

 Συνέδρια της Ελληνικής Επιστημονικής Ένωσης Τεχνολογιών Πληροφορίας
& Επικοινωνιών στην Εκπαίδευση

 Τόμ. 1 (2005)

 3ο Πανελλήνιο Συνέδριο «Διδακτική της Πληροφορικής»

 Διδακτική του Προγραμματισμού

 Αθανάσιος Μάργαρης, Ευθύμιος Κότσιαλος

Βιβλιογραφική αναφορά:

Μάργαρης Α., & Κότσιαλος Ε. (2026). Διδακτική του Προγραμματισμού. Συνέδρια της Ελληνικής Επιστημονικής
Ένωσης Τεχνολογιών Πληροφορίας & Επικοινωνιών στην Εκπαίδευση, 1, 519–528. ανακτήθηκε από
https://eproceedings.epublishing.ekt.gr/index.php/cetpe/article/view/8747

Powered by TCPDF (www.tcpdf.org)

https://epublishing.ekt.gr | e-Εκδότης: EKT | Πρόσβαση: 16/01/2026 15:22:58

Πρακτικά Εργασιών 3ου Πανελλήνιου Συνεδρίου «∆ιδακτική της Πληροφορικής»
Α. Τζιµογιάννης (επιµ.)
Πανεπιστήµιο Πελοποννήσου
Κόρινθος, 7-9 Οκτωβρίου 2005

∆ιδακτική του Προγραµµατισµού

Αθανάσιος Μάργαρης, Ευθύµιος Κότσιαλος
Τµήµα Εφαρµοσµένης Πληροφορικής, Πανεπιστήµιο Μακεδονίας

amarg@uom.gr, ekots@uom.gr

ΠΕΡΙΛΗΨΗ
Στόχος αυτής της εργασίας αποτελεί η παρουσίαση των βασικών αρχών και τεχνικών που
θα πρέπει να ακολουθούνται για την επιτυχή διδασκαλία µαθηµάτων προγραµµατισµού σε
Τµήµατα Πληροφορικής της Τριτοβάθµιας Εκπαίδευσης. Η παρουσίαση που ακολουθεί,
θίγει αρκετά σηµαντικά ζητήµατα που συσχετίζονται µε το θέµα αυτό, όπως είναι τα
κριτήρια µε τα οποία θα επιλέξουµε τη γλώσσα προγραµµατισµού που θα διδάξουµε, ο
τρόπος διδασκαλίας των δύο βασικών µεθόδων προγραµµατισµού (που είναι ο
διαδικαστικός και ο αντικειµενοστραφής προγραµµατισµός), καθώς και η παρουσίαση
εφαρµογών που βοηθούν τον φοιτητή να αναπτύξει τις προγραµµατιστικές του ικανότητες.

ΛΕΞΕΙΣ ΚΛΕΙ∆ΙΑ: Προγραµµατισµός, Μεθοδολογία διδασκαλίας

ΕΙΣΑΓΩΓΗ
Ένας από τους πιο σηµαντικούς κλάδους της επιστήµης της Πληροφορικής, είναι

αυτός του Προγραµµατισµού, ο οποίος συνίσταται στη µεθοδολογία σχεδίασης και
ανάπτυξης εφαρµογών σε κάποια από τις γλώσσες προγραµµατισµού που σήµερα είναι
διαθέσιµες. Αυτή η ικανότητα ανάπτυξης εφαρµογών θεωρείται πάρα πολύ σηµαντική
για κάποιον φοιτητή που ειδικεύεται στην επιστήµη της Πληροφορικής και για το λόγο
αυτό τα τελευταία χρόνια έχουν αναπτυχθεί πολλές εκπαιδευτικές µέθοδοι όσον αφορά
τη διδασκαλία του αντίστοιχου γνωστικού αντικειµένου. Ας σηµειωθεί πως αυτές οι
µέθοδοι δεν εφαρµόζονται πάντα µε τον ίδιο τρόπο. Εάν για παράδειγµα οι φοιτητές
προέρχονται από σχολείο στο οποίο διδάσκεται η τεχνική του προγραµµατισµού είτε µε
τη βοήθεια κάποιας πραγµατικής γλώσσας είτε µε τη βοήθεια ειδικά σχεδιασµένων
γλωσσών και τη χρήση εργαλείων όπως η Γλωσσοµάθεια (Νικολαΐδης 2004), η
κατάσταση είναι αρκετά πιο απλή, καθώς οι φοιτητές υποτίθεται πως γνωρίζουν ήδη τις
βασικές αρχές ανάπτυξης εφαρµογών. Στην αντίθετη περίπτωση όµως, θα πρέπει να
ληφθεί ιδιαίτερη µέριµνα για τη σωστή διδασκαλία του προγραµµατισµού, καθώς εάν
αυτός διδαχθεί και εφαρµοσθεί µε εσφαλµένο τρόπο θα οδηγήσει στην ανάπτυξη
εφαρµογών µε ανορθόδοξες τεχνικές, οι οποίες γενικά είναι πολύ δύσκολο να
διορθωθούν, ενώ προφανώς θα αποτελέσει ένα γνωστικό πεδίο ανεπιθύµητο και
απωθητικό για τους φοιτητές. Στην περιγραφή που ακολουθεί υποθέτουµε πως οι
φοιτητές δεν διαθέτουν προγενέστερη γνώση πάνω σε αρχές και µεθοδολογίες

