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Abstract 

This study explores the use of the Multidimensional Support Model for Robotics Learning Activities 
(MuSRA) to help novice programmers develop debugging skills. MuSRA combines instructional 
strategies with digital tools to support metacognition. Central to the model is student-recorded digital 
data—screenshots, recordings, video captures—collected during robotics tasks. It positions students as 
reflective "scientists" analyzing their programming processes. The study involved 48 lower secondary 
school students with minimal programming experience in MuSRA-guided activities. The research 
examined (a) programming errors and (b) students' ability to correct them. Results showed common 
novice mistakes and improvements in debugging. Crucially, digital data reflection supported error 
detection. These findings suggest MuSRA is an effective approach to teaching debugging in educational 
robotics. 

Keywords: debugging, digital tools, educational robotics activities, learning support, programming 
errors 

Introduction 

One of the key challenges novice programmers faces is identifying and correcting code errors. 
Debugging—a core programming process—is a complex cognitive skill. It fosters reflective 
thinking by prompting learners to evaluate and refine their reasoning (Papert, 1980). Research 
emphasizes debugging’s role in building Computer Science (CS) competencies (McCauley et 
al., 2008), problem-solving skills (Jonassen, 2000), and computational thinking (Brennan & 
Resnick, 2012). 

Effective debugging requires understanding programming concepts, mental models, and 
error patterns (Ducassé & Emde, 1989; Fitzgerald et al., 2008; Klahr et al., 1988). However, 
many novices lack these foundations (Perkins & Martin, 1986), making debugging difficult 
and frustrating (Alqadi & Maletic, 2017; Murphy et al., 2008).  

Although vital, debugging is underemphasized in curricula; novices often rely on trial-
and-error, highlighting the need for explicit strategies and support (McCauley et al., 2008; 
O’Dell, 2017). While instructors resolve errors quickly, learners need explicit strategies and 
support to develop independent debugging skills. The MuSRA, presented briefly in the 
present paper, addresses a gap in the field by offering a scalable and adaptable instructional 
model that supports structured yet flexible debugging for diverse learner needs. Its dual-
layered design integrates predefined strategies and tools with customizable activity sheets, 
allowing teacher adaptation and student autonomy. This balance of structure and flexibility 
makes MuSRA suitable for various educational robotics contexts and responsive to different 
classroom dynamics. 
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Instructional Approaches and ER for Developing Debugging Skills 

Recent studies have explored pedagogical interventions to improve debugging for novices. 
Chiu and Huang (2015) used game-based programs with embedded bugs and scaffolded 
worksheets to develop debugging strategies. DeLiema et al. (2019) showed that educator-led 
discussions at failure points enhance learning. Fields et al. (2021) had students create buggy 
projects, boosting motivation and error-recognition. 

Educational robotics (ER) has emerged as a promising context for programming 
instruction, particularly in block-based platforms like Scratch and LEGO Mindstorms. The 
iterative, trial-and-error nature of robotics tasks naturally integrates debugging, providing an 
ideal environment for novices (Eguchi & Uribe, 2017; Scaradozzi et al., 2019). However, the 
effectiveness of ER in enhancing debugging skills remains inconclusive. Research has shown 
that overly structured or pre-designed robotics activities can limit learners' engagement with 
debugging, reducing them to passive participants and hindering the development of critical 
thinking and problem-solving skills (Xia & Zhong, 2018). 

Few ER frameworks offer adaptable support for diverse learner needs. For instance, Eguchi 
and Uribe (2017) designed a learner-centered ER unit with 10 science-integrated robotics 
tasks, using checklists, journals, and peer support to foster debugging. Atmatzidou and 
Dimitriadis (2017) proposed the CPG+ model, emphasizing problem-solving and 
collaboration through 12 structured activities; guided instruction was linked to improved 
student performance (Atmatzidou et al., 2018). Chevalier et al. (2020, 2022) introduced the 
CCPS model, promoting recursive debugging via iterative design and delayed feedback. 
Socratous and Ioannou (2021) found that structured ER tasks enhanced debugging, while 
unstructured ones boosted engagement. 

