter graphics module
for the graphic user interface. The code was organized into three classes (Card, Player, and
MemoryGame).

The initial code execution revealed however, significant issues. We followed a few test
cycles and iterative feedback to the Al tool; we obtained progressively improved versions
until reaching a fully functional implementation. An example of this refinement process is
shown through the follow-up prompt used: "The generated code has the following problems: when
two players are playing, and the cards run out, the game does not end. Also, the GUI does not strongly
indicate which player’s turn is to play. Also, in the case of a player against the computer it does not
continue after the first move," the result of this prompt, was a new version of the code with
explanation of the modifications. This cycle of test-modify was repeated several times. Figure
2 illustrates through screenshots this evolution: version (a) featured interaction through pop-
up messages; version (b) incorporated player’s-turn message at the top of the window and
score statistics at the bottom; and version (c) further improved the application, replacing gray
button cards with colored labels.

AOakTIki TG MANPOYOPLKAG 163

8 o O e
EEEEE
H H EEEEEN

Figure 2. Three consecutive versions of the Memory Game application

Completing this complex task, with the help of AI, took approximately two hours,
resulting in a final version comprising approximately 400 lines of code. Importantly, no
Python programming was involved, and there was no discussion of the software’s
architecture or functionality —leaving the codebase essentially a black box.

Then, we requested assistance with the final project report that had to be produced. The
Al tool generated precise report guidelines and, when prompted about the content of the
individual reports of the group members, suggested the following work division: Member 1
handling core logic and backend; Member 2 responsible for the Graphical User Interface;
Member 3 managing testing and version control; and Member 4 overseeing documentation
and final presentation. The Al tool also provided detailed instructions for structuring the
individual reports according to the specification. The obvious ethical issues relating to these
suggestions are open for discussion.

In conclusion, our study revealed significant vulnerabilities in the current assignment
structure when confronted with modern Al capabilities. The course— particularly in its
distance learning format with minimal instructor-student interaction —appears susceptible to
workarounds through Al tools. Students can potentially leverage these technologies to
rapidly generate satisfactory responses even to complex tasks like the group project,
undermining however the learning objectives.

It is evident from this study, that without thoughtful re-design that accounts for students'
ready access to powerful Al assistants, the course risks failing to achieve its intended learning
outcomes. The ease with which Al can produce solutions in minimal time presents a
compelling temptation that may compromise the development of skills and knowledge the
course is designed to achieve.

In the following section, we will discuss ideas for re-designing the specific course, taking
into account given constraints on its form and delivery, and finally make suggestion of
guidelines, for redesign it, applicable to other similar introductory to programming courses.

Course re-design

As discussed in the previous section, the case study course, like many other similar courses,
has not yet adapted its learning outcomes to the current Al trends. The first question to be asked
is in what degree we need to re-define learning outcomes.

Despite the Al trends, the underlying objectives of introductory programming courses
remain largely consistent. Typically, such courses aim to: Develop Computational Thinking
(Wing, 2006), that is the ability to break down problems into programmable steps, identify
patterns, and apply abstraction effectively, to develop Problem-Solving Skills which include
designing, implementing, and testing algorithms using fundamental data structures and
control structures. To promote understanding of core Programming Concepts: variables, data
types, control flow (conditional statements, loops), functions, modules, and basic data
structures (lists, arrays, dictionaries, etc.) in various programming paradigms (often

164 12° NaveAAnvio Tuvédplo pe Atebvn Tuppetoxn

extending to Object-oriented programming), understand and practice with software
engineering best practices, like code readability, documentation, testing, debugging, and
version control. The learning objectives may also include soft skills like encourage
collaboration and communication through group work which includes peer reviews, pair
programming, and effectively communicate and present programming ideas. These key
learning outcomes remain relevant and are not affected by the existence of Al tools.

However, there is a growing number of researchers that have observed that this needs to
be enhanced with new learning objectives, like: Understanding Al capabilities and limitations,
critical engagement with Al tools, ethical aspects on use and academic integrity, data privacy
and fairness, as well as prepare students for a rapidly evolving landscape (Mahon et al. 2024).
So, in the case of the case study course, the proposal is to extend the learning outcomes with
two new topics: (i) Al tools capabilities and limitations and (ii) Ethical aspects. Given that the
existing learning outcomes already cover the expected workload, some peripheral outcomes,
like databases, and data analysis modules may need to be given less attention as shown in
Figure 3.