3ο Πανελλήνιο Συνέδριο

προγραµµατισµού και εποµένως η διδασκαλία του ξεκινά τυπικά και ουσιαστικά από
µηδενική βάση.
Λόγω της εξαιρετικής σηµασίας του σωστού τρόπου διδασκαλίας του

προγραµµατισµού, η ανάπτυξη διδακτικών µεθοδολογιών και κυρίως εκπαιδευτικών
εργαλείων αποτελεί τα τελευταία χρόνια αντικείµενο έντονης ερευνητικής
δραστηριότητας. Συνοπτική περιγραφή ενδεικτικών ερευνητικών δραστηριοτήτων πάνω
στο θέµα αυτό κυρίως όσον αφορά την ανάπτυξη εργαλείων µάθησης
προγραµµατισµού, παρουσιάζεται στην ενότητα του εκπαιδευτικού λογισµικού.

ΕΠΙΛΟΓΗ ΤΗΣ ΓΛΩΣΣΑΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ
Η πρώτη σηµαντική απόφαση που θα πρέπει να λάβουµε, αφορά τη γλώσσα

προγραµµατισµού που θα επιλέξουµε να χρησιµοποιήσουµε. Η απόφαση αυτή είναι
ιδιαίτερα σηµαντική σε περιπτώσεις φοιτητών που δεν διαθέτουν την παραµικρή
προγραµµατιστική εµπειρία – η πρακτική έχει δείξει πως η γλώσσα µε την οποία ο
φοιτητής έρχεται σε επαφή για πρώτη φορά µε τον προγραµµατισµό ασκεί πάρα πολύ
µεγάλη επίδραση στον τρόπο ανάπτυξης εφαρµογών, στις τεχνικές προγραµµατισµού
που χρησιµοποιεί καθώς και στην ποιότητα του κώδικα που αναπτύσσει.
Χαρακτηριστικό παράδειγµα προς αποφυγή είναι η χρήση της γλώσσας Java ως την
πρώτη γλώσσα προγραµµατισµού. Σε µια τέτοια περίπτωση ο φοιτητής θα αναγκαστεί
να έρθει σε επαφή µε προχωρηµένες έννοιες του αντικειµενοστραφούς
προγραµµατισµού όπως είναι οι κλάσεις και τα αντικείµενα και η χρήση δοµητών,
αποδοµητών και µεθόδων και θα χάσει την ουσία που είναι η κατανόηση της δοµής του
προγράµµατος και του τρόπου µε τον οποίο χρησιµοποιούνται οι διάφορες δοµικές
µονάδες που περιλαµβάνονται σε αυτό (όπως είναι οι µεταβλητές, οι συναρτήσεις και οι
αριθµητικοί και λογικοί τελεστές). Μιλώντας γενικά, η γλώσσα που θα χρησιµοποιηθεί
για τη διδασκαλία της τεχνικής του προγραµµατισµού σε άτοµα που δεν διαθέτουν
καµία εµπειρία επί του αντικειµένου, θα πρέπει να διαθέτει τα ακόλουθα
χαρακτηριστικά (Gupta 2004).
Απλότητα: η γλώσσα θα πρέπει να είναι σχετικά απλή και να µην χαρακτηρίζεται από
περίεργη σύνταξη και ροή προγράµµατος που είναι δύσκολο να κατανοηθεί, όπως
συµβαίνει για παράδειγµα στις συναρτησιακές γλώσσες προγραµµατισµού (functional
programming languages). Επιπλέον δεν θα πρέπει να χαρακτηρίζεται από συντακτικές
συνωνυµίες, που επιτρέπουν την πραγµατοποίηση της ίδιας διαδικασίας µε πολλούς
τρόπους διαφορετικούς µεταξύ τους – για παράδειγµα στη γλώσσα προγραµµατισµού C
η αναφορά µας στο υπ’ αριθµόν m στοιχείο κάποιου πίνακα a µπορεί να γίνει γράφοντας
a[m], *(a+m) ή *++a. Η ύπαρξη τέτοιων χαρακτηριστικών είναι βέβαιο πως θα
δηµιουργήσει σύγχυση στον άπειρο φοιτητή και εάν είναι διαθέσιµα δεν θα πρέπει σε
καµιά περίπτωση να χρησιµοποιούνται τουλάχιστον κατά τα πρώτα στάδια ενασχόλησής
του µε τον προγραµµατισµό.
Εύρος: η γλώσσα θα πρέπει να υποστηρίζει όλα τα βασικά χαρακτηριστικά των
γλωσσών προγραµµατισµού όπως είναι οι βρόγχοι (do, while, for), οι εντολές
διακλάδωσης του προγράµµατος υπό συνθήκη (if, then, else, switch, case) καθώς επίσης

