Zuvedpla tTnG EAAnViKig Emtotnuovikng Evwong TexvoAoylwyv MAnpogopiag
& Erikowvwviwy otnv Eknaidsuon

Tép. 1 (2025)

120 Xuvedplo ETTIE «AwdakTikn Tng MNANpopopLkng»

12° MaveAArvio Juvédplo pe AleBvr) TuppETOXN

"Adaktikn g MAnpopopkng” Enhancing Debugging Skills in Robotics Education:
Effects of the MuSRA Model

Alexandra Papamargariti, Angeliki Dimitracopoulou

Topog Mpaktikwy doi: 10.12681/cetpe.9218

EmpéAela

®eodkng, I'., Anuntpakomoulou, A., Yo@adg, A., Pwkidng, E., & Kootag A.

- A2ET

TANERIETINO | 1voq
@iiraiov |

BiBAloypa@pikn avagopa:

Papamargariti, A., & Dimitracopoulou, A. (2025). Enhancing Debugging Skills in Robotics Education: Effects of the
MuSRA Model. Zuvedpia tng EAAnvikn ¢ Erotnuovikni¢ Evwong Texvoloyiwyv lNAnpogopiag & Emkotvwviwv
otnv Eknaidosuon, 1, 118-127. https://doi.org/10.12681/cetpe.9218

https://epublishing.ekt.gr | e-Ekd6tng: EKT | Mpodéopaon: 21/01/2026 01:47:02

Enhancing Debugging Skills in Robotics Education:
Effects of the MuSRA Model

Alexandra Papamargariti, Angeliki Dimitracopoulou
psed17008@aegean.gr, adimitr@aegean.gr
Laboratory of Learning Technology and Educational Engineering, Department of Preschool
Education Sciences and Educational Design, University of the Aegean

Abstract

This study explores the use of the Multidimensional Support Model for Robotics Learning Activities
(MuSRA) to help novice programmers develop debugging skills. MuSRA combines instructional
strategies with digital tools to support metacognition. Central to the model is student-recorded digital
data—screenshots, recordings, video captures —collected during robotics tasks. It positions students as
reflective "scientists" analyzing their programming processes. The study involved 48 lower secondary
school students with minimal programming experience in MuSRA-guided activities. The research
examined (a) programming errors and (b) students' ability to correct them. Results showed common
novice mistakes and improvements in debugging. Crucially, digital data reflection supported error
detection. These findings suggest MuSRA is an effective approach to teaching debugging in educational
robotics.

Keywords: debugging, digital tools, educational robotics activities, learning support, programming
errors

Introduction

One of the key challenges novice programmers faces is identifying and correcting code errors.
Debugging —a core programming process—is a complex cognitive skill. It fosters reflective
thinking by prompting learners to evaluate and refine their reasoning (Papert, 1980). Research
emphasizes debugging’s role in building Computer Science (CS) competencies (McCauley et
al., 2008), problem-solving skills (Jonassen, 2000), and computational thinking (Brennan &
Resnick, 2012).

Effective debugging requires understanding programming concepts, mental models, and
error patterns (Ducassé & Emde, 1989; Fitzgerald et al., 2008; Klahr et al., 1988). However,
many novices lack these foundations (Perkins & Martin, 1986), making debugging difficult
and frustrating (Alqadi & Maletic, 2017; Murphy et al., 2008).

Although vital, debugging is underemphasized in curricula; novices often rely on trial-
and-error, highlighting the need for explicit strategies and support (McCauley et al., 2008;
O'Dell, 2017). While instructors resolve errors quickly, learners need explicit strategies and
support to develop independent debugging skills. The MuSRA, presented briefly in the
present paper, addresses a gap in the field by offering a scalable and adaptable instructional
model that supports structured yet flexible debugging for diverse learner needs. Its dual-
layered design integrates predefined strategies and tools with customizable activity sheets,
allowing teacher adaptation and student autonomy. This balance of structure and flexibility
makes MuSRA suitable for various educational robotics contexts and responsive to different
classroom dynamics.