1. Promote understanding of core Programming Concepts in Python: variables, data types, control flow (conditional statements,
loops), functions, modules, and basic data structures (lists, arrays, dictionaries, etc.) using various programming paradigms
(Procedural, Object-criented, Event-based),

2. Develop the ability to break down problems into programmable steps, identify patterns, and apply abstraction effectively,

3. Develop Problem-Solving Skills which include design, implementation, and testing of algorithms using fundamental data
structures and control structures.

4. Understand and practice with software engineering principles,: code readability, documentation, testing, debugging, and version
control.

5_Gat § in i policati to datab: king with t-dri ing. and utilizing modules for task
- P &3pp a 53 Pregl =3 €
like dat: Iysi fantii i d hine i

ySisy P =3 4

6. Develop skills of
present programming ideas.

ion and communication including peer reviews, pair programming, and effectively communicate and

7. Artificial Intelligence programming tools capabilities and limitations - Ethical aspects

Figure 3. Updated Learning Outcomes for the course of our case study

The second modification concerns the learning and teaching activities. As discussed in the
theoretical section, these need to consider the enhanced learning outcomes and on the other
hand, adapt to the existence of powerful tools that the students may be tempted to use,
undermining the learning process. For our case, these activities include: (a) the five online
tutoring sessions, (b) the four assignments and (c) the project work.

First, we need to adjust the topics of the online tutoring sessions to accommodate the
modified learning outcomes. The current practice of the tutorials foresees for each one of them
a four-hour session that has the following structure: Four of them are related to the
assignments, including presentation of the next assignment and discussion of the typical
errors of the previous one, presentation of the related theoretical notions with typical short
snippets of code provided as examples, while the fifth tutorial has slightly different structure,
as it is preparation for the final exam and revision of all the topics covered during the year.
The current structure allows little time for interaction with the students, who mostly passively
attend the presentation. The topics of the four main tutorials are the following:

1. Introduction to Python, variables, control structures, simple data structures
2. Complex data structures, Functions - Procedural programming

3. Object-oriented programming, - File I/ O operations

4. Event programming, Modules, Data analysis

AOakTIki TG MANPOYOPLKAG 165

As discussed, most of the topics of tutorial #4 have been proposed to be dropped, while
we have introduced two new topics, (a) the Al programming tools, and (b) ethical aspects.

The new structure that accommodates these modifications is presented next.

Tutorial #1: Python foundation and Introduction to Al tools. We introduce basic syntax,
variables, data types, control structures and we present Al code generation examples (e.g.
through GitHub Co-pilot). We select an example that needs inspection and modification of the
code generated by the AI tool and discuss the process. We introduce the discussion on the
responsible use of Al tools and potential pitfalls (e.g., code bias, incorrect suggestions).

Tutorial #2: Complex Data Structures, Functions - Procedural programming, and
Responsible Al Usage. We introduce complex data structures (list, dictionaries, etc.) and
operations in them, then we introduce functions and procedural programming. Finally, we
do a live demo of Al suggestions for a function implementation. We introduce the notion of
academic integrity, how to disclose Al assistance and potential code plagiarism.

Tutorial #3: Object-Oriented Programming, File I/O operations, and Al Ethics. In this
tutorial we focus on the Object-oriented programming paradigm and file I/O operations, in
addition, we introduce theoretically and through examples issues related to bias and fairness
in Al suggestions, present examples of verifying correctness and efficiency of Al-generated
code and strategies for debugging Al outputs.

Tutorial #4: Modules, Advanced Python Features, and Al Integration. In this tutorial we
focus on importing custom modules and widely used python libraries. We introduce simple
examples of integration with Al modules (e.g. Hugging Face transformers). We summarize
ethical guidelines, in view of the group project work, and demonstrate through a mini project
integrating Al suggestions.

Finally, in Tutorial #5 we review all the topics covered and raise the discussion on the
professional and societal impact of Al code.

This suggestion introduces early in the course the Al programming tools and raises
gradually awareness on the pitfalls and best ethical use of them through responsible coding.
It should be added that short assignments will be given during these tutorials to the students,
to experiment with the tools and best practices.