∆ιδακτική της Πληροφορικής

οι πίνακες και οι σύνθετες δοµές δεδοµένων, έτσι ώστε ο φοιτητής να µπορέσει να
γνωρίσει και να µάθει να χρησιµοποιεί όλες αυτές τις έννοιες. Επιπλέον θα πρέπει να
χαρακτηρίζεται από συντακτική και σηµασιολογική συνέπεια έτσι ώστε να αποφεύγεται
η εµφάνιση προβληµατικών καταστάσεων όπως είναι οι ατέρµονοι βρόγχοι. Θεωρώντας
για παράδειγµα ένα κώδικα σε γλώσσα C της µορφής if (x=1) do_something(); είναι
προφανές πως αυτός θα οδηγήσει σε ατέρµονο βρόγχο, καθώς η συνθήκη είναι πάντοτε
αληθής, ανεξάρτητα από την τιµή της µεταβλητής x. Αυτό συµβαίνει γιατί η γλώσσα C
µετατρέπει όλους σχεδόν τους τύπους δεδοµένων σε ακέραιους τύπους χωρίς µάλιστα να
ενηµερώνει τον προγραµµατιστή για αυτή την µετατροπή. Αντίθετα σε γλώσσες
προγραµµατισµού όπως είναι η Java που χαρακτηρίζονται από αυστηρότητα όσον
αφορά τη διαχείριση των τύπων δεδοµένων (strongly typed languages) η παραπάνω
έκφραση θα επιστρέψει µία λογική τιµή (Boolean value) και ο ατέρµων βρόγχος δεν
πρόκειται ποτέ να εµφανιστεί.
Χρόνος απόκρισης του µεταγλωττιστή: το πρόγραµµα µεταγλώττισης που θα
χρησιµοποιηθεί από τους φοιτητές για τη δηµιουργία του εκτελέσιµου αρχείου, θα
πρέπει να είναι εύκολο στη χρήση του και κυρίως, να δηµιουργεί το εκτελέσιµο αρχείο
της εφαρµογής σε σχετικά µικρό χρονικό διάστηµα. Όπως είναι γνωστό από την
εµπειρία, ένας αρχάριος προγραµµατιστής προχωρεί σε συχνές µεταγλωττίσεις του
κώδικα πραγµατοποιώντας µικρές αλλαγές και διορθώνοντας µόνο ένα – ή έστω λίγα –
λάθη κάθε φορά. Αυτό σηµαίνει πως θα πρέπει να χρησιµοποιήσουµε ένα
µεταγλωττιστή που να είναι απλός και εύκολος στη χρήση του και να δηµιουργεί σε
πολύ µικρό χρονικό διάστηµα το εκτελέσιµο αρχείο, παρά ένα πολύπλοκο
ολοκληρωµένο περιβάλλον που απαιτεί τη γνώση επιπρόσθετων πληροφοριών άσχετων
µε τις βασικές αρχές του προγραµµατισµού και καθιστά τη δηµιουργία του εκτελέσιµου
αρχείου µια πολύπλοκη διαδικασία που είναι σίγουρο πως θα τροµάξει τον απλό χρήστη.
Για παράδειγµα, η δηµιουργία µιας µικρής εφαρµογής που θα εκτυπώνει την – ιστορική
πια – φράση Hello Word µπορεί να γίνει πάρα πολύ εύκολα χρησιµοποιώντας για
παράδειγµα την απλή Turbo C, παρά τη Visual C++ όπου η δηµιουργία έστω και µιας
απλής τέτοιας εφαρµογής απαιτεί τη δηµιουργία Workspace, τον καθορισµό του τρόπου
σύνδεσης των βιβλιοθηκών (στατικός ή δυναµικός) και την πολύπλοκη – γενικά –
διαµόρφωση των παραµέτρων του τρέχοντος project.
Σύστηµα βοηθείας και κατανοητά µηνύµατα σφάλµατος: το περιβάλλον ανάπτυξης
εφαρµογών θα πρέπει να παρέχει επαρκή βοήθεια προς το χρήστη – για παράδειγµα, εάν
ο χρήστης επιλέξει κάποια εντολή ή δεσµευµένη λέξη και πατήσει το πλήκτρο F1 θα
πρέπει να µπορεί να δει ένα ενηµερωτικό πλαίσιο διαλόγου που θα περιέχει πληροφορίες
σχετικά µε το ρόλο και τον τρόπο χρήσης της λέξης που επέλεξε. Επιπλέον, τα
µηνύµατα σφάλµατος που εµφανίζονται θα πρέπει να είναι κατανοητά και
κατατοπιστικά έτσι ώστε να δίνουν τη δυνατότητα στο χρήστη να διορθώσει από µόνος
του τα σφάλµατα που πραγµατοποίησε χωρίς να χρειαστεί να καταφύγει στη βοήθεια
του διδάσκοντα.
Άλλα επιθυµητά χαρακτηριστικά που θα πρέπει να διαθέτει η επιλεγµένη γλώσσα