. ®eodkng, A. Anpntpakomoudou, A. Zo@dg, E. dwkidng, & A. Kwotag (Emy.), Mpaktikd 12°V MaveAAfviou Zuvedpiou pe Aebvi Tuppetoxn
"Midaktikn g MAnpoopikng”, Mavemotipo Atyaiou, P4dog, 31 OktwBpiou - 2 NogpBpiou 2025

AOakTIki TG MANPOYOPLKAG 119

Instructional Approaches and ER for Developing Debugging Skills

Recent studies have explored pedagogical interventions to improve debugging for novices.
Chiu and Huang (2015) used game-based programs with embedded bugs and scaffolded
worksheets to develop debugging strategies. DeLiema et al. (2019) showed that educator-led
discussions at failure points enhance learning. Fields et al. (2021) had students create buggy
projects, boosting motivation and error-recognition.

Educational robotics (ER) has emerged as a promising context for programming
instruction, particularly in block-based platforms like Scratch and LEGO Mindstorms. The
iterative, trial-and-error nature of robotics tasks naturally integrates debugging, providing an
ideal environment for novices (Eguchi & Uribe, 2017; Scaradozzi et al., 2019). However, the
effectiveness of ER in enhancing debugging skills remains inconclusive. Research has shown
that overly structured or pre-designed robotics activities can limit learners' engagement with
debugging, reducing them to passive participants and hindering the development of critical
thinking and problem-solving skills (Xia & Zhong, 2018).

Few ER frameworks offer adaptable support for diverse learner needs. For instance, Eguchi
and Uribe (2017) designed a learner-centered ER unit with 10 science-integrated robotics
tasks, using checklists, journals, and peer support to foster debugging. Atmatzidou and
Dimitriadis (2017) proposed the CPG+ model, emphasizing problem-solving and
collaboration through 12 structured activities; guided instruction was linked to improved
student performance (Atmatzidou et al., 2018). Chevalier et al. (2020, 2022) introduced the
CCPS model, promoting recursive debugging via iterative design and delayed feedback.
Socratous and Ioannou (2021) found that structured ER tasks enhanced debugging, while
unstructured ones boosted engagement.

Despite the progress made with various educational robotics frameworks, a gap remains
in providing scalable, adaptable instructional models that integrate robust debugging support
in ER environments. The field continues to explore ways to balance structure and flexibility
to better address the diverse learning needs of students, ultimately improving debugging
performance and fostering deeper engagement in programming tasks (Blancas et al., 2020;
Daniela, 2019).

The present study

To address existing gaps, this study introduces the Multidimensional Support Model for
Robotics Learning Activities (MuSRA), a structured framework designed to enhance students'
programming and debugging skills in educational robotics (ER) contexts. MuSRA integrates
targeted instructional strategies with digital tools to foster the development of these skills. A
central element of the model is the use of "student-recorded digital data" (e.g., screenshots,
screen recordings, and video captures) to guide students throughout the programming
process. Recent research findings revealed positive students’ perceptions of the
implementation of MuSRA, in terms of suitability of learning activities, effectiveness and
user-friendliness of incorporated digital activity sheets, while their dual-modality approach —
offering both written and oral response options—enhance inclusivity, accommodating
diverse learning needs (Papamargariti & Dimitracopoulou, 2025).

This study examines MuSRA’s effectiveness in a real-world educational robotics setting by
analyzing error types, correction strategies and the overall improvement in their debugging
performance. By embedding reflective practices and strategic debugging support into robotics
activities, this research aims to advance programming education, providing new insights into

120 12° NaveAAnvio Tuvédplo pe Atebvn Tuppetoxn

effective approaches for teaching debugging to novice learners in interactive, hands-on
learning environments.

Multidimensional Support Model for Robotics Learning Activities [MuSRA]

The MuSRA model is an instructional framework designed to enhance ER learning by
combining structured pedagogical strategies with integrated digital tools. It offers teachers
the capacity to adapt supports to various scenarios while ensuring consistent outcomes.
Teachers can tailor the digital activity sheets to curriculum goals, student profiles, and
instructional styles, while students retain agency through multimodal input tools and
differentiated guidance. This balance of structure and autonomy makes MuSRA scalable
across varied ER settings. MuSRA is built around four key components: (I) the actors (students
and teacher), (II) the robotics learning activities, (III) the technological and digital tools, and
(IV) the MuSRA digital activity sheets, along with their integrated strategies and internal
digital learning support tools.