Despite the progress made with various educational robotics frameworks, a gap remains 
in providing scalable, adaptable instructional models that integrate robust debugging support 
in ER environments. The field continues to explore ways to balance structure and flexibility 
to better address the diverse learning needs of students, ultimately improving debugging 
performance and fostering deeper engagement in programming tasks (Blancas et al., 2020; 
Daniela, 2019). 

The present study 

To address existing gaps, this study introduces the Multidimensional Support Model for 
Robotics Learning Activities (MuSRA), a structured framework designed to enhance students' 
programming and debugging skills in educational robotics (ER) contexts. MuSRA integrates 
targeted instructional strategies with digital tools to foster the development of these skills. A 
central element of the model is the use of "student-recorded digital data" (e.g., screenshots, 
screen recordings, and video captures) to guide students throughout the programming 
process. Recent research findings revealed positive students’ perceptions of the 
implementation of MuSRA, in terms of suitability of learning activities, effectiveness and 
user-friendliness of incorporated digital activity sheets, while their dual-modality approach—
offering both written and oral response options—enhance inclusivity, accommodating 
diverse learning needs (Papamargariti & Dimitracopoulou, 2025). 

Τhis study examines MuSRA’s effectiveness in a real-world educational robotics setting by 
analyzing error types, correction strategies and the overall improvement in their debugging 
performance. By embedding reflective practices and strategic debugging support into robotics 
activities, this research aims to advance programming education, providing new insights into 
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effective approaches for teaching debugging to novice learners in interactive, hands-on 
learning environments. 

Multidimensional Support Model for Robotics Learning Activities [MuSRA] 

The MuSRA model is an instructional framework designed to enhance ER learning by 
combining structured pedagogical strategies with integrated digital tools. It offers teachers 
the capacity to adapt supports to various scenarios while ensuring consistent outcomes. 
Teachers can tailor the digital activity sheets to curriculum goals, student profiles, and 
instructional styles, while students retain agency through multimodal input tools and 
differentiated guidance. This balance of structure and autonomy makes MuSRA scalable 
across varied ER settings. MuSRA is built around four key components: (I) the actors (students 
and teacher), (II) the robotics learning activities, (III) the technological and digital tools, and 
(IV) the MuSRA digital activity sheets, along with their integrated strategies and internal 
digital learning support tools. 

Actors: In MuSRA, students act as scientists, documenting their learning through 
screenshots, robot execution videos, and experiment recordings. This fosters metacognitive 
and problem-solving skills, autonomy, and technological fluency. Digital activity sheets 
support diverse learning styles through three response modes: text typing, voice typing, and 
audio recording, accommodating diverse learning needs. MuSRA also supports teachers by 
reducing workload and improving classroom orchestration (Dillenbourg, 2013). It enables 
real-time monitoring of student progress, helps manage instructional time, and identifies key 
intervention moments for discussions or feedback. 

Robotics Learning Activities: Based on Komis et al. (2017), MuSRA’s robotics learning 
activities are student-centered, co-creative, and grounded in real-world problems. Two 
activity types are used: Robotics Tasks and a Final Challenge. Robotics Tasks follow Pólya’s 
(1945) four-phase model to progressively develop problem-solving skills. 

Technological and Digital Tools: MuSRA combines two student workspaces: (1) The 
Robotics Environment (RE) with a robotics kit (e.g., LEGO EV3 or Spike Prime) and a 
programming tablet, and (2) The Digital Activity Sheet Environment (DASE), featuring a 
second tablet with the Digital Activity Sheet Platform (DASP) and apps like camera, audio 
recorder, and notepad. This setup enables students to integrate multimodal inputs—
screenshots, videos, reflections. The teacher’s workspace includes a centralized DASP to 
organize submissions and monitor progress. 