προγραµµατισµού είναι η σαφήνεια όσον αφορά τη χρήση των τύπων δεδοµένων (για

3ο Πανελλήνιο Συνέδριο

παράδειγµα στη γλώσσα C οι πραγµατικοί αριθµοί περιγράφονται από τους τύπους float
και double γεγονός που ενδέχεται να δηµιουργήσει σύγχυση σχετικά µε τον τρόπο
χρήσης του καθενός) ενώ τα µεγέθη των τύπων θα πρέπει να είναι τα ίδια ανεξάρτητα
από το σύστηµα που χρησιµοποιούνται – αυτό είναι κάτι που ισχύει στη Java αλλά όχι
στη C όπου ο τύπος δεδοµένων int ανάλογα από το σύστηµα (platform) στο οποίο
χρησιµοποιείται µπορεί να έχει µέγεθος από 2 έως και 32 bytes.

ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΤΩΝ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ
Μετά την απόφαση σχετικά µε τη γλώσσα που θα χρησιµοποιήσουµε για την

διδασκαλία του µαθήµατος θα πρέπει να εξοικειώσουµε τους φοιτητές µε τις βασικές
έννοιες του αντικειµένου όπως είναι οι µεταβλητές και οι συναρτήσεις του
προγράµµατος και οι εντολές διακλάδωσης και ελέγχου. Ο φοιτητής θα πρέπει να
γνωρίσει τους διαφόρους τύπους σφαλµάτων που δύνανται να εµφανιστούν σε µία
εφαρµογή (λεκτικά, συντακτικά, σηµασιολογικά και χρόνου εκτέλεσης) και να µπορέσει
να τα διακρίνει µεταξύ τους. Θεωρώντας για παράδειγµα τη γλώσσα προγραµµατισµού
C, ο φοιτητής θα πρέπει να είναι σε θέση να γνωρίζει πως: (α) η δήλωση double 3dim;
περιέχει λεκτικό λάθος (lexical error) καθώς η γλώσσα C δεν επιτρέπει τη χρήση
αριθµητικών χαρακτήρων ως τον πρώτο χαρακτήρα για τα ονόµατα µεταβλητών, (β) η
δήλωση double int; συνιστά συντακτικό λάθος (syntactic error) καθώς η λέξη int
αποτελεί δεσµευµένη λέξη (keyword) της γλώσσας και δεν µπορεί να χρησιµοποιηθεί µε
διαφορετικό τρόπο, (γ) η καταχώρηση a=b όπου το a είναι ακέραιος και το b
συµβολοσειρά συνιστά σηµασιολογικό λάθος (semantic error), ενώ (δ) η εντολή a=1/b;
ενδέχεται να οδηγήσει σε σφάλµα χρόνου εκτέλεσης (run-time error) ανάλογα µε την
τιµή της µεταβλητής b. Στη συνέχεια ο χρήστης θα πρέπει να ενηµερωθεί για τον τρόπο
δηµιουργίας του εκτελέσιµου αρχείου – που συνίσταται από τα στάδια της
µεταγλώττισης και της σύνδεσης των βιβλιοθηκών. Η παραπάνω διαδικασία αφορά τη
χρήση συµβατικών και απλών προγραµµατιστικών µεθόδων, ενώ για την περίπτωση του
αντικειµενοστραφούς προγραµµατισµού, θα πρέπει να παρουσιαστούν αναλυτικά – σε
θεωρητικό επίπεδο – οι θεµελιώδεις έννοιες αυτής της προσέγγισης όπως είναι οι έννοιες
του δοµητή (constructor) και του αποδοµητή (destructor), η χρήση προσωπικών
(private), προστατευµένων (protected) και δηµόσιων (public) πεδίων και µεθόδων, η
υπερφόρτωση τελεστών (operator overloading) και οι έννοιες της κληρονοµικότητας
(inheritance), του πολυµορφισµού (polymorphism), της ενθυλάκωσης (encapsulation)
και της απόκρυψης πληροφορίας (information hiding). Είναι προφανές πως η
διδασκαλία του αντικειµενοστραφούς προγραµµατισµού προϋποθέτει την εξοικείωση
του φοιτητή µε τις θεµελιώδεις αρχές του απλού διαδικαστικού (procedural)
προγραµµατισµού – στην αντίθετη περίπτωση η εµπειρία έχει δείξει πως προκύπτουν
σοβαρά προβλήµατα κατανόησης του αντικειµένου, καθώς ο φοιτητής έρχεται σε επαφή
µε προχωρηµένες τεχνικές τη στιγµή που ακόµη δεν γνωρίζει τις θεµελιώδεις αρχές της
ανάπτυξης εφαρµογών.