Actors: In MuSRA, students act as scientists, documenting their learning through
screenshots, robot execution videos, and experiment recordings. This fosters metacognitive
and problem-solving skills, autonomy, and technological fluency. Digital activity sheets
support diverse learning styles through three response modes: text typing, voice typing, and
audio recording, accommodating diverse learning needs. MuSRA also supports teachers by
reducing workload and improving classroom orchestration (Dillenbourg, 2013). It enables
real-time monitoring of student progress, helps manage instructional time, and identifies key
intervention moments for discussions or feedback.

Robotics Learning Activities: Based on Komis et al. (2017), MuSRA’s robotics learning
activities are student-centered, co-creative, and grounded in real-world problems. Two
activity types are used: Robotics Tasks and a Final Challenge. Robotics Tasks follow Pélya’s
(1945) four-phase model to progressively develop problem-solving skills.

Technological and Digital Tools: MuSRA combines two student workspaces: (1) The
Robotics Environment (RE) with a robotics kit (e.g,, LEGO EV3 or Spike Prime) and a
programming tablet, and (2) The Digital Activity Sheet Environment (DASE), featuring a
second tablet with the Digital Activity Sheet Platform (DASP) and apps like camera, audio
recorder, and notepad. This setup enables students to integrate multimodal inputs—
screenshots, videos, reflections. The teacher’s workspace includes a centralized DASP to
organize submissions and monitor progress.

MuSRA Digital Activity sheets: The MuSRA model centers on Digital Robotics Activity
Sheets (MRASs), which guide students’ learning across five key dimensions: (1) Phase-Based
Guidance: mRASs follow Pélya’s four problem-solving phases and add a fifth "Discussion"
phase to encourage reflection and iterative improvement. (2) Tools Management: Students
receive clear instructions for using tools (e.g., screenshots, videos, note-taking) to smoothly
transition between tasks and manage resources effectively. (3) Collaboration Support: Role-
based teamwork enhances cooperation. Roles rotation include: analyst (manages DASE and
records responses), programmer (builds and runs code), and debugger (detects errors and
tracks progress). (4) Cognitive Support: Acting as scientists, students collect and analyze their
own digital data (e.g., program screenshots, video recordings) to support observation and
self-regulated learning. (5) Metacognitive Support: Three embedded strategies promote
reflection and self-regulation: (a) Self-Explanation: Students clarify their thinking and use
visuals like flowcharts. (b) Debugging via Digital Record Analysis: Students analyze
uploaded code screenshots and videos to improve solutions. (c) Metacognition Monitoring;:
Students reflect on their performance, challenges, and learning strategies at the end of tasks.

AOakTIki TG MANPOYOPLKAG 121

To enhance learning and reflection, MuSRA integrates three Digital Internal Tools (DiTs)
within the mRASs: (1) Recordings Tool: lets students upload screenshots and videos to track
and refine work. (2) Verbal Expression Tool: offers text, voice typing, or audio responses,
promoting accessibility. (3) Keep the Important Tool: compiles a multimedia notebook with
key insights, visuals, and audio notes, fostering reflection and knowledge consolidation.

Figure 1 illustrates how each DiT maps onto specific phases of the problem-solving model,
supporting cognitive and metacognitive engagement throughout the activity. MuSRA is most
effectively applied in lower secondary educational settings where students are beginning to
learn programming within structured, classroom-based robotics activities. Its integration of
digital supports and multimodal data collection is particularly suited to block-based
programming platforms (e.g., Scratch, LEGO EV3), where learners benefit from guided
debugging strategies. MuSRA is also well aligned with curricula emphasizing collaborative
problem solving, self-regulation, and inquiry-based STEM learning, making it a robust
framework for formal education environments with access to basic robotics kits and tablet-
based digital tools.