MuSRA Digital Activity sheets: The MuSRA model centers on Digital Robotics Activity 
Sheets (mRASs), which guide students’ learning across five key dimensions: (1) Phase-Based 
Guidance: mRASs follow Pólya’s four problem-solving phases and add a fifth "Discussion" 
phase to encourage reflection and iterative improvement. (2) Tools Management: Students 
receive clear instructions for using tools (e.g., screenshots, videos, note-taking) to smoothly 
transition between tasks and manage resources effectively. (3) Collaboration Support: Role-
based teamwork enhances cooperation. Roles rotation include: analyst (manages DASE and 
records responses), programmer (builds and runs code), and debugger (detects errors and 
tracks progress). (4) Cognitive Support: Acting as scientists, students collect and analyze their 
own digital data (e.g., program screenshots, video recordings) to support observation and 
self-regulated learning. (5) Metacognitive Support: Three embedded strategies promote 
reflection and self-regulation: (a) Self-Explanation: Students clarify their thinking and use 
visuals like flowcharts. (b) Debugging via Digital Record Analysis: Students analyze 
uploaded code screenshots and videos to improve solutions. (c) Metacognition Monitoring: 
Students reflect on their performance, challenges, and learning strategies at the end of tasks. 
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To enhance learning and reflection, MuSRA integrates three Digital Internal Tools (DiTs) 
within the mRASs: (1) Recordings Tool: lets students upload screenshots and videos to track 
and refine work. (2) Verbal Expression Tool: offers text, voice typing, or audio responses, 
promoting accessibility. (3) Keep the Important Tool: compiles a multimedia notebook with 
key insights, visuals, and audio notes, fostering reflection and knowledge consolidation. 

Figure 1 illustrates how each DiT maps onto specific phases of the problem-solving model, 
supporting cognitive and metacognitive engagement throughout the activity. MuSRA is most 
effectively applied in lower secondary educational settings where students are beginning to 
learn programming within structured, classroom-based robotics activities. Its integration of 
digital supports and multimodal data collection is particularly suited to block-based 
programming platforms (e.g., Scratch, LEGO EV3), where learners benefit from guided 
debugging strategies. MuSRA is also well aligned with curricula emphasizing collaborative 
problem solving, self-regulation, and inquiry-based STEM learning, making it a robust 
framework for formal education environments with access to basic robotics kits and tablet-
based digital tools. 

 

Figure 1. MuSRA Strategies & Digital Internal Tools (DiTs) 

Methodology 

This study aims to evaluate the effectiveness of the MuSRA model in supporting novice 
programmers in developing effective debugging skills, during robotics programming 
activities. To achieve this goal, it examines the impact of MuSRA on students’ debugging 
performance, focusing on the types and frequency of programming errors, as well as students’ 
ability to identify and resolve these errors over time. To address the research objectives, the 
study is guided by the following research questions (RQ): 

1. What types and how often did programming errors occur during robotics activities? 
2. What is the impact of the MuSRA model on students’ programming errors over time? 
3. How did students perceive the use of self-recorded digital data for debugging? 
4. What is the impact of the MuSRA model on students’ overall debugging performance? 

Regarding participants, the study involved 48 lower secondary school students, evenly 
split by gender (24 girls and 24 boys). They were organized into four robotics club groups, 
each consisting of 12 students and utilizing either Lego Mindstorms EV3 or Lego Spike Prime 
kits. Within each group, students worked in teams of three and rotated through the roles of 
analyst, programmer, and debugger during the activities. Prior to participation, students 
completed a background questionnaire ensuring diversity in gender, grade, and experience. 
Most participants were beginners, with 44 students reporting minimal or no prior 
programming experience, and 68.8% (33 students) indicating they had never used a robotics 
kit before. 
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A mixed-methods approach (combining quantitative data with qualitative insights) was 
employed to analyze the frequency and nature of programming errors, as well as students' 
debugging performance within the MuSRA implementation. The research tools include: (i) 
Debugging Test: Conducted at two points (mid-debugging and post-debugging tests), this 
assessment evaluated students' ability to identify and correct errors in predefined tasks. Each 
test was scored on error identification (5 points) and proposed solutions (5 points), for a total 
of 10 points per item. Cronbach's alpha (0.887) indicated strong internal consistency. (ii) 
Survey Feedback Questionnaire: Administered after the final challenge, this survey captured 
students’ perceptions of the MuSRA model and the role of self-recorded digital data in 
supporting debugging strategies, focusing on error identification, resolution, and 
understanding. (iii) Focus Group Interviews: Semi-structured interviews (50-60 minutes) 
conducted one week after the intervention provided students with the opportunity to reflect 
on their debugging and problem-solving development. Content analysis of transcriptions 
identified key themes. (iv) Observation: Structured classroom observations recorded real-time 
error identification, correction attempts, and debugging strategies. 