∆ιδακτική της Πληροφορικής

∆ΙΑ∆ΙΚΑΣΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
Η διδασκαλία τεχνικών του συµβατικού διαδικαστικού προγραµµατισµού προϋποθέτει

την εξοικείωση του φοιτητή µε τις θεµελιώδεις έννοιες που παρουσιάστηκαν
προηγουµένως και θα πρέπει να οργανωθεί σε µια σειρά διαλέξεων που να καλύπτουν
όλο το εύρος των χαρακτηριστικών της γλώσσας που διδάσκεται. Αυτές οι διαλέξεις
µπορούν να οµαδοποιηθούν σε δύο (ή και περισσότερα) εξαµηνιαία µαθήµατα (Malmi
& Korhonen 2004). Στο πρώτο από αυτά τα µαθήµατα η έµφαση θα δοθεί στην
κατανόηση των χαρακτηριστικών της γλώσσας για τη χρήση της σε προβλήµατα
διαχείρισης µονοδιάστατων και δισδιάστατων (τουλάχιστον) πινάκων, την ανάγνωση και
εγγραφή σε αρχείο (η παρουσίαση θα περιλαµβάνει τόσο αρχεία κειµένου όσο και
δυαδικά αρχεία), τη δηµιουργία και χρήση σύνθετων τύπων δεδοµένων, καθώς και
έννοιες που συσχετίζονται µε τη διαχείριση µνήµης – αν και το τελευταίο θεωρείται πιο
προχωρηµένο και θα µπορούσε να διδαχθεί µόνο εφόσον το επιτρέπει το επίπεδο του
τµήµατος και ο βαθµός κατανόησης των εννοιών του προγραµµατισµού. Στο επόµενο
µάθηµα µπορεί να λάβει χώρα η περιγραφή εννοιών που συσχετίζονται µε αλγορίθµους
(ταξινόµηση, αναζήτηση, η µέθοδος του hashing κ.λ.π.) και δοµές δεδοµένων (απλές και
διπλές συνδεδεµένες λίστες, δέντρα και γραφήµατα). Σηµαντική επίσης θεωρείται η
κατανόηση εννοιών που συσχετίζονται µε την απόδοση (performance) των αλγορίθµων
καθώς και ο τρόπος µε τον οποίο θα επιλέγουµε κάποιον από αυτούς µέσα από ένα
σύνολο αλγορίθµων που πραγµατοποιούν την ίδια διαδικασία (για παράδειγµα ο
αλγόριθµος του quick sort θα πρέπει να επιλεγεί έναντι του αλγορίθµου του bubble sort
γιατί είναι πολύ πιο γρήγορος).

ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
Το βασικό πρόβληµα που συσχετίζεται µε τη διδασκαλία του αντικειµενοστραφούς

προγραµµατισµού είναι η απότοµη µετάβαση του φοιτητή σε ένα καινούριο τρόπο
σκέψης εντελώς διαφορετικό από εκείνο στον οποίο είχε εντρυφήσει στα πλαίσια της
διδασκαλίας του συµβατικού διαδικαστικού προγραµµατισµού – η έρευνα ωστόσο έχει
δείξει πως οι µαθητές εκείνοι που γνωρίζουν περισσότερες από µία γλώσσες
προγραµµατισµού πραγµατοποίησαν πιο εύκολα τη µετάβαση σε αυτό το νέο τρόπο
αντίληψης, γεγονός που αποδόθηκε στη µεγαλύτερη εµπειρία και εξοικείωση που
απέκτησαν.
Τα βασικά προβλήµατα που εντοπίζονται κατά το στάδιο της διδασκαλίας του

αντικειµενοστραφούς προγραµµατισµού είναι σε γενικές γραµµές τα εξής (Ragonis &
Ben-Ari 2005):
(α) δυσκολία της κατανόησης του τρόπου χρήσης των µεθόδων. Για παράδειγµα,
παρατηρήθηκε περίπτωση κατά την οποία ο φοιτητής κάλεσε µια µέθοδο για την αλλαγή
της τιµής κάποιας ιδιότητας του αντικειµένου και στη συνέχεια – µην έχοντας
κατανοήσει πως η κλήση της µεθόδου προκάλεσε την µεταβολή της τιµής της
µεταβλητής – την τροποποίησε µε το χέρι. Ανάλογα προβλήµατα παρατηρήθηκαν και σε
περιπτώσεις κατά τις οποίες µία µέθοδος καλείται µέσα από κάποια άλλη.