mRAS Problem- Understanding the Designing the Implementing the Verifying the

. e Discussion
Solving template problem solution plan program solution

Verhal expression et | Recordingstool

tool expression ool

Debugging Strategy through Metacognitive Monitoring

Self-explanation Strategy i i
Digital Record Analysis Strategy

Figure 1. MuSRA Strategies & Digital Internal Tools (DiTs)

Methodology

This study aims to evaluate the effectiveness of the MuSRA model in supporting novice
programmers in developing effective debugging skills, during robotics programming
activities. To achieve this goal, it examines the impact of MuSRA on students’ debugging
performance, focusing on the types and frequency of programming errors, as well as students’
ability to identify and resolve these errors over time. To address the research objectives, the
study is guided by the following research questions (RQ):

1. What types and how often did programming errors occur during robotics activities?

2. What is the impact of the MuSRA model on students’ programming errors over time?

3. How did students perceive the use of self-recorded digital data for debugging?

4. What is the impact of the MuSRA model on students” overall debugging performance?

Regarding participants, the study involved 48 lower secondary school students, evenly

split by gender (24 girls and 24 boys). They were organized into four robotics club groups,
each consisting of 12 students and utilizing either Lego Mindstorms EV3 or Lego Spike Prime
kits. Within each group, students worked in teams of three and rotated through the roles of
analyst, programmer, and debugger during the activities. Prior to participation, students
completed a background questionnaire ensuring diversity in gender, grade, and experience.
Most participants were beginners, with 44 students reporting minimal or no prior
programming experience, and 68.8% (33 students) indicating they had never used a robotics
kit before.

122 12° NaveAAnvio Tuvédplo pe Atebvn Tuppetoxn

A mixed-methods approach (combining quantitative data with qualitative insights) was
employed to analyze the frequency and nature of programming errors, as well as students'
debugging performance within the MuSRA implementation. The research tools include: (i)
Debugging Test: Conducted at two points (mid-debugging and post-debugging tests), this
assessment evaluated students' ability to identify and correct errors in predefined tasks. Each
test was scored on error identification (5 points) and proposed solutions (5 points), for a total
of 10 points per item. Cronbach's alpha (0.887) indicated strong internal consistency. (ii)
Survey Feedback Questionnaire: Administered after the final challenge, this survey captured
students’ perceptions of the MuSRA model and the role of self-recorded digital data in
supporting debugging strategies, focusing on error identification, resolution, and
understanding. (iii) Focus Group Interviews: Semi-structured interviews (50-60 minutes)
conducted one week after the intervention provided students with the opportunity to reflect
on their debugging and problem-solving development. Content analysis of transcriptions
identified key themes. (iv) Observation: Structured classroom observations recorded real-time
error identification, correction attempts, and debugging strategies.

The research procedure, illustrated in Figure 2, involved a nine-week intervention during
which each robotics club class took part in nine three-hour sessions (Papamargariti &
Dimitracopoulou, in press).

Students Feedback Questionnaire
Middle - Debugging test Focus group interviews
o Robot : Final
Description Introductory ik Robotics tasks . 1 week later
construction Challenge
Student Profile Questionnaire Post - Debugging test

Figure 2. Research Procedure

The intervention began with an introductory session in which students were introduced to
robotics kits and programming environments. In the following construction session, students
worked in groups to build robot vehicles. They then progressed through six robotics problem-
solving tasks of increasing complexity. After session 5, students completed a mid-debugging
test. Upon finishing all tasks, they took the post-test for debugging. The final challenge session
required students to solve a complex robotics problem according to specific evaluation
criteria. One week later, students completed a feedback survey and semi-structured
interviews (Figure 2).

Research results

Types and frequency of programming errors

To address RQ1, quantitative data were gathered across all sessions. Researchers categorized
student programming errors into seven types using completed activity sheets and structured
observation logs. These data sources captured code iterations, debugging attempts, and real-
time behaviors, enabling thorough analysis of error frequency and patterns throughout the
intervention.