The research procedure, illustrated in Figure 2, involved a nine-week intervention during 
which each robotics club class took part in nine three-hour sessions (Papamargariti & 
Dimitracopoulou, in press). 

 

Figure 2. Research Procedure 

The intervention began with an introductory session in which students were introduced to 
robotics kits and programming environments. In the following construction session, students 
worked in groups to build robot vehicles. They then progressed through six robotics problem-
solving tasks of increasing complexity. After session 5, students completed a mid-debugging 
test. Upon finishing all tasks, they took the post-test for debugging. The final challenge session 
required students to solve a complex robotics problem according to specific evaluation 
criteria. One week later, students completed a feedback survey and semi-structured 
interviews (Figure 2). 

Research results 

Types and frequency of programming errors 

To address RQ1, quantitative data were gathered across all sessions. Researchers categorized 
student programming errors into seven types using completed activity sheets and structured 
observation logs. These data sources captured code iterations, debugging attempts, and real-
time behaviors, enabling thorough analysis of error frequency and patterns throughout the 
intervention. 
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As shown in Table 1, the most frequent error (22.44%) was assigning incorrect values to 
block variables, such as improper distances or speeds, which often led to unexpected robot 
behavior. The second most common error (16.67%) involved omitting essential programming 
blocks—like loops or control structures—resulting in incomplete or non-functional programs. 
Variable confusion (14.74%), such as mixing motor power with distance, was also prevalent. 
Incorrect port assignments (14.10%) highlighted difficulties in hardware-software integration. 
Errors in conditional logic and sequencing (both 12.82%) reflected challenges in 
understanding logical flow. Finally, non-programming issues (6.41%), including improper 
robot placement or assembly mistakes, pointed to limited awareness of the physical 
programming context. 

The findings highlight persistent challenges in variable management, logical sequencing, 
and hardware integration, emphasizing the need for instructional approaches that support 
iterative testing, reflective practice, and systematic debugging. The identified error types align 
with prior research. Three common errors in this study—defining values in block variables, 
selecting block sequences, and setting conditions—were also found in non-robotic, non-block-
based programming studies (Chiu & Huang, 2015; Liu et al., 2017). Kim et al. (2018) reported 
similar challenges in variable assignment and block arrangement among novice robotics 
learners. Similarly, Socratous and Ioannou (2020; 2021) observed recurring issues with 
variable configuration, sequencing, and logic, highlighting persistent difficulties in block-
based programming across educational contexts. 

Table 1. Types and frequency of programming errors observed during robotics tasks 

Error Type Description Fr/ncy Fr/ncy 
% 

Supported by Prior Studies 

Error in defining a value to a 
block’s variable 

Not accurate or wrong 
calculation of the value 
of a variable 

35 22.44% Kim et al., 2018; Socratous & 
Ioannou, 2021; Chiu & Huang, 
2015; Liu et al., 2017 

Error selecting the appropriate 
variable in a block 

Choosing the wrong 
variable within the 
same block 

23 14.74% Kim et al., 2018; Socratous & 
Ioannou, 2020 

Error selecting the correct 
block or the correct sequence 
of blocks 

Use of an 
inappropriate block 

20 12.82% Socratous & Ioannou, 2021; 
Chiu & Huang, 2015; Liu et al., 
2017 

Error in matching a motor or a 
sensor to the correct port 

Motors connected to 
the wrong ports 

22 14.10% Kim et al., 2018; Socratous & 
Ioannou, 2020 

Error in defining conditions Difficulty 
understanding 
conditional logic 

20 12.82% Kim et al., 2018; Socratous & 
Ioannou, 2021; Chiu & Huang, 
2015; Liu et al., 2017 