3ο Πανελλήνιο Συνέδριο

(β) δυσκολία της κατανόησης της έννοιας της επιστρεφόµενης τιµής συνάρτησης,
γεγονός που καταδεικνύει έλλειψη εξοικείωσης µε την έννοια της ροής του
προγράµµατος και οδηγεί σε ερωτήσεις του τύπου «σε ποιον επιστρέφεται η τιµή;» ή «τι
συµβαίνει µε την επιστρεφόµενη τιµή;».
(γ) προβλήµατα χρήσης των εννοιών του δοµητή και του αποδοµητή. Ο φοιτητής σε
πολλές περιπτώσεις δεν αντιλαµβάνεται τη διαφορά που υφίσταται ανάµεσα στη δήλωση
και στη χρήση του δοµητή και του αποδοµητή. Επιπλέον σύγχυση επιφέρει το γεγονός
της δυνατότητας ύπαρξης πολλών δοµητών µε το ίδιο όνοµα οι οποίοι δέχονται
διαφορετικά ορίσµατα (και εποµένως αρχικοποιούν το αντικείµενο µε διαφορετικό
τρόπο), αλλά ενός και µοναδικού αποδοµητή ο οποίος µάλιστα καλείται υποχρεωτικά
χωρίς ορίσµατα.
(δ) προβλήµατα κατανόησης της έννοιας της επαναχρησιµοποίησης βιβλιοθηκών καθώς
και του τρόπου µε τον οποίο αυτή πραγµατοποιείται.
Μιλώντας γενικά, η διδασκαλία του αντικειµενοστραφούς προγραµµατισµού θα

πρέπει να πραγµατοποιηθεί σε τρία διαφορετικά στάδια, τα οποία σε γενικές γραµµές
είναι τα εξής (Sheez et al. 1997):
(α) διδασκαλία των βασικών εννοιών του αντικειµενοστραφούς προγραµµατισµού σε
καθαρά θεωρητικό επίπεδο
(β) ανάλυση και µοντελοποίηση του προβλήµατος (δηµιουργία διαγραµµάτων κλάσεων
(class diagrams), αντικειµένων (object diagrams) και ενεργειών (action diagrams))
(Booch 1994) χρησιµοποιώντας ειδικά εργαλεία, όπως είναι για παράδειγµα η γλώσσα
UML (Unified Modeling Language) (Flower & Scott 1999) και
(γ) υλοποίηση αντικειµενοστραφών εφαρµογών στην κατάλληλη γλώσσα
προγραµµατισµού (π.χ. C++, Java ή Smalltalk). Πάντως η εµπειρία έχει δείξει πως οι
φοιτητές θεωρούν τον αντικειµενοστραφή προγραµµατισµό πιο δύσκολο σε σχέση µε
τον παραδοσιακό διαδικαστικό προγραµµατισµό, γεγονός που θα πρέπει να ληφθεί
σοβαρά υπ’ όψιν κατά τη σχεδίαση των προγραµµάτων σπουδών και της διδακτέας ύλης
του κάθε µαθήµατος. Ενδεικτικός τρόπος οργάνωσης των διαλέξεων ενός µαθήµατος
αντικειµενοστραφούς προγραµµατισµού µπορεί να βρεθεί στην αναφορά
(Thramboulidis 2003).

ΕΚΠΑΙ∆ΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ
Η κατανόηση των θεµελιωδών προγραµµατιστικών τεχνικών τα τελευταία χρόνια,

υποβοηθείται από τη χρήση εκπαιδευτικών εφαρµογών ειδικά σχεδιασµένων για αυτό το
σκοπό, οι οποίες επιτρέπουν στο φοιτητή να κατανοήσει σε βάθος τον αλγόριθµο που
εφαρµόζεται έτσι ώστε στη συνέχεια να µπορέσει να τον υλοποιήσει πιο εύκολα.
Χαρακτηριστικό παράδειγµα τέτοιων εφαρµογών, είναι η επίδειξη του τρόπου
λειτουργίας κάποιου αλγορίθµου (π.χ. του αλγορίθµου ταξινόµησης quick sort ή τη
µετακίνηση στους κόµβους κάποιου δέντρου) µε τη βοήθεια ειδικών εφαρµογών που
στηρίζονται στη χρήση video ή animation (Byrne et al. 1996). Σε µια πιο αναλυτική
περιγραφή, οι εκπαιδευτικές εφαρµογές που βοηθούν τους φοιτητές να αναπτύξουν και