AOakTIki TG MANPOYOPLKAG 123

As shown in Table 1, the most frequent error (22.44%) was assigning incorrect values to
block variables, such as improper distances or speeds, which often led to unexpected robot
behavior. The second most common error (16.67%) involved omitting essential programming
blocks —like loops or control structures — resulting in incomplete or non-functional programs.
Variable confusion (14.74%), such as mixing motor power with distance, was also prevalent.
Incorrect port assignments (14.10%) highlighted difficulties in hardware-software integration.
Errors in conditional logic and sequencing (both 12.82%) reflected challenges in
understanding logical flow. Finally, non-programming issues (6.41%), including improper
robot placement or assembly mistakes, pointed to limited awareness of the physical
programming context.

The findings highlight persistent challenges in variable management, logical sequencing,
and hardware integration, emphasizing the need for instructional approaches that support
iterative testing, reflective practice, and systematic debugging. The identified error types align
with prior research. Three common errors in this study — defining values in block variables,
selecting block sequences, and setting conditions — were also found in non-robotic, non-block-
based programming studies (Chiu & Huang, 2015; Liu et al., 2017). Kim et al. (2018) reported
similar challenges in variable assignment and block arrangement among novice robotics
learners. Similarly, Socratous and loannou (2020; 2021) observed recurring issues with
variable configuration, sequencing, and logic, highlighting persistent difficulties in block-
based programming across educational contexts.

Table 1. Types and frequency of programming errors observed during robotics tasks

Error Type Description Fr/ncy Fr/ncy Supported by Prior Studies
%

Error in defining a valuetoa Not accurate or wrong 35 22.44% Kim et al., 2018; Socratous &

block’s variable calculation of the value Ioannou, 2021; Chiu & Huang,
of a variable 2015; Liu et al., 2017

Error selecting the appropriate Choosing the wrong 23 14.74% Kim et al., 2018; Socratous &

variable in a block variable within the Toannou, 2020
same block

Error selecting the correct Use of an 20 12.82% Socratous & Ioannou, 2021;

block or the correct sequence inappropriate block Chiu & Huang, 2015; Liu et al.,

of blocks 2017

Error in matching a motor or a Motors connected to 22 14.10% Kim et al., 2018; Socratous &

sensor to the correct port the wrong ports Ioannou, 2020

Error in defining conditions Difficulty 20 12.82% Kim et al., 2018; Socratous &
understanding Ioannou, 2021; Chiu & Huang,
conditional logic 2015; Liu et al., 2017

Error recognizing external Failure to recognize a 10 641% —

factors as the cause of the program without

program's failure errors

Error due to a missing block ~ Missing essential 26 16.67% Kim et al., 2018; Socratous &
blocks Toannou, 2020

Impact of the MuSRA model on programming errors

To address RQ?2, a sequential analysis of errors across seven tasks was conducted at the team
level using activity sheets (tracking trials and debugging reflections) and structured
observation sheets (capturing real-time mistakes). As summarized in Table 2, a decline in

124 12° NaveAAnvio Tuvédplo pe Atebvn Tuppetoxn

errors suggests the MuSRA model’s potential effectiveness in supporting learning and
progressive error correction.

Table 2. Number of programming errors across robotics tasks

Challenge Robotic Task Number of Errors Number of Errors %
1 Labyrinth 32 20,51%
2 Follow the colors 28 17,95%
3 Make the right choice and avoid the wall 26 16,67 %
4 Move a Lego block 23 14,74 %
5 Move a box to the storage position 20 12,82%
6 Move two boxes to the collection areas 16 10,26%
7 Final Challenge 11 7,05%

In the initial tasks—Labyrinth (32 errors; 20.51%) and Follow the Colors (28 errors;
17.95%) —error frequencies were highest, reflecting students” early exposure to robotics,
limited programming knowledge, and difficulty understanding task requirements. As
students progressed, a decline in errors was observed. In intermediate tasks such as Make the
Right Choice and Avoid the Wall (26 errors; 16.67 %), Move the Cube (23 errors; 14.74%), and
Move the Box to the Storage Position (20 errors; 12.82%), students showed improvement to
apply learned concepts. This trend continued in advanced tasks —Move Two Boxes to the
Collection Areas (16 errors; 10.26%) and the Final Challenge (11 errors; 7.05%) —indicating
sustained learning gains. The steady reduction in errors suggests the MuSRA model
effectively promotes skill acquisition, enhances debugging, and supports improved
performance in increasingly complex robotics programming challenges.