Error recognizing external 
factors as the cause of the 
program's failure 

Failure to recognize a 
program without 
errors 

10 6.41% — 

Error due to a missing block Missing essential 
blocks 

26 16.67% Kim et al., 2018; Socratous & 
Ioannou, 2020 

Impact of the MuSRA model on programming errors 

To address RQ2, a sequential analysis of errors across seven tasks was conducted at the team 
level using activity sheets (tracking trials and debugging reflections) and structured 
observation sheets (capturing real-time mistakes). As summarized in Table 2, a decline in 
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errors suggests the MuSRA model’s potential effectiveness in supporting learning and 
progressive error correction. 

Table 2. Number of programming errors across robotics tasks 

Challenge Robotic Task Number of Errors Number of Errors % 

1 Labyrinth 32 20,51% 

2 Follow the colors 28 17,95% 

3 Make the right choice and avoid the wall 26 16,67% 

4 Move a Lego block 23 14,74% 

5 Move a box to the storage position 20 12,82% 

6 Move two boxes to the collection areas 16 10,26% 

7 Final Challenge 11 7,05% 

 
In the initial tasks—Labyrinth (32 errors; 20.51%) and Follow the Colors (28 errors; 

17.95%)—error frequencies were highest, reflecting students’ early exposure to robotics, 
limited programming knowledge, and difficulty understanding task requirements. As 
students progressed, a decline in errors was observed. In intermediate tasks such as Make the 
Right Choice and Avoid the Wall (26 errors; 16.67%), Move the Cube (23 errors; 14.74%), and 
Move the Box to the Storage Position (20 errors; 12.82%), students showed improvement to 
apply learned concepts. This trend continued in advanced tasks—Move Two Boxes to the 
Collection Areas (16 errors; 10.26%) and the Final Challenge (11 errors; 7.05%)—indicating 
sustained learning gains. The steady reduction in errors suggests the MuSRA model 
effectively promotes skill acquisition, enhances debugging, and supports improved 
performance in increasingly complex robotics programming challenges. 

Students’ perceptions of the use of self-recorded digital data 

To address RQ3, data were collected from a Survey Feedback Questionnaire and semi-
structured focus group interviews after the final challenge. The survey focused on students' 
perceptions of the MuSRA model and the role of student-recorded digital data in debugging. 
Table 3 shows that 83% of students agreed that recording and reviewing data helped them 
recognize errors more effectively, enhancing reflection and awareness. Additionally, 79% felt 
that reviewing data improved their error-solving ability, suggests self-recording aided 
troubleshooting. 

Table 3. Perceived effectiveness of student-recorded digital data 

Category Disagree (%) Neutral Opinion (%) Agree (%) 

Error Recognition 4% 13% 83% 

Error-Solving Ability 0% 21% 79% 

Problem-Solving Strategies 3% 19% 78% 

Debugging Strategies 3% 20% 77% 

Additionally, 78% of students reported that digital data helped develop their problem-
solving strategies, suggesting reflection refined their approach to complex tasks. 
Furthermore, 77% felt it improved their debugging skills, indicating its role in fostering 
strategic problem-solving. Qualitative data from focus group interviews highlighted the 
benefits of recording the debugging process. One student shared, "When I had to correct a 
programming error, recording my efforts helped me see my mistakes and fix them." Overall, 
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both survey and interview findings underscore the significant impact of student-recorded 
digital data on debugging, self-regulated learning, and programming proficiency. 