∆ιδακτική της Πληροφορικής

να εξασκήσουν τις προγραµµατιστικές τους δεξιότητες, χωρίζονται στις ακόλουθες
κατηγορίες (Deek & McHugh 1998):
α) Προγραµµατιστικά περιβάλλοντα (programming environments) που επιτρέπουν στους
φοιτητές να εξοικειωθούν µε επιλεγµένα χαρακτηριστικά των γλωσσών
προγραµµατισµού ενώ παράλληλα επιτρέπουν τη µεταγλώττιση, σύνδεση, εκτέλεση και
αποσφαλµάτωση του προγράµµατος. Τυπικές εφαρµογές που ανήκουν σε αυτή την
κατηγορία είναι οι εφαρµογές SUPPORT, STRUEDI, EBPS και SOMΑ που
εκτελούνται σε κατάσταση κειµένου, καθώς και οι εφαρµογές PICT, PECAN,
SCHEMACODE και ASA που χρησιµοποιούνται µέσα από γραφικό περιβάλλον.
β) Βοηθητικές εφαρµογές αποσφαλµάτωσης (debugging aids) που χρησιµοποιούνται
από τους προγραµµατιστές για να ελέγξουν τη λειτουργία της εφαρµογής, να
παρατηρήσουν τον τρόπο µε τον οποίο αυτή συµπεριφέρεται κάτω από διάφορες
συνθήκες, καθώς επίσης να ανιχνεύσουν και να διορθώσουν σφάλµατα Οι εφαρµογές
αυτές παρέχουν πολλά και διαφορετικά εργαλεία παρακολούθησης κώδικα (code
watchers, tracers, flags, breakpoints, visualization and animation utilities). Τυπικές
εφαρµογές που ανήκουν σε αυτή την κατηγορία είναι οι LAURA, DA, GENIUS και
VIPS.
γ) Συστήµατα ευφυούς διδασκαλίας (intelligent tutoring systems) που παρέχουν στο
φοιτητή πιο έξυπνες µεθόδους κατανόησης των βασικών αρχών του προγραµµατισµού.
Τα συστήµατα αυτά αποτελούνται από τρεις συνιστώσες: τη βάση γνώσης του
αντικειµένου (domain knowledge base) που περιέχει τρόπους αναπαράστασης και
περιγραφής των λύσεων του προβλήµατος, των σφαλµάτων που εµφανίζονται και των
κανόνων που ακολουθούνται σε κάθε περίπτωση, το µοντέλο φοίτησης (student model)
που επιτρέπει την αναπαράσταση της γνώσης του φοιτητή και της διαδικασίας µέσα από
την οποία αυτή αποκτάται (knowledge acquisition process) και τον πράκτορα
διδασκαλίας (tutoring agent) που χρησιµοποιείται για τη διανοµή του οργανωµένου
εκπαιδευτικού υλικού (instructional modules) στους φοιτητές. Τυπικές εφαρµογές που
ανήκουν σε αυτή την κατηγορία είναι οι εφαρµογές BIP, LISP Tutor και AST.
Θα πρέπει να σηµειωθεί ωστόσο πως η παραπάνω ταξινόµηση αφορά εφαρµογές

παλαιότερης γενεάς, ενώ σήµερα οι παραπάνω δυνατότητες προσφέρονται πλέον από τα
ολοκληρωµένα προγραµµατιστικά περιβάλλοντα (όπως είναι π.χ. η Visual C++) που
παρέχουν εξελιγµένα εργαλεία ανάπτυξης και αποσφαλµάτωσης κώδικα και η
λειτουργία των οποίων στηρίζεται – στις πιο συνηθισµένες περιπτώσεις – στις αρχές του
αντικειµενοστραφούς προγραµµατισµού.

ΑΞΙΟΛΟΓΗΣΗ ΚΑΙ ΣΥΝΕΡΓΑΤΙΚΗ ∆ΡΑΣΤΗΡΙΟΤΗΤΑ
Ένας απλός και εύκολος τρόπος για την αξιολόγηση και τη µέτρηση της απόδοσης

των φοιτητών είναι η συµπλήρωση ερωτηµατολογίων και ερωτήσεων πολλαπλών
επιλογών σε καθαρά θεωρητικό επίπεδο. Τυπικό παράδειγµα ερώτησης που εµφανίζεται
σε ένα ερωτηµατολόγιο είναι η παράθεση ενός τµήµατος κώδικα – µεταβλητού βαθµού
δυσκολίας όσον αφορά την κατανόηση – το οποίο ο φοιτητής θα πρέπει να µελετήσει
και να καταγράψει στο φύλλο ερωτήσεων το αποτέλεσµα της εκτέλεσής του. Από την