Students’ perceptions of the use of self-recorded digital data

To address RQ3, data were collected from a Survey Feedback Questionnaire and semi-
structured focus group interviews after the final challenge. The survey focused on students'
perceptions of the MuSRA model and the role of student-recorded digital data in debugging.
Table 3 shows that 83% of students agreed that recording and reviewing data helped them
recognize errors more effectively, enhancing reflection and awareness. Additionally, 79% felt
that reviewing data improved their error-solving ability, suggests self-recording aided
troubleshooting.

Table 3. Perceived effectiveness of student-recorded digital data

Category Disagree (%) Neutral Opinion (%) Agree (%)

Error Recognition 4% 13% 83%
Error-Solving Ability 0% 21% 79%
Problem-Solving Strategies 3% 19% 78%
Debugging Strategies 3% 20% 77%

Additionally, 78% of students reported that digital data helped develop their problem-
solving strategies, suggesting reflection refined their approach to complex tasks.
Furthermore, 77% felt it improved their debugging skills, indicating its role in fostering
strategic problem-solving. Qualitative data from focus group interviews highlighted the
benefits of recording the debugging process. One student shared, "When I had to correct a
programming error, recording my efforts helped me see my mistakes and fix them." Overall,

AOakTIki TG MANPOYOPLKAG 125

both survey and interview findings underscore the significant impact of student-recorded
digital data on debugging, self-regulated learning, and programming proficiency.

Students’ debugging performance

To address RQ4, a comparison of students' results on the Mid-Debugging Test and Post-
Debugging Test revealed significant improvements in debugging skills. Statistical analysis
using a paired samples t-test (Table 4) showed an increase in average scores from 65.00 (SD =
20.82) on the mid-test to 76.91 (SD = 16.89) on the post-test, with a mean improvement of 11.92
points, #(47) = -7.83, p = 0.00. Specifically, students improved in error identification, with
scores rising from 67.97 to 79.99, t(47) = -6.55, p = 0.00, and in suggesting corrections, from
62.64 to 75.33, t(47) = -7.12, p = 0.00. These findings suggest that the MuSRA model effectively
enhanced students' debugging abilities, particularly in error detection. The greater
improvement in identification over correction emphasizes the ongoing challenge students
face in implementing fixes.

Table 4. Debugging Performance

. Paired Paired
Mid-Test Post-Test pyitterences t Samples
Mean SD Mean SD Mean t-Test
Debugging Test Scores 65.00 20.82 7691 16.89 -11.92 -7.83 0.00*
Found the Error 6797 21.18 79.99 15.18 -12.02 -6.55 0.00*
Proposed a Solution 62.64 21.70 7533 16.22 -12.69 -7.12 0.00*

Note. *p < 0.05

Discussion

The study provides strong evidence for the effectiveness of the MuSRA model in overcoming
common programming challenges in robotics. By analyzing errors, student perceptions, and
debugging performance, it offers key insights that both align with and extend existing
research on supporting novice learners in robotics-based activities.

Regarding RQ1 (Types and frequency of programming errors), the most common errors
included incorrect variable values, missing blocks, and incorrect block or port selections.
Sequencing errors and misuse of conditional logic revealed struggles with logical flow and
decision-making. These findings align with prior research, such as Kim et al. (2018), who
observed similar issues in variable definition and block placement in novice robotics learners.
Socratous and Ioannou (2020; 2021) also identified similar challenges in variable configuration
and sequencing, highlighting the persistence of these issues.

Regarding RQ2 (Impact on Programming Error Reduction), data showed a consistent
decline in errors across tasks, indicating that the MuSRA model effectively supported
learning. As students advanced, their programming and debugging skills improved,
highlighting scaffolding and the value of iterative learning and reflection.

Regarding RQ3 (Perceived Effectiveness of Student-Recorded Digital Data), survey results
showed that 83% of students believed that recording and reviewing digital data improved
error recognition, problem-solving, and debugging strategies. This finding aligns with
Atmatzidou and Dimitriadis (2017), who emphasized the role of tracking progress in fostering
a deeper understanding of computational concepts. The reflective process, enabled by
student-recorded digital data, helped students reflect and self-regulate and foster autonomy
in problem-solving.