Students’ debugging performance 

To address RQ4, a comparison of students' results on the Mid-Debugging Test and Post-
Debugging Test revealed significant improvements in debugging skills. Statistical analysis 
using a paired samples t-test (Table 4) showed an increase in average scores from 65.00 (SD = 
20.82) on the mid-test to 76.91 (SD = 16.89) on the post-test, with a mean improvement of 11.92 
points, t(47) = -7.83, p = 0.00. Specifically, students improved in error identification, with 
scores rising from 67.97 to 79.99, t(47) = -6.55, p = 0.00, and in suggesting corrections, from 
62.64 to 75.33, t(47) = -7.12, p = 0.00. These findings suggest that the MuSRA model effectively 
enhanced students' debugging abilities, particularly in error detection. The greater 
improvement in identification over correction emphasizes the ongoing challenge students 
face in implementing fixes. 

Table 4. Debugging Performance 

 
Mid-Test Post-Test 

Paired 
Differences t 

Paired 
Samples  

t-Test Mean SD Mean SD Mean 

Debugging Test Scores 65.00 20.82 76.91 16.89 -11.92 -7.83 0.00* 
Found the Error 67.97 21.18 79.99 15.18 -12.02 -6.55 0.00* 

Proposed a Solution 62.64 21.70 75.33 16.22 -12.69 -7.12 0.00* 

Note. *p < 0.05 

Discussion 

The study provides strong evidence for the effectiveness of the MuSRA model in overcoming 
common programming challenges in robotics. By analyzing errors, student perceptions, and 
debugging performance, it offers key insights that both align with and extend existing 
research on supporting novice learners in robotics-based activities. 

Regarding RQ1 (Types and frequency of programming errors), the most common errors 
included incorrect variable values, missing blocks, and incorrect block or port selections. 
Sequencing errors and misuse of conditional logic revealed struggles with logical flow and 
decision-making. These findings align with prior research, such as Kim et al. (2018), who 
observed similar issues in variable definition and block placement in novice robotics learners. 
Socratous and Ioannou (2020; 2021) also identified similar challenges in variable configuration 
and sequencing, highlighting the persistence of these issues. 

Regarding RQ2 (Impact on Programming Error Reduction), data showed a consistent 
decline in errors across tasks, indicating that the MuSRA model effectively supported 
learning. As students advanced, their programming and debugging skills improved, 
highlighting scaffolding and the value of iterative learning and reflection. 

Regarding RQ3 (Perceived Effectiveness of Student-Recorded Digital Data), survey results 
showed that 83% of students believed that recording and reviewing digital data improved 
error recognition, problem-solving, and debugging strategies. This finding aligns with 
Atmatzidou and Dimitriadis (2017), who emphasized the role of tracking progress in fostering 
a deeper understanding of computational concepts. The reflective process, enabled by 
student-recorded digital data, helped students reflect and self-regulate and foster autonomy 
in problem-solving. 
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Regarding RQ4 (Students’ Debugging Performance), the MuSRA model led to significant 
improvements in students’ debugging skills, particularly in error identification and corrective 
actions. This aligns with Chevalier et al. (2020), who found that structured interventions in 
educational robotics enhance troubleshooting skills. However, while error detection 
improved, correcting errors showed less progress, supporting Fitzgerald et al. (2008), who 
highlighted the greater difficulty novices face in implementing solutions. 

Conclusion 

Overall, the MuSRA model effectively supported novice learners in developing programming 
and debugging skills, addressing issues like variable misconfiguration, sequencing errors, 
and logic misuse. Through digital self-recording, it promoted engagement that improved 
performance. The findings highlight the value of scaffolded, reflective learning in educational 
robotics. 

This study contributes to programming education by evaluating MuSRA—a model that 
integrates iterative learning and self-recorded data to address debugging challenges. It offers 
insights into common novice errors, aligns with existing research, and emphasizes the need 
for structured support. The benefits of student-recorded data underscore reflection’s role in 
building autonomy and metacognitive awareness. 

While this study offers insights into effectiveness of the MuSRA model, it is limited by the 
use of a small, context-specific sample, which may restrict the generalizability of the findings. 
Additionally, the research focused on short-term outcomes. Future research could explore 
how MuSRA supports students with different learner profiles or educational levels to identify 
practices for tailoring the model across diverse contexts. 
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