Next, we need to adapt the assignments and project specification. As seen in the previous
section, the current assignments and projects are not Al-resistant, while there have been no
clear instructions provided on the use of available Al tools. Given the new learning outcomes
and teaching activities” structure, discussed above, the assignments need to be restructured
to contain both Al-resistant and Al-compatible questions while clear instructions should be
given in all of them on the use of Al tools. There have been various suggestions on how to
build Al-resistant assignments. A summary of them is the following (Northern Michigan
University Centre for Teaching and Learning, 2025):

e During design of assignments and projects we need to test beforehand with AI tools

and modify them accordingly.

e Use personalization, tailor assignments and questions to individual students and

current events

¢ Include reflective components. Ask the students to include reflection on their answer,

to document challenges they faced and how they overcame them.

e Process-based assessment, this is particularly relevant to the project, where we should

ask the students to present and evaluate the progress of their work in stages.

An example of modification of one of our current questions is the following:
Original Question (Q1.2 2024-2025): Develop a Python program that asks from the user a number

166 12° NaveAAnvio Tuvédplo pe Atebvn Tuppetoxn

between 1 and 10 and prints the multiplication table for this number. Clear specification was given on
the typical input and output. NB. This question was answered with no flows by the Al tool.

Modified Question: Develop a Python program that salutes you with your name and asks you for a
number between 1 and 10 and prints the multiplication table for this number, decorated accordingly.
Use your imagination for presenting a nicely decorated table. NB. Once this version was given to
an Al tool, the answer included a loop, asking the user his/her name, that is not what was
requested, while the decoration part was tackled through two mundane borders of 25 stars at
the top and bottom of the table, so this is not anymore, a full marks solution.

In addition, on all assignments, in line with the course theoretical stance towards Al tools
use should include clear instructions. An example is the following.

In this programming course, we encourage you to explore and utilize Al tools to enhance your
learning and problem-solving process. However, maintaining academic integrity requires complete
transparency about how these tools are used in your submitted work. Therefore, you must explicitly
acknowledge the use of any Al tools that contributed to your code, explanations, or problem-solving
approach in the following manner: At the beginning of each submitted programming assignment file
(e.g., .py file), you must include a dedicated section titled "Al Assistance Declaration". This section
should appear as a block comment at the very top of your code file. Within this section, you must provide
the following information for each Al tool you utilized in the development of that specific assignment:
Name of the Al Tool: Specify the exact name of the Al tool used (e.g., ChatGPT, Gemini, GitHub
Copilot). Tool Version information, Specific Ways the Al Tool Was Used: Clearly and concisely describe
the specific tasks for which you used the Al tool. Be precise and avoid vague statements. Include the
specific prompt used. "Generated initial code structure for the calculate_average function using
prompt...."

The final task we need to tackle is related to the assessment strategy. Since assessment in
this course is based on the four assignments and the presentation of project work, we modify
both further in the way they are assessed. For the assignments we introduce an oral
presentation of selected parts of the submitted work. This takes the form of short questions
on specific parts of the answers, especially if there are doubts on academic integrity of the
provided answers. Finally, the project should follow a process-based assessment, that the
groups must present and report on progress in stages, with special focus on challenges they
faced and how they overcame them. This not only encourages deeper engagement but also
makes it more challenging to use Al tools dishonestly.

Conclusions and further work

This paper investigates the pedagogical challenges confronting course designers of
introductory programming curricula in light of advancements in artificial intelligence. A
specific course has been examined as a case study, revealing limitations inherent in current
instructional methodologies. Based on this analysis, we proposed a series of modifications
intended to mitigate the potential for Al tools to negatively impact the acquisition of core
programming and computational thinking competencies, particularly if students adopt a
passive stance towards Al-generated code. The need to acknowledge the mixed impact of
these tools, capable of enhancing efficiency yet simultaneously posing a risk to fundamental
skill development, is underscored. By updating learning outcomes, embracing innovative
assessment methods, and articulating clear policies on permissible Al usage, instructors can
preserve the integrity of learning while harnessing the benefits of Al.

The study faces several limitations, most notably the absence of evidence regarding the
effectiveness of the proposed redesign, which has yet to be approved and implemented. The
next steps involve institutional-level discussion and adoption of the proposal, along with

AOakTIki TG MANPOYOPLKAG 167

investment in faculty development and appropriate infrastructure. Through these efforts, we
aim to better equip our institutions to educate a new generation of computer scientists —
individuals who not only excel in the technical aspects of coding but also grasp its ethical,
creative, and conceptual dimensions.