126 12° NaveAAnvio Tuvédplo pe Atebvn Tuppetoxn

Regarding RQ4 (Students’ Debugging Performance), the MuSRA model led to significant
improvements in students” debugging skills, particularly in error identification and corrective
actions. This aligns with Chevalier et al. (2020), who found that structured interventions in
educational robotics enhance troubleshooting skills. However, while error detection
improved, correcting errors showed less progress, supporting Fitzgerald et al. (2008), who
highlighted the greater difficulty novices face in implementing solutions.

Conclusion

Overall, the MuSRA model effectively supported novice learners in developing programming
and debugging skills, addressing issues like variable misconfiguration, sequencing errors,
and logic misuse. Through digital self-recording, it promoted engagement that improved
performance. The findings highlight the value of scaffolded, reflective learning in educational
robotics.

This study contributes to programming education by evaluating MuSRA —a model that
integrates iterative learning and self-recorded data to address debugging challenges. It offers
insights into common novice errors, aligns with existing research, and emphasizes the need
for structured support. The benefits of student-recorded data underscore reflection’s role in
building autonomy and metacognitive awareness.

While this study offers insights into effectiveness of the MuSRA model, it is limited by the
use of a small, context-specific sample, which may restrict the generalizability of the findings.
Additionally, the research focused on short-term outcomes. Future research could explore
how MuSRA supports students with different learner profiles or educational levels to identify
practices for tailoring the model across diverse contexts.

References

Alqadi, B. S., & Maletic, J. I. (2017, March). An empirical study of debugging patterns among novices
programmers. Proceedings of the ACM SIGCSE technical symposium on computer science education (pp. 15-
20). ACM.

Atmatzidou, S., & Demetriadis, S. (2017). A didactical model for educational robotics activities: A study
on improving skills through strong or minimal guidance. In D. Alimisis, M. Moro, & E. Menegatti
(Eds.), Proceedings of the Educational Robotics in the Makers Era. Edurobotics 2016 Conference (pp. 58-72).
Springer.

Atmatzidou, S., Demetriadis, S., & Nika, P. (2018). How does the degree of guidance support students’
metacognitive and problem solving skills in educational robotics? Journal of Science Education and
Technology, 27, 70-85.

Blancas, M., Valero, C., Mura, A., Vouloutsi, V., & Verschure, P. F. (2020). "CREA": An inquiry-based
methodology to teach robotics to children. In M. Merdan, W. Lepuschitz, G. Koppensteiner, & D.
Obdrzélek (Eds.), Robotics in Education: Current research and innovations 10 (45-51). Springer.

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of
computational thinking. Proceedings of the 2012 AERA Annual meeting (Vol. 1, p. 25). AERA.

Chevalier, M., Giang, C., Piatti, A., & Mondada, F. (2020). Fostering computational thinking through
educational robotics: A model for creative computational problem solving. International Journal of
STEM Education, 7, 1-18.

Chevalier, M., Giang, C., El-Hamamsy, L., Bonnet, E., Papaspyros, V., Pellet, J. P., Audrin, K, Romero M.,
Baumberger. B., & Mondada, F. (2022). The role of feedback and guidance as intervention methods to
foster computational thinking in educational robotics learning activities for primary school. Computers
& Education, 180, 104431.

Chiu, C. F., & Huang, H. Y. (2015). Guided debugging practices of game based programming for novice
programmers. International Journal of Information and Education Technology, 5(5), 343.

Daniela, L. (2019). Smart learning with educational robotics. Springer International Publishing.

AOakTIki TG MANPOYOPLKAG 127

DeLiema, D., Dahn, M., Flood, V. J., Asuncion, A., Abrahamson, D., Enyedy, N., & Steen, F. (2019).
Debugging as a context for fostering reflection on critical thinking and emotion. In. E. Manalo (Ed.),
Deeper learning, dialogic learning, and critical thinking, research-based strategies for the classroom (pp. 209-
228). Routledge.