3ο Πανελλήνιο Συνέδριο

άλλη πλευρά, οι ερωτήσεις πολλαπλών επιλογών µπορούν να περιέχουν για παράδειγµα
πολλές γραµµές κώδικα διαφορετικές µεταξύ τους, τις οποίες ο φοιτητής θα πρέπει να
µελετήσει και να εντοπίσει ποιες από αυτές οδηγούν σε σφάλµα χρόνου εκτέλεσης και
κάτω από ποιες συνθήκες. Στα πρώτα στάδια των παραδόσεων όπου η έµφαση δίδεται
κυρίως στην εξοικείωση µε τη χρήση και το συντακτικό της γλώσσας, ο καθηγητής
µπορεί να δώσει στους φοιτητές ένα κώδικα που να περιέχει λεκτικά και συντακτικά
λάθη τα οποία ο φοιτητής θα πρέπει να εντοπίσει και να διορθώσει είτε από µόνος του
είτε χρησιµοποιώντας το πρόγραµµα µεταγλώττισης, ενώ σε πιο προχωρηµένα στάδια ο
κώδικας που διανέµεται στους φοιτητές θα είναι συντακτικά σωστός αλλά θα περιέχει
σηµασιολογικά και λογικά λάθη τα οποία θα πρέπει να εντοπιστούν δια της εφαρµογής
µεθόδων αποσφαλµάτωσης (χρήση της συνάρτησης print για την εκτύπωση των τιµών
των µεταβλητών, βηµατική εκτέλεση του προγράµµατος (step over) από κάποιες
συγκεκριµένες γραµµές κώδικα (breakpoints), κ.λ.π.).
Η συνεργατική δραστηριότητα ανάµεσα στους φοιτητές είναι ακόµη ένας παράγοντας

που µπορεί να συµβάλλει στην καλύτερη κατανόηση του αντικειµένου. Οι φοιτητές
µπορούν να οµαδοποιηθούν σε µικρές οµάδες και να αναλάβουν την υλοποίηση
τµήµατος κάποιου µεγαλύτερου έργου, ενώ εναλλακτικά µπορούν να αξιολογήσουν ο
ένας την επίδοση του άλλου έτσι ώστε να κατανοήσουν τις αδυναµίες τους και να
επιλύσουν τα όποια προβλήµατα αντιµετωπίζουν µέσα από τις µεταξύ τους συζητήσεις.
Αυτές οι οµάδες θα πρέπει σε τακτά διαστήµατα να συναντώνται µε τους
εκπαιδευτικούς έτσι ώστε να αξιολογείται η πρόοδός τους και να τίθενται και οι
επόµενοι στόχοι που θα πρέπει να προσεγγισθούν οδηγώντας τελικά σε µια επιτυχηµένη
διαδικασία µάθησης.

ΣΥΜΠΕΡΑΣΜΑΤΑ
Η διδακτική του προγραµµατισµού οριοθετεί τις αρχές εκείνες που υπαγορεύουν τον

τρόπο διδασκαλίας της εν λόγω τεχνικής µε τρόπο ώστε αυτή να µπορέσει να εµπεδωθεί
και να χρησιµοποιηθεί από τους φοιτητές. Οι µέθοδοι που εφαρµόζονται εξαρτώνται
από την εµπειρία και το γνωστικό υπόβαθρο των φοιτητών ενώ η επιλογή της
κατάλληλης σε κάθε περίπτωση γλώσσας προγραµµατισµού αποτελεί σηµαντική
παράµετρο που επηρεάζει το αποτέλεσµα της όλης διαδικασίας µε θετικό ή αρνητικό
τρόπο. Η µεθοδολογία που ακολουθείται διαφοροποιείται σε περιπτώσεις διδασκαλίας
συµβατικών διαδικαστικών ή αντικειµενοστραφών τεχνικών, ενώ η διαδικασία
ανάπτυξης εφαρµογών διευκολύνεται σηµαντικά από τα µοντέρνα προγραµµατιστικά
περιβάλλοντα που παρέχουν προηγµένα εργαλεία ανάπτυξης και αποσφαλµάτωσης του
πηγαίου κώδικα.

ΒΙΒΛΙΟΓΡΑΦΙΑ
Booch G. (1994), Object-oriented analysis and design with applications, The

Benjamin/Cummings Publishing Company Inc. (2nd edition)
Byrne M. D. et al. (1996), Do algorithm animations aid learning ?, GVU Technical

Report, GIT-GVU-96-18, Georgia Institute of Technology

∆ιδακτική της Πληροφορικής

Deek F. & McHugh J. (1998), A survey and critical analysis of tools for learning
programming, Computer Science Education, 8(2), 130-178

Flower M. & Scott K. (1999), UML distilled: a brief guide to the standard object
modeling language, Addison-Wesley Professional (2nd edition)

Gupta D. (2004), What is a good first programming language?
http://resolute.ucsd.edu/diwaker/articles/good-first-pl.html

Malmi L. & Korhonen A. (2004), A pedagogical approach for teaching data structures
and algorithms, Department of Computer Science and Engineering, Helsinki
University of Technology, Finald,
http://www.spop.dk/chapters-abstractv1/lm_ak.pdf

Ragonis N. & Ben-Ari M. (2005), On understanding the statics and dynamics of object-
oriented programs, ACM SIGCSE, 226-230

Sheetz S. D. et al. (1997), Exploring the difficulties of object-oriented techniques,
Journal of Management Information Systems, 14(2), 103-132

Thramboulidis C. (2003), Α sequence of assignments to teach object-oriented
programming: a constructivism design-first approach, Informatics in Education,
2(1), 103-122

Νικολαίδης Σ. (2004), Γλωσσοµάθεια, http://glossomatheia.studies.gr

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