References

Biggs, J. (1996). Enhancing teaching through constructive alignment. Higher Education, 32(3), 347-364.

Bozkurt, A., Xiao, J., Farrow, R., Bai, J. Y. H., Nerantzi, C., Moore, S., Dron,]., Stracke, C. M., Singh, L.,
Crompton, H., Koutropoulos, A., Terentev, E., Pazurek, A., Nichols, M., Sidorkin, A. M., Costello, E.,
Watson, S., Mulligan, D., Honeychurch, S,,, & Asino, T. I. (2024). The manifesto for teaching and
learning in a time of generative Al: A critical collective stance to better navigate the future. Open
Praxis, 16(4), 487-513.

Chen, X,, Xie, H., Zou, D., & Hwang, G. -J. (2022). Application and impact of Al in education. Educational
Technology & Society, 25(1), 1-15.

Diamantopoulos, A., Sintoris, C., Demetriadis, S., Avouris, N. (in press). Feedback to students and
instructors of a programming course through a Large Language Model. Proceedings of the 14th
Panhellenic with International Participation Conference "ICT in Education." University of the Aegean.

Er, E., Akcapinar, G., Bayazit, A., Noroozi, O., & Banihashem, S. K. (2024). Assessing student perceptions
and use of instructor versus Al-generated feedback. British Journal of Educational Technology, 56(3),
1074-1091.

Finn, A., Petre, M., & Remy, S. (2023). Balancing Al assistance and student agency in introductory
programming courses. ACM Transactions on Computing Education, 23(2), 14-28.

Gabbay, H., & Cohen, A. (2022). Exploring the connections between the use of an automated feedback
system and learning behavior in a MOOC for programming. In Educating for a new future: Making sense
of technology-enhanced learning adoption. EC-TEL 2022. Lecture notes in Computer Science (vol. 13450, pp.
116-130). Springer. https:/ /doi.org/10.1007/978-3-031-16290-9 9

Garcia, M. B. (2025). Teaching and learning computer programming using ChatGPT: A rapid review of
literature amid the rise of generative Al technologies. Education and Information Technologies, 2025, 1-
25.

Golchin, S., Garuda, N., Impey, C., & Wenger, M. (2025). Grading massive open online courses using large
language models. Proceedings of the 31st International Conference on Computational Linguistics (COLING)
(pp. 3899-3912). Association for Computational Linguistics.

Mahon, J., Mac Namee, B., & Becker, B. A. (2024). Guidelines for the evolving role of Generative Al in
introductory programming based on emerging practice. Proceedings of the 2024 Conference on
Innovation and Technology in Computer Science Education (v. 1, pp. 10-16). ACM Publication.

Nagakalyani, G., Chaudhary, S., Apte, V., Ramakrishnan, G., & Tamilselvam, S. (2025). Design and
evaluation of an ai-assisted grading tool for introductory programming assignments: An experience
report. Proceedings of the 56th ACM Technical Symposium on Computer Science Education (v. 1, pp. 805-
811). ACM.

Northern Michigan University Centre for Teaching and Learning (2025). Creating Al-resistant assignments,
activities, and assessments (Designing Out). https:/ /nmu.edu/ctl/

Prather, J., Denny, P., Leinonen, J., Becker, B. A., Albluwi, I., Craig, M., Keuning, H., Kiesler, N., Kohn, T,
Luxton-Reilly, A., MacNeil, S., Petersen, A., Pettit, R., Reeves, B. N., & Savelka, J. (2023). The robots
are here: Navigating the generative Al revolution in computing education. Proceedings of the 2023
Conference on Innovation and Technology in Computer Science Education (ITiCSE 2023), Vol. 2, pp. 1-51).
ACM. https:/ /doi.org/10.1145/3587103.3594206

Risko, E. F., & Gilbert, S. J. (2016). Cognitive offloading. Trends in Cognitive Sciences, 20(9), 676-688.

Tan, C. W., Khan, M. A. M., & Yu, P. D. (2024). Al-assisted programming and Al literacy in computer
science education. In Effective practices in Al literacy Education: Case studies and reflections (pp. 189-198).
Emerald Publishing.

Wang, Q., & Tsai, C.-C. (2023). Integration of Large Language Models in Computer Science Education:
Challenges and opportunities. British Journal of Educational Technology, 54(1), 215-233.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.

http://www.tcpdf.org