Dillenbourg, P. (2013). Design for classroom orchestration. Computers & Education, 69, 485-492.

Ducassé, M., & Emde, A. M. (1989). A review of automated debugging systems: Knowledge, strategies
and techniques. Proceedings of the 11th International Conference on Software Engineering (pp. 162-163).
IEEE

Eguchi, A., & Uribe, L. (2017). Robotics to promote STEM learning: Educational robotics unit for 4th grade
science. Proceedings of the 2017 IEEE Integrated STEM Education Conference (ISEC) (pp. 186-194). IEEE.

Fields, D. A., Kafai, Y. B., Morales-Navarro, L., & Walker, J. T. (2021). Debugging by design: A
constructionist approach to high school students' crafting and coding of electronic textiles as failure
artefacts. British Journal of Educational Technology, 52(3), 1078-1092.

Fitzgerald, S., Lewandowski, G., McCauley, R., Murphy, L., Simon, B., Thomas, L., and Zander, C. (2008).
Debugging: finding, fixing and flailing, a multi-institutional study of novice debuggers. Computer
Science Education, 18(2), 93-116.

Jonassen, D. H. (2000). Toward a design theory of problem solving. Educational Technology Research and
Development, 48(4), 63-85.

Kim, C., Kim, D., Yuan, J., Hill, R. B., Doshi, P., & Thai, C.N. (2015). Robotics to promote elementary
education pre-service teachers' STEM engagement, learning, and teaching. Computers & Education, 91,
14-31.

Klahr, D., & Carver, S. M. (1988). Cognitive objectives in a LOGO debugging curriculum: Instruction,
learning, and transfer. Cognitive Psychology, 20(3), 362-404.

Komis, V., Romero, M., & Misirli, A. (2017). A scenario-based approach for designing educational robotics
activities for co-creative problem solving. In D. Alimisis, M. Moro & E. Menegatti (Eds.), Educational
robotics in the makers era 1 (pp. 158-169). Springer.

Li, C., Chan, E., Denny, P., Luxton-Reilly, A., & Tempero, E. (2019). Towards a framework for teaching
debugging. Proceedings of the 21st Australasian Computing Education Conference (pp. 79-86). Association
for Computing Machinery.

McCauley, R., Fitzgerald, S., Lewandowski, G., Murphy, L., Simon, B., Thomas, L., & Zander, C. (2008).
Debugging: a review from an educational perspective. Computer Science Education, 18(2), 67-92.

Murphy, L., Lewandowski, G., McCauley, R., Simon, B., Thomas, L., & Zander, C. (2008). Debugging: the
good, the bad, and the quirky--a qualitative analysis of novices' strategies. ACM SIGCSE Bulletin, 40(1),
163-167.

O'Dell, D. H. (2017). The Debugging Mindset: Understanding the psychology of learning strategies leads
to effective problem-solving skills. Queue, 15(1), 71-90.

Papamargariti & Dimitracopoulou (2025). Multidimensional support model for robotics learning
activities. [Manuscript submitted for publication].

Papert, S. (1980). Mindstorms: Children, computers and powerful Ideas. Perkins & Martin.

Poélya, G., & Szegd, G. (1945). Inequalities for the capacity of a condenser. American Journal of Mathematics,
67(1), 1-32.

Scaradozzi, D., Screpanti, L., Cesaretti, L. (2019). Towards a definition of educational robotics: A
classification of tools, experiences and assessments. In L. Daniela (Ed.) Smart learning with educational
robotics (pp. 63-92). Springer.

Socratous, C., & Ioannou, A. (2020). Common errors, successful debugging, and engagement during
block-based programming using educational robotics in elementary education. Proceedings of the 14th
International Conference of the Learning Sciences (pp. 991-998). International Society of the Learning
Sciences.

Socratous, C., & Ioannou, A. (2021). Structured or unstructured educational robotics curriculum? A study
of debugging in block-based programming. Educational Technology Research and Development, 69(6),
3081-3100.

Xia, L., & Zhong, B. (2018). A systematic review on teaching and learning robotics content knowledge in
K-12. Computers & Education, 127, 267-282.

http://www.tcpdf.org